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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Two approaches proposed to predict the 
electricity demand of buildings accord
ing to time series and weather variables. 

• Split the electricity demand data by time 
horizon for different occupancy rates. 

• Use ANN to train the no-occupancy 
power demand, full-occupancy power 
demand and occupancy rates. 

• Proposed approaches are validated in a 
case study of predicting the electricity 
demand of buildings in a university 
campus.  
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A B S T R A C T   

Due to the impact of occupants’ activities in buildings, the relationship between electricity demand and ambient 
temperature will show different trends in the long-term and short-term, which show seasonal variation and 
hourly variation, respectively. This makes it difficult for conventional data fitting methods to accurately predict 
the long-term and short-term power demand of buildings at the same time. In order to solve this problem, this 
paper proposes two approaches for fitting and predicting the electricity demand of office buildings. The first 
proposed approach splits the electricity demand data into fixed time periods, containing working hours and non- 
working hours, to reduce the impact of occupants’ activities. After finding the most sensitive weather variable to 
non-working hour electricity demand, the building baseload and occupant activities can be predicted separately. 
The second proposed approach uses the artificial neural network (ANN) and fuzzy logic techniques to fit the 
building baseload, peak load, and occupancy rate with multi-variables of weather variables. In this approach, the 
power demand data is split into a narrower time range as no-occupancy hours, full-occupancy hours, and fuzzy 
hours between them, in which the occupancy rate is varying depending on the time and weather variables. The 
proposed approaches are verified by the real data from the University of Glasgow as a case study. The simulation 
results show that, compared with the traditional ANN method, both proposed approaches have less root-mean- 
square-error (RMSE) in predicting electricity demand. In addition, the proposed working and non-working hour 
based regression approach reduces the average RMSE by 35%, while the ANN with fuzzy hours based approach 
reduces the average RMSE by 42%, comparing with the traditional power demand prediction method. In 
addition, the second proposed approach can provide more information for building energy management, 
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including the predicted baseload, peak load, and occupancy rate, without requiring additional building 
parameters.   

1. Introduction 

Due to the environmental degradation and global warming, many 
countries aim to develop low-carbon technologies to reduce the con
sumption of fossil fuels and greenhouse gas emissions [1, 2]. In terms of 
energy consumption, the proportion of building energy consumption in 
global energy consumption has increased rapidly [3] and the rate rea
ches approximate 40% of the total energy consumption in Europe [4]. 
Therefore, the energy consumption prediction for buildings is essential 
for designing high-efficiency buildings and maintaining low-energy 
operation and optimal control of buildings. Accurately predicting the 
energy consumption of buildings can provide benchmarks for energy 
management of building systems [5] and show the energy-saving po
tential of buildings [6]. 

The energy consumption of a building is affected by many factors, 
including weather variables, especially the dry-bulb temperature, the 
structure of the building and the thermal properties of physical materials 
used, occupancy and human behaviour, and secondary components, 
such as lighting system [4]. In the literature, many studies have used 
engineering methods [7, 8] or statistical methods [9, 10] to model and 
predict the weather-related thermal energy requirements of buildings. 
However, due to the influence of occupants’ activities, predicting the 
electricity demand is more complicated than predicting the heat de
mand. In the literature, different prediction methods are used for the 
thermal load and electrical load of various buildings. The heat load 
model is usually based on regression analysis, and the power load model 
is usually based on the probability distribution of hourly daytime 
analysis [11]. Statistical models can be used to study the effects of 
temperature, and time series models can be used to predict daily power 
demand [12]. 

The data of building energy consumption shows that the basic elec
tricity consumption of buildings includes emergency lighting, service 
and safety electricity, which are basically constant throughout the day 
[6]; the variable electricity consumption of buildings includes hea
ting/cooling loads, household air-conditioning equipment, hot water, 
and other power consumption [4], which are obviously affected by 
weather variables [12]. In most buildings, the HVAC (heating, ventila
tion, and air conditioning) systems consume the most electric energy, 
which can provide a sense of comfort for the working space of the 
building [13]. However, the simple understanding of occupancy in 
current research has led to a huge performance discrepancy between 
estimated energy consumption and measured energy consumption [14, 
15]. Due to the overall increase in per capita building area, power 
consumption indicators based on building area are no longer suitable for 
predicting the energy demand of buildings [6]. In [16], Newsham and 
Birt especially emphasized the influence of occupancy rate, which 
obviously can improve the accuracy of the model. In the modelling of 
occupancy rate, it is difficult to collect information about equipment 
occupancy and operation and, thus, time indicators are usually selected 
as input related to the timetable to indicate occupancy and equipment 
usage [17]. In order to solve the influence of seasonal changes and 
human activities on the power demand forecast of buildings, some 
studies have established separate models for different seasons or months 
to predict the power demand including human activities [18, 19]. 

The research in [20] aims to study a short-term, real-time energy 
demand forecasting method to cope with changing loads to effectively 
operate and manage buildings. In some buildings with complex appli
cation functions, such as hotels and shopping centres, the randomness of 
human activities is relatively high, which can greatly reduce the reli
ability of data and the accuracy of predicting the building energy con
sumption [21]. In addition, some researchers use data mining 

techniques to discover and summarise electricity consumption patterns 
hidden in the data [22]. Amasyali and El-Gohary reviewed the devel
opment of data-driven building energy consumption models in existing 
research using machine learning algorithms, including support vector 
machines and artificial neural networks (ANN), decision trees and other 
statistical algorithms, and highlighted future research directions [23]. 
Nizami and Al-Garni tried a simple feedforward neural network to 
correlate power consumption with the number of residents and weather 
data [24]. In literature [25], Massana et al. proposed a support vector 
regression model that uses the temperature and occupancy rate of 
buildings to predict the electrical load of non-residential buildings. 
Paterakis et al. proposed a framework based on deep learning to predict 
electricity demand by taking care of long-term historical dependence 
[26]. Ahamd et al. proposed and evaluated a novel random neural 
network technology, which can predict the energy consumption of 
non-residential buildings [27]. Zeng et al. conducted a comparative 
study on four data-driven methods used in online building energy con
sumption prediction and proved that the ANN method has better accu
racy for energy consumption prediction [5]. Luo et al. proposed a deep 
feedforward neural network architecture determined by genetic algo
rithm for the day-ahead hourly and week-ahead daily power consump
tion of campus buildings in the UK [17]. Rahman proposed a recurrent 
neural network model, which can predict mid-to-long-term (more than 
one year) electricity consumption in commercial and residential build
ings with a resolution of 1 hour [28]. Wei et al. proposed an occupancy 
estimation method based on blind system identification (BSI), and 
estimated the number of occupants based on artificial neural networks 
and using BSI and developed and reported a power consumption pre
diction model for air conditioning systems [14]. 

These methods are suitable for long-term forecasting of average daily 
electricity demand to reduce the impact of personnel activities on 
forecast accuracy, or for short-term forecasting of electricity demand to 
reduce seasonal effects. However, these methods are not suitable for 
solving some typical cases in specific area, such as office/education 
buildings heated by electricity in cold areas. In this type of buildings, the 
heating load is much higher than the cooling load, and the long-term and 
short-term correlation between electricity demand and temperature are 
in opposite direction. That is, in the trend of seasonal power consump
tion, temperature and power demand are in negative correlation, while 
in the trend of hourly power consumption, temperature and power de
mand are in positive correlation. This causes difficulties in data fitting 
between power demand and weather variables. To our best knowledge, 
no method can solve this problem effectively at present. Therefore, this 
paper aims to seek a simple and reliable method to accurately predict the 
electricity demand of buildings in seasonal and hourly simultaneously 
by considering the impact of occupancy rates. 

This paper proposed two approaches to predict the electricity de
mand of target buildings. In the first prediction approach, the model uses 
the non-working hours power demand data to predict the building 
baseload depending on ambient temperature and uses the working hours 
power demand data to predict the occupants’ activities power demand, 
which is only dependent on the time series in a day. After that, this paper 
proposed a method that combines ANN and fuzzy logic technologies to 
estimate the building baseload, peak load, and the real-time occupancy 
rate from multi-variables weather variables. The proposed prediction 
method can predict the hourly power demand of target buildings based 
on the prediction results of baseload and occupants’ activities from 
ANN. This method was applied in the University of Glasgow campus as a 
case study. The results show that the proposed ANN-based method can 
significantly reduce the prediction error, improve the prediction accu
racy of the electrical demand of the target buildings and the entire 
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campus. 

2. Problems in electricity demand data fitting 

In the data processing of the electric power and weather variables, it 
is found that the relationship of power consumption and ambient tem
perature are in negative and positive correlation in long-term (seasonal 
variation) and short-term (hourly variation), respectively. The com
parison between ambient temperature and electricity demand is given in 
Fig. 1. The total data of 1.5 years on the left shows that the relationship 
between ambient temperature and electricity demand is in negative 
correlation. The lower air temperature (blue curve), the higher elec
tricity demand (red curve). But if the comparison is enlarged into single 
days, as shown in the figure on the right, their relationship is positive 
correlation. The electricity demand is increasing and decreasing 
following the temperature. 

The main reason of this situation can be explained as the impact of 
human activities of occupants in the building. For example, during 
working time, occupants are using electric devices with the demand in 
an approximate Gaussian distribution. Thus, the power demand at noon 
is the highest while the power demand at night is the lowest. This ten
dency of power demand in a day matches the tendency of temperature, 
but it cannot say that the power demand is determined by the 
temperature. 

In a long-term period or seasonal variation, the HVAC (heating, 
ventilation, and air conditioning) system is managed to heat the building 
continuously. Thus, the power demand is in inverse correlation with the 
temperature, or the lower temperature causes the higher power con
sumption for space heating. It shows obvious inverse correlation be
tween electricity demand and temperature. 

This is a typical issue in office/education buildings heated by elec
tricity. It is more obvious in cold areas, such as in Scotland, that the 
heating load is much higher than the cooling load. In the opposite 
condition where the cooling load is much higher, the inverse correlation 
between electricity demand and temperature in the long term is not as 
obvious as the issue shown above. This paper focuses only on fitting the 
data of electricity demand of buildings where the heating demand is 
much higher than cooling. Therefore, in a longer time period, the tem
perature and electricity demand are in inverse correlation, while in a 
shorter time period, the temperature and electricity demand are in 
positive correlation. That causes difficulties in data fitting using tradi
tional statistical methods of fitting the power demand with temperature 
directly. 

3. Development of electricity demand prediction approach 

3.1. Working hour splitting based regression approach (Approach 1) 

The approach is designed to split the building baseload power 

consumption and occupants’ activities by time series. In order to achieve 
this, it is assumed that the occupants only consume power at particular 
period of time while building baseload power is consumed 24 h 
continuously. In the time period when the occupancy rate is low or zero, 
the power demand is mainly the baseload of the building; and in the time 
period when the occupancy rate is high, the power demand data in
cludes both the building baseload and occupants’ activities. It is difficult 
to separate them from the recorded data. Therefore, the present 
approach uses the power demand data of the low occupancy time period 
to find the dependence on environmental conditions to adapt to the 
building baseload, which is independent with occupants’ activities. 
After that, the building baseload in the remaining time period can be 
predicted by the weather variables of the same period and the fitted 
dependence above. It is assumed that the difference between the actual 
power demand and the building baseload during this period is caused by 
the influence of the occupants’ activities. 

In the case study, the target buildings at university campus are used 
for teaching and officing. Thus, the normal working hours are between 
9:00 and 17:00, depending on the work schedule. However, the actual 
working hours are flexible for employees, depending on their preference 
on working time. After comparing the electricity demand data of normal 
working days with public holidays, it is found that the impact period of 
occupant’s power consumption is several hours wider than the normal 
working hours. Therefore, in order to further reduce the uncertainty of 
occupants’ activities, a three-hour redundancy period has been added 
before and after the normal working hours to eliminate possible occu
pants’ activities during non-working hours. The data between 20:00 
every day and 6:00 the next day is defined as the non-working hours and 
used to fit weather variables to electricity consumption without occu
pants’ activities, as shown in Fig. 2. 

In the approach, the non-working hours power demand data is used 
to fit the most significant weather variables as the building baseload 
power demand. To choose the most significant weather variable for 
fitting the non-working hours power demand, the sensitivity analysis 
technique is used to find which weather variable has the highest sensi
tivity to the power demand. The sensitivity analysis uses the coefficient 
of determination, R2

k , of the kth model input variable as the index of 
showing the quality of each weather variable to the electricity demand 
as 

R2
k = 1 −

∑
i

(
yi − xk,i

)2

∑
i

(

xk,i − xk

)2 (1)  

where xk,i and yi indicate the ith sample points data of the kth model 
input and model output, respectively; xk indicates the mean of model 
input. 

After the weather variable with highest sensitive to power demand is 
found, their relationship is found using the simplest statistical method (i. 

Fig. 1. Half-hourly power demand of different campuses comparing with temperature.  
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e., the linear regression method) to predict the building baseload power 
demand. The difference between the recorded real power demand and 
fitted baseload power is then known as the power demand determined 
by occupants’ activities. It is assumed that the power demand of occu
pants’ activities in each hour satisfies a normal distribution. Therefore, 
at the same hour on different dates, the mean value of the difference 
between the recorded power demand and the fitted building baseload is 
used to predict the most possible power demand caused by occupants’ 
activities. After getting the average of human activities power demand 
caused by building occupants, the sum of power demand caused by 
fitted building baseload and occupant activities are known as the fitted 
building power demand. The whole process is produced as the flowchart 
in Fig. 3. 

3.2. ANN with fuzzy hours splitting approach (Approach 2) 

The design above is the basic method to verify the approach of 
splitting the data by time of working hours. However, the linear 
regression method to fit the electricity demand and ambient tempera
ture cannot fully capture the nonlinear dynamics of multi weather 
variables. In addition, the average occupant power demand ignored a lot 
of information that causes the power variation of different human ac
tivities. In order to improve the power demand prediction approach, an 
approach is developed with artificial intelligent technologies. 

In the original design, the splitting method is based on a fixed time 

from normal working hours. However, this splitting approach is too 
arbitrary and does not consider the possible changes of different con
ditions. In the new approach, the full-occupancy hours are defined from 
t2 to t3 while the no-occupancy hours are defined from t4 to t1. The area 
between full-occupancy hours and no-occupancy hours are defined as 
the fuzzy area that is not quite clear to belong to the full-occupancy or 
no-occupancy, as shown in Fig. 4. 

The power demand can be split into three sections by time as 

Pbuilding(t)= {

Pno t4 ≤ t ≤ t1
Pfuzzy t1 ≤ t ≤ t2&t3 ≤ t ≤ t4
Pfull t2 ≤ t ≤ t3

(2) 

Assume the membership function of the fuzzy area is f(t), which 
indicates the occupancy rate. The power demand of the fuzzy hours 
Pfuzzy(t) can be obtained from the power demand of no-occupancy 
power, the full-occupancy power and the membership function as 

Pfuzzy(t) = Pno(t)⋅(1 − f (t)) + Pfull(t)⋅f (t) (3)  

where Pno(t) is the power demand of time during no-occupancy hours, 
which also indicates the building baseload power demand without the 
impact of the occupants. Pfull(t) is the power demand of time during full- 
occupancy hours, which includes the power demand at peak load caused 
by full-occupancy activities. 

In the fitting approach between weather variables and power de
mand, the working hour splitting based regression approach uses linear 
regression to find the relationship between non-working hours power 
demand and the most sensitive weather variable. That approach as
sumes that the demand of building baseload is in linear relation to a 
single weather variable. The impact of other less sensitive weather 

Fig. 2. Splitting the time into working hours and non-working hours of every 24 h (example of a single day).  

Fig. 3. Flow chart of electricity demand fitting approach.  
Fig. 4. Splitting the time into full-occupancy hours, no-occupancy hours, and 
fuzzy hours. 
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variables and other less dominate nonlinear relationships are ignored. 
Therefore, in the new approach, the artificial neural network (ANN) 
method is used to find the nonlinear relationship from multiple weather 
variables to power demand of no-occupancy hours and full-occupancy 
hours, respectively. Similar with the regression approach, the sensi
tivity analysis referring to the coefficient of determination is required to 
rank the weather variables based on their sensitivity. But different with 
the regression approach above that only choose one most significant 
variable, the ANN based approach chooses more weather variables for 
fitting their nonlinear relationships with power demand. Based on the 
result of sensitivity analysis, the number of input neurons in ANN can be 
defined according to the number of weather variables with high sensi
tivity to the power demand. 

The process of ANN can be described in mathematical formulas. 
Define xk(k= 1,2,…, n) as the k-th input attribute value, which is passed 
along the links to the other layers. The weighted sum of signals, 

∑
, 

arriving at the input of the next neuron is subjected to a transfer func
tion, which is the most commonly used ‘sigmoid’ function as 

f
(∑)

=
1

1 + e−
∑ (4) 

The jth hidden neuron hj(j= 1,2,…, p) receives the sum of neuron 
value multiplied by the weights w(2)

kj and bias b(2)
kj associated with the link 

as 

hj = f

(
∑n

k=1
w(2)

kj xk + b(2)
kj

)

(5) 

The output neurons are defined as yi(i = 1, 2, …, m), which are 
summed up with their input signals and activation transfer function as 

yi = f

(
∑p

j=1
w(1)

ji f

(
∑n

k=1
w(2)

kj xk + b(2)
kj

)

+ b(1)
ji

)

(6)  

where f(⋅) is the activation function, the sigmoid function used in the 
paper; w(1)

ji , b(1)ji , w(2)
kj and b(2)kj are the weights and bias linked to the 

output layer (1) and hidden layer (2), respectively. This is a typical two- 
layer ANN model with an output layer and one hidden layer. 

The training error is used to update the ANN parameters of weights 
and bias of each neurons in the hidden and output layers. The training 
based on backpropagation (BP) learning algorithm is adopted to a 
typical two-layer ANN model to search for the global optimum as 

δ(1)i = yi(1 − yi)(ti − yi) (7)  

δ(2)j = hj(1 − hi)
∑

i
δ(1)i wji (8)  

where δ(1)i and δ(2)j indicate the responsibilities of output-layer neurons 
and hidden-layer neurons, respectively. Then the weights and bias of 
links can be updated based on the responsibilities as 

w(1)
ji = w(1)

ji + ηδ(1)i hj (9)  

w(2)
kj = w(2)

kj + ηδ(2)j xk (10)  

b(1)
ji = b(1)

ji + ηδ(1)i (11)  

b(2)
kj = b(2)

kj + ηδ(2)j (12)  

where η is the learning rate of the BP based ANN. 
The original design assumes that the power demand of occupants’ 

activities only related with the working time and calculates the average 
occupants’ power consumption by subtracting the fitted building base
load from the recorded full power demand. However, the occupant 

activities can somehow be affected by different weather variables. The 
new approach uses the ANN to find the occupancy rate in fuzzy hours, in 
which the number of occupants is varying from no occupants to full 
occupants. Thus, the occupancy rate of fuzzy hours is described by 
membership function between no-occupancy and full-occupancy and is 
fitted with the weather variables in ANN. Assuming the fuzzy hours are 
between t1 and t2, the fitted fuzzy area membership function can be 
obtained by 

f (t)
⃒
⃒
⃒

t2

t1
= min

(

max

(
Pfuzzy(t) − Pno(t)
Pfull(t) − Pno(t)

, 0

)

1

)

(13)  

where Pfuzzy(t) is the real power demand of fuzzy hours for training, 
Pno(t) indicates the predicted baseload power demand in fuzzy hours 
using the ANN trained by no-occupancy hours data. Pfull(t) indicates the 
predicted full occupants power demand in fuzzy hours. The power de
mand data of no-occupancy hours and full-occupancy hours is used to 
train the ANN model. After it is well trained, the model can be used to 
calculate the no-occupancy power demand and full-occupancy power 
demand. Therefore, in the fuzzy hours, its no-occupancy power demand 
and full-occupancy power demand can be predicted and used as the 
upper and lower limit. Its real value can be obtained using both the 
predicted limits and the fitted membership function of occupancy rate, 
f(t)|t2t1 , in fuzzy hours between t1 and t2. The fitted membership function 
shows the occupancy rate between 0 and 1. If the membership value is 0, 
no occupant activity affects the power demand, and the building power 
demand only includes the baseload power demand. If the membership 
value is 1, the power demand is impacted by full occupants. The mem
bership value between 0 and 1 indicates the ratio of current occupants to 
the full occupants. Different with Approach 1 that assumes the occu
pancy rate is the same in all weekdays or weekends, the fitted occupancy 
rate in Approach 2 depends on both the weather variables and time 
horizon. Thus, Approach 2 covers the uncertainties of occupancy rate 
caused by weather and better predicts the real occupancy rate of target 
buildings. 

In the ANN design, it combines three ANN together. The baseload 
power demand is fitted using m  nodes and trained with the data of no- 
occupancy hours. The full-occupancy power demand is fitted using 
additional n2 nodes and trained with the data of working hours as the 
full-occupancy power demand is calculated by both the n1 nodes for 
baseload and n2 nodes for occupants. The membership function of oc
cupancy rate in fuzzy hours for training is calculated using Eq. (13) with 
the real power demand in fuzzy hours and the fitted full-occupancy 
power demand from n1 + n2 nodes. The membership function is fitted 
to time series and weather variables using another n3 nodes. In sum
mary, the ANN is developed to use the weather variables and time series 
as inputs and the power demand data split into no-occupancy hours, full- 
occupancy hours and fuzzy hours, as shown in Fig. 5. 

The power demand of the fuzzy area (t1 ∼ t2 and t3 ∼ t4) is calculated 
according to the trained membership function of occupancy rate. Then 
the predicted power demand from 00:00 to 24:00 is compared with the 
recorded result to validate the approach. 

The final artificial intelligent based approach is developed as the 
flowchart shown in Fig. 6. The real power demand data is split the full- 
occupancy hours (t2 ∼ t3) and no-occupancy hours (t4 ∼ t1) to fit with 
weather variables, respectively. The power demand data of fuzzy hours 
(t1 ∼ t2 and t3 ∼ t4) is then used to calculate the occupancy rate using 
Eq. (13) and fitted with weather variables as well. At last, the fitted 
building power demand is calculated from the predicted no-occupancy 
power, full-occupancy power and predicted occupancy rate from 
00:00 to 24:00 from the ANN for validation. 

4. Simulation result of electricity demand prediction 

In the case study of electricity consumption of the University of 
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Glasgow, most buildings do not have individual power meters to record 
their electricity usage. The buildings with individual power metre to 
record their electricity demand are the Maths & Stats school, the St 
Andrews building, and the Wolfson medical school. Other buildings are 
included in the two campuses, the North campus and Main campus, as 
shown in Fig. 7. The Maths & Stats school building is used as the target 
building to develop the approach for electricity demand prediction. 

4.1. Fitting of electricity demand 

The data used in the case study included 13 weather variables 
recorded by the local weather station and the electricity consumption of 
whole campus recorded by the university energy centre. The weather 
variables used for fitting the whole hours power demand include the 
dry-bulb or air temperature, the wet-bulb temperature, the dew-point 
temperature, the daily mean temperature, the derived sunshine, the 
WMO sunshine (measured by World Meteorological Organization), the 
wind speed, the wind direction, the relative humidity, the station pres
sure, the mean sea-level pressure, the visibility, and the cloud base 
height. 

In the sensitivity analysis, each weather variable is analysed with the 
electricity demand with R2. The data is recorded in every hour for a total 
of 549 days from 1st May 2017 to 31st October 2018. Therefore, the full 
hours power demand including the total of 13,176 h data points and the 
non-working hours power demand including just 4941 h data point are 
used in the sensitivity analysis. The comparison between analysing full 
hours power demand and non-working hours power demand is shown in 
Fig. 8. In the result, the blue bar indicates the sensitivity of each weather 
variable to non-working hours power demand, where the air tempera
ture is higher than other weather variables. The red bar indicates the 
sensitivity of each weather variable to 24 h power demand, where the 
daily mean temperature is obviously higher than other weather vari
ables and the sensitivity of all weather variables is less than 0.5 in R2. 
This verifies that the effectiveness of the proposed approach that the 

Fig. 5. Artificial neural network for fitting the weather variables and non-working hours and working hours power demand.  

Fig. 6. Embed the developed electricity demand fitting approach with artificial 
intelligent techniques. 
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non-working hours power demand has higher sensitivity to the elec
tricity demand and the impact of occupant’s activities in working hours 
can reduce the sensitivity and causes more uncertainties. 

In the results, the air temperature has the highest sensitivity to the 
non-working hours power demand. Thus, the linear regression method is 
used to find the linear proportion between air temperature and non- 
working hours power demand. The fitted power demand with linear 
regression is defined as the building baseload power demand. The dif
ference between real power and fitted baseload power is known as the 
occupant’s activities and its average power demand can be obtained 
from the boxplot shown in Fig. 9. The occupant’s activities are different 
between workdays and weekends/holidays. Therefore, the fitting of 
power difference is separated by workdays and weekends/holidays and 

getting their mean hourly power demand of occupants, respectively. 
In the result of mean value, the peak power demand caused by oc

cupants’ activities in weekdays is about 15 kW while that on weekends is 
only approximate 6 kW. In this test, the power demand caused by human 
activities of occupants are assuming to be the same every workday or 
weekends. In the box plot, the red central segment indicates the median, 
the top and bottom edges of each box indicate the 1/4 and 3/4 per
centiles, and the ‘+’ symbol indicates the outliers. The uncertainties are 
obtained as the range between upper and lower limits to the median by 
ignoring the outliers. In the result, the average power demand caused by 
human activities of occupants has the uncertainties of up to ±10 kW in 
both working days and non-working days. For example, at the time of 
12:00, the occupants’ power demand in weekdays is 15±10 kW while 

Fig. 7. Campuses of the University of Glasgow with individual electricity demand data.  

Fig. 8. Sensitivity analysis of each weather variable to non-working hour power demand.  
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that in weekends is 5±10 kW. The negative power demand just presents 
the difference between the average fitted power demand and real value. 
This regression approach mainly considers the variation of occupancy 
with time, and its relation to weather variables is not considered in the 
regression for simplification. The variation of occupancy behaviour 
caused by weather variables is considered as uncertainties in this 
approach. But this approach has a limitation that the relationship be
tween occupancy behaviour and weather variables is not considered and 
fitted. 

After the fitting of both building baseload power demand and oc
cupants power demand, their sum is known as the total power demand 
of the target building and it is then compared with the real power de
mand. Fig. 10 shows the results of the comparison between real power 
demand (blue solid line) and fitted power demand (red dashed line). 
Their difference is known as the fitting error as shown below. In the 
fitting results, the fitted power demand matches well with the recorded 
real power demand. The average fitting error is around 18%. 

The fitted power demand is the sum of weather dependent baseline 
power and the power caused by the occupants’ activities. The example 

of fitted power demand in one week is shown on the right of Fig. 10. The 
blue dashed line shows the temperature. The blue shadow shows the 
fitted baseload power, which is in negative correlation to temperature. 
The yellow shadow shows the fitted power caused by occupants’ ac
tivities. The red line shows the final fitted power demand while the black 
pointed line shows the real power demand for comparison. 

However, due to the power of the occupants’ activities is fitted using 
the mean value, it causes more fitting error of the unpredictable human 
activities. Therefore, using ANN to find the relationship between the 
power demand caused by occupants and the weather variable in the new 
design is theoretically one solution to improve the prediction accuracy. 

4.2. Fitting result of ANN based approach 

In this section, the artificial intelligent based fitting approach is 
tested in fitting the power demand of target building/campus. As in the 
design, the ANN method is used to find the relationship between 
weather variables and power demand of no-occupancy and full- 
occupancy activities. In the previous case, the statistical results of 
power demand caused by occupancy show that the probability density 
function of occupancy within a day is approximately a bell-shaped 
curve. Therefore, in order to minimize the impact of the occupancy 
rate variation, an interval where the occupancy rate is as stable as 
possible should be selected near the peak and trough values of the oc
cupancy rate. This will result in a narrower time interval. However, if 
the time interval is selected as narrow as possible, it will result in less 
data available for ANN training, which will reduce the prediction ac
curacy. Therefore, it is necessary to consider the trade-off between 
narrower time intervals and more data for ANN training in defining the 
full-occupancy and no-occupancy time period. In the ANN training, the 
full-occupancy hours are set as from t2=11:00 to t3=15:00. The no- 
occupancy hours are set as from t4=00:00 to t1=04:00. The switching 
between no-occupancy hours and full-occupancy hours is using the 
predicted occupancy rate from the ANN model. 

The fitted membership function of occupancy rate is related to the 
weather variables and time horizon using the trained ANN. Fig. 11(a) 
shows fitted membership function for one week as an example. The 
result shows that the occupant’s membership is the highest at noon and 
is the lowest at night when it is normally close to zero. The result of 
predicted power fitted by ANN is shown in Fig. 11(b). The blue shadow 
on the bottom shows the fitted no-occupancy power demand, which 
indicates the building baseload. The green dashed line shows the fitted 
full-occupancy power demand, which indicates the peak load. The yel
low shadow in the middle shows the fitted power demand caused by 
occupants’ activities from the predicted occupancy rate in Fig. 11(a). 

Fig. 9. Statistical mean value of working hours power demand caused by 
occupant activities in working days and weekends/holidays. 

Fig. 10. Prediction result of fitted power demand (approach 1) comparing with real power demand.  
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Combining the baseload power demand, the occupants’ activities 
related power demand and occupancy membership function fitted from 
ANN using Eq. (13), the final fitted power demand is shown as the solid 
red line shown in Fig. 11(b). Comparing it with the real power demand 
shown as the dotted black line, the fitted power demand tracks the real 
power demand and is able to predict the future electricity demand. 

In order to validate the effectiveness of the proposed approaches, the 
comparison among the linear regression-based approach (Approach 1), 
the ANN based approach (Approach 2) and the conventional ANN fitting 
approach in one week is shown in Fig. 12. The result of conventional 
ANN is shown with the dashed green line. Due to the issues mentioned in 
Section 2, the conventional ANN cannot fit the data because the long- 
term and short-term time horizons are negative and positive correla
tion with weather variables. Thus, the conventional ANN cannot find the 
best relationship between weather variables and target power demand. 
With splitting the data by different time periods of no-occupancy hours 
and full-occupancy hours, the proposed approaches can have better 
prediction performance and less absolute prediction error. 

Using Approach 1, the non-working hour power demand is fitted 
with the linear regression of air temperature and working hour occu
pancy power demand is obtained from its average value. This test vali
dates the effectiveness of splitting the data by working and non-working 
hour time periods. However, the linear regression cannot fully use the 

information of weather variable. In the ANN with fuzzy hours splitting 
approach (Approach 2), the no-occupancy hours power demand, the 
full-occupancy hours power demand and occupancy rate is fitted with 
weather variables by the ANN approach. The result shows that Approach 
2 has less absolute prediction error than the linear regression-based 
approach and the conventional ANN. 

In neural network technology, data is usually classified into training 
set and test set, usually in the ratio of 70:30, to guarantee the model 
accuracy. This case study contains the electricity demand data of 18 
months in total, from May 2017 to October 2018. Therefore, the data of 
the first 12 months is used to train the ANN, and the data of the next 6 
months is used for testing. In addition, the power demand data from 
December to February has the highest power demand in a year. As the 
training data includes this period, the power demand of other months 
can be guaranteed to be within the boundary of the model. 

The power demand of the target building of Maths & Stat School for 
training and the predicted power demand is shown in Fig. 13(a). In 
addition to the Maths & Stat School, other university campuses have 
different dependency of power demand to weather variables and each 
campus has different capacity of rated power demand and occupant 
behaviour. 

As described in Section 2, the Maths & Stat School, St Andrews 
Campus and Wolfson Medical School have their own individual power 

Fig. 11. Prediction result of proposed ANN based approach (approach 2) in one week as an example. (a) Fitted membership function of occupancy rate, (b) fitted 
power demand. 

Fig. 12. Fitting result comparison among the ANN to full power, the baseload & human activity approach, and the ANN and fuzzy based approach.  
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metre to record the electricity consumption. The north campus and main 
campus only recorded the total power consumption of tens of buildings. 
In addition, the university has its own district heating system for most 
old buildings. As the Maths & State School is newly built, it is not 
included into the district heating system. Its space heating is fully sup
plied by the electrifying heating and, therefore, its electricity demand 
shows more relating to the weather conditions. Other buildings have 
different percentage of electrifying heating depending on occupants’ 
behaviour. The weather conditions have less influence on these build
ings comparing with the Maths & State School. Therefore, to validate the 

universality of the ANN based approach and its robustness to different 
data, the prediction results of other buildings or campuses using the 
same prediction approach are given in Fig. 13(b)-(e). 

In order to compare their prediction performance of all methods 
numerically, the performance index is choosing the root-mean-square 
error (RMSE) between predicted power demand and real power de
mand of the last 6 months. The RMSE of all five campuses predicted by 
the conventional ANN approach and two proposed approaches are 
compared in a bar chart as shown in Fig. 14. 

From the result, the proposed approach that uses the ANN to fit the 

Fig. 13. Prediction of power demand of different campuses using the proposed approach.  
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power demand data of working and non-working hours separately can 
get the best prediction performance with less RMSE. The proposed 
Approach 2 can reduce RMSE by 5% to 30% compared with the pro
posed Approach 1, and it reduces RMSE by 30% to 55% compared with 
the conventional ANN. In average, the proposed working hour splitting 
based regression approach and ANN with fuzzy hours splitting approach 
can reduce the RMSE prediction error by 35% and 42%, respectively. 
Thus, the proposed approaches can be used to predict the power de
mand, whose long-term and short-term data are in negative and positive 
correlation, respectively. In addition, the proposed approach with ANN 
and fuzzy technologies can be used as a ‘grey-box’ to include the 
knowledge of physical process to explain the effect of occupancy 
activities. 

5. Conclusion 

The electricity demand of office buildings seems to be in negative 
and positive correlation with weather variables in long-term and short- 
term time horizon, respectively, as a result the conventional ANN 
approach cannot accurately capture the relationships between them. In 
this paper, two electricity demand prediction approaches have been 
proposed to solve this issue. The initial proposed approach splits the 
power demand data by working hours and non-working hours to avoid 
the impact of occupants’ activities to building power demand. Using this 
method, the linear regression approach is used to fit the building base
load power to a weather variable using the non-working hours data and 
find the average occupants power demand using the data of working 
hours. To fit the power demand with more weather variables, the pro
posed approach is further developed to use ANN to fit the non-working 
hours data and working hours data and the membership function of 
fuzzy hours between them. With the second proposed approach, more 
weather variables can be considered in the model to predict the power 
demand more accurately. In the simulation results, both approaches 
have been validated to show less RMSE value than the conventional 
ANN approach in predicting the power demand. In addition, the ANN 
with fuzzy hours splitting approach has the best performance among the 
three approaches and reduces RMSE by 5% to 30% compared with the 
working hour splitting based regression approach and reduces RMSE by 
30% to 55% compared with the conventional ANN. Therefore, both 
approaches are able to solve the issue that the input and output fitting 
data are in negative and positive correlation in long-term and short-term 
time horizon, respectively. The proposed approaches can achieve good 
performance with RMS prediction error as low as 6% in building power 
demand prediction. In future works, the working hour splitting 
approach and fuzzy hour approach will be applied to other models, such 
as deep learning and stochastic models. 
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