Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm

Alani, S., Zakaria, Z., Saeidi, T., Ahmad, A., Imran, M. A. and Abbasi, Q. H. (2021) Microwave imaging of breast skin utilizing elliptical UWB antenna and reverse problems algorithm. Micromachines, 12(6), 647. (doi: 10.3390/mi12060647)

[img] Text
243156.pdf - Published Version
Available under License Creative Commons Attribution.

5MB

Abstract

Skin cancer is one of the most widespread and fast growing of all kinds of cancer since it affects the human body easily due to exposure to the Sun’s rays. Microwave imaging has shown better outcomes with higher resolution, faster processing time, mobility, and less cutter and artifact effects. A miniaturized elliptical ultra-wideband (UWB) antenna and its semi-spherical array arrangement were used for signal transmission and reception from the defected locations in the breast skin. Several conditions such as various arrays of three, six, and nine antenna elements, smaller tumor, multi-tumors, and skin on a larger breast sample of 30 cm were considered. To assess the ability of the system, a breast shape container with a diameter of 130 mm and height of 60 mm was 3D printed and then filled with fabricated skin and breast fat to perform the experimental investigation. An improved modified time-reversal algorithm (IMTR) was used to recreate 2D images of tumors with the smallest radius of 1.75 mm in any location within the breast skin. The reconstructed images using both simulated and experimental data verified that the system can be a reliable imaging system for skin cancer diagnosis having a high structural similarity index and resolution.

Item Type:Articles
Additional Information:This research received no external funding from the Center for Research and Innovation Management (CRIM), UTeM’s research grant JURNAL/2018/FKEKK/Q00001, and Universiti Teknikal Malaysia Melaka (UTeM).
Keywords:UWB antennas, skin cancer, reverse problems, microwave imaging.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Abbasi, Professor Qammer and Imran, Professor Muhammad
Authors: Alani, S., Zakaria, Z., Saeidi, T., Ahmad, A., Imran, M. A., and Abbasi, Q. H.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Micromachines
Publisher:MDPI
ISSN:2072-666X
ISSN (Online):2072-666X
Published Online:31 May 2021
Copyright Holders:Copyright © 2021 The Authors
First Published:First published in Micromachines 12(6): 647
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record