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Identifying locations for new bike-sharing stations in Glasgow: an analysis of 
spatial equity and demand factors
Jeneva Beairsto, Yufan Tian, Linyu Zheng, Qunshan Zhao and Jinhyun Hong

Urban Studies Urban Big Data Centre, School of Social and Political Sciences, University of Glasgow, Glasgow, UK

ABSTRACT
Worldwide bike-sharing systems are growing in popularity as an alternative, environmentally 
friendly mode of transportation. As cities seek to further develop bike-sharing programmes, it is 
important to consider how systems should expand to simultaneously address existing inequalities 
in accessibility, and best serve demand. In this paper, we determine ideal locations for future bike- 
sharing stations in Glasgow, Scotland, by integrating demand modelling with accessibility con
siderations. We began by analysing the spatio-temporal trends of bike-sharing usage, and assessed 
the spatial equity of access to stations in Glasgow. To identify important determinants of bike- 
sharing demand, we ran an ordinary least squares regression model using bike sharing trip data 
from Nextbike Glasgow. We then quantifiably measured the level of spatial accessibility to stations 
by applying the two-step floating catchment area (2SFCA) methodology and ran a GIS weighted 
overlay analysis using the significant determinants of station demand. Lastly, we combined the 
demand and accessibility results to determine where new stations should be located using 
a maximum covering location problem (MCLP) that maximized the population served. Our results 
show that distance from transit stations, distance from downtown, employment rates, and nearby 
cycling lanes are significant factors affecting station-level demand. Furthermore, levels of spatial 
access were found to be highest primarily in the centre and eastern neighbourhood of Glasgow. 
These findings aided in determining areas to prioritize for future station locations, and our 
methodology can easily be applied to other bike-share programmes with adjustments according 
to varying aims for system expansion.
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1. Introduction

Worldwide bike-sharing systems are growing in popu
larity as an alternative, environmentally friendly mode of 
transportation. Despite the widely-established benefits 
of bike-sharing systems, the usage and growth of bike- 
sharing has varied worldwide. Currently, China has by far 
the largest bike-sharing programmes in terms of the 
number of bikes, while the U.S. is the country with the 
most bike-sharing programmes (O’Brien 2020). Yet, daily 
bike usage rates have been found to be considerably 
lower on average in American and Australian cities, as 
compared to many European cities (National Association 
of City Transportation Officials 2019; Médard de 
Chardon, Caruso, and Thomas 2017).

The city of Glasgow introduced its bike-sharing sys
tem, operated by NextBike, in July of 2014. Over the first 
two years of operation, the programme had close to 
200,000 trips (McPherson 2017), and since 2014, usage 
has steadily increased as more stations have been reg
ularly added. However, as cities like Glasgow seek to 
further develop bike-sharing programmes, it is  

important to consider how best to expand, given the 
different ways the success of a system can be measured.

Evidently, it is possible to have a bike-sharing system 
that can be considered monetarily successful while not 
socially or spatially equitable. Vice versa, a system that is 
more equitable may not have long-term sustainability if 
demand is not met. As such, it makes sense that bike- 
sharing systems are first implemented in areas of high 
density (i.e. around the city centre). However, once this 
has been established, as is the case in Glasgow, consider
ing both accessibility and demand factors when assessing 
expansion options is an important step towards simulta
neously achieving a more equitable and profitable sys
tem. In the existing literature, most studies focusing on 
siting bike-sharing station locations do not jointly con
sider the factors of equity and demand. The obvious next 
step is to consider equity and demand jointly to site new 
bike-sharing station locations in Glasgow.

The overarching goal of this research is to determine 
optimal locations for future bike-sharing stations in 
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Glasgow by integrating demand modelling with spatial 
accessibility considerations. We begin by outlining 
a review of existing literature related to bike-sharing deter
minants of demand and equity considerations. Exploratory 
data analysis has been used to understand the develop
ment of the Glasgow NextBike system spatially and tempo
rally. Furthermore, the overall equity of spatial accessibility 
to bike-sharing stations has been analysed. Lastly, we use 
the regression analysis to determine important determi
nants of station demand, and utilize a spatial optimization 
technique to locate future stations. This combination of 
methodologies is the first of its kind within the literature 
of bike-share station siting, and its comprehensive 
approach provides useful application to bike-sharing com
panies and urban planners.

2. Background

2.1 Determinants of bike-sharing demand

Many factors affecting bike-sharing demand have been 
identified in previous research, including transportation 
infrastructure, built environment, socio-economic fac
tors, and human behaviours. Studies show that the fre
quency of bike-sharing usage increases when more 
cycling infrastructure (i.e. bicycle lanes) and bike- 
sharing facilities (i.e. stations and their capacities) are 
available near a bike-sharing station (Bachand-Marleau, 
Lee, and El-Geneidy 2012; Wang et al. 2016; Faghih- 
Imani et al. 2014). In addition, convenience is one of 
the main motivations for using public bikes to solve 
the ‘last-mile’ transit problem (Bachand-Marleau, Lee, 
and El-Geneidy 2012; Fishman 2012). For example, in 
a survey conducted among bike-sharing users in 
Melbourne, ‘convenience’ was the top reason for using 
the programmes, accounting for 24% of responses, fol
lowed by being ‘close to public transport’ (14%) and 
‘close to work’ (10%) – both of which could also be 
classified under convenience (Fishman 2012). In regard 
to multi-modal trips, a survey completed by bike-sharing 
users in Montreal, showed that users mostly use bike- 
sharing in combination with the metro (compared with 
other modes of transportation) (Bachand-Marleau, Lee, 
and El-Geneidy 2012). Researchers have also found that 
the farther the distance between a bike-sharing station 
and the central business district, the lower the bike- 
sharing usage (Faghih-Imani et al. 2014).

Considering natural environment variables, slope is 
an important factor affecting bicycle usage. When slopes 
are more than 4%, bike-sharing usage usually declines 
(Lu, Scott, and Dalumpines 2018). An investigation of 
bike-sharing route choices in Canada using GPS data 
showed that users will take longer trips on 2–4% 

gradients in order to avoid steeper slopes (Lu, Scott, 
and Dalumpines 2018). Bike-sharing stations at higher 
elevations also tend to have lower demand, and in par
ticular, lower return rates (Faghih-Imani et al. 2017; Sun, 
Chen, and Jiao 2018).

Several studies have indicated that some socio- 
demographic factors, such as age, income and education 
have a strong correlation with bike-sharing usage. 
Specifically, Rixey(Rixey 2013) used regression analysis 
to study the impact of different factors on the average 
monthly bike-sharing usage in three different cities in 
the United States. (Rixey 2013) concluded that median 
income and education level, as well as population and 
employment density are all positively correlated with 
bike-sharing usage. A regression analysis conducted by 
Chen et al. (2020) had similar conclusions, however, also 
highlighted the importance of age; younger age-groups 
are more likely to use bike-sharing – something also 
consistently shown in other studies (Fishman et al. 
2015; Wang et al. 2016).

Lastly, there are conflicting findings surrounding the 
impact of car ownership on bike-sharing. Surprisingly, 
some studies have found a positive correlation with car 
ownership (Buck and Buehler 2012; Shaheen et al. 2011), 
while other research has shown no correlation (Chen 
et al. 2020), indicating that its impact needs to be further 
investigated.

2.2 Equity

Equity within the field of transportation at large can be 
defined in a number of different ways. A commonly cited 
way of evaluating equity is in terms of horizontal equity 
and vertical equity (Bhuyan et al. 2019; Chen et al. 2019; 
Litman 2002), where horizontal equity can be thought of 
as spatial equity, and vertical equity as social equity. 
Achieving horizontal equity in the context of bike- 
sharing would mean that stations (and available bikes) 
are equally distributed geographically to individuals/ 
groups across a service area with a consideration of 
population density. Vertical equity implies that overall 
inequalities across social groups are compensated for, 
and disadvantaged groups are prioritized. Bike-sharing 
research surrounding vertical equity is concerned with 
identifying which groups are using the system, and 
identifying barriers to bike-sharing usage (e.g. cost, dis
abilities, education etc.) to determine disadvantaged 
groups (Hosford and Winters 2018; McNeil, Broach, and 
Dill 2018.; Nickkar et al. 2018). Due to the limited avail
able data from NextBike in Glasgow (no socio- 
demography information collected), in this analysis, we 
will focus on assessing equity through analysis of spatial 
accessibility.
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Horizontal equity in bike-sharing systems may not be 
easily achieved due to the development of city centres 
and peripheral areas, and the resulting differences cre
ated in spatial proximity between centres and periph
eries (Martens, Golub, and Robinson 2012). In a majority 
of US cities, station density, as well as ridership, was 
found to decrease as distance from the city centre 
increases (National Association of City Transportation 
Officials 2015). This consequently leads to more 
deprived economic areas having low to no access to 
bike-sharing. For example, Smith et al.(2015) examined 
bike-sharing spatial equity across 35 cities in the US by 
comparing social and economic characteristics of census 
blocks within and outside of bike-sharing service areas. 
Their findings show that a majority of stations are 
located in areas that are most advantaged, with only 
5% of stations in the most disadvantaged areas (Smith, 
Oh, and Lei 2015). Hosford and Winters(2018) found 
similar findings across five different bike-sharing pro
grammes in Canada. However, there is also research 
suggesting that ridership from residents living in more 
deprived areas may increase if there is greater accessi
bility. In 2012, the London bike-sharing system extended 
its service area to more deprived neighbourhoods. 
Goodman and Chesire (2014) found that in the wake of 
this expansion, the percentage of trips made by users 
from highly deprived areas increased from 6% to 12%, 
and that this change held despite the price for a single 
trip also doubling in 2013 from one pound to two 
pounds.

Although a number of researchers have examined 
the effects of spatial inequities, there is notably less 
research surrounding methodologies to apply equity 
considerations to site-suitability analysis for new sta
tions. Employing solely a location coverage model to 
determine station placement, with the goal of max
imizing coverage or minimizing impedance, does not 
consider equity across the population served. In order 
to address equity gaps, Bhuyan et al.(2019) devel
oped a bike equity index, combining factors (includ
ing age, race, income and access to a car) to 
categorize areas into high/low/medium need, and 
then assess coverage by category. Yet, this methodol
ogy only points to general areas and lacks any con
sideration of demand – an important step to 
becoming a politically and financially viable metho
dology. Conrow et al. (2018) did incorporate demand 
by using a location coverage model to assess how 
stations can be configured in order to maximize the 
population served given certain equity constraints: no 
user has to walk more than 0.5 miles to a station, and 
stations are no more than 1 mile apart. However, 
Conrow et al. (2018) only considered demand in 

terms of the existing cycling lane infrastructure and 
the residential population served. Therefore, other 
important demand factors are excluded, and the 
authors choose to site stations only where cycling 
infrastructure is present, which they acknowledged 
as a limiting factor if the infrastructure is not equita
bly distributed across the study area.

To date, most studies focusing on siting bike-sharing 
station locations do not jointly consider the factors of 
equity and demand. Our project aims to do so by identi
fying areas of lower bike-sharing accessibility, along with 
areas of potential for high demand, in order to deter
mine new suitable locations for stations in Glasgow.

3. Study area and data

3.1 Study area

Our study area is Glasgow – the largest city in Scotland, 
with a population of around 626,000 (see Figure 1). 
Glasgow also has the second highest percentage of 
deprived areas in Scotland; within Glasgow, almost half 
of residents live in the 20% most deprived areas in 
Scotland (Scottish Government 2020).

(Figure 1. Study area (shown in grey) in Glasgow, 
Scotland.)

Cycling as a primary mode of transportation in 
Glasgow is relatively low – estimated at 1.9% in 2015 
(Cycling Scotland 2017). However, the city is seeking to 
promote cycling and the Nextbike bike-sharing system. 
In 2017, the Glasgow City Council agreed to expand the 
Nextbike system, increasing the number of bikes to 900, 
and the number of stations to 100 over a seven-year 
period (McPherson 2017). Currently, the Nextbike system 
has 63 active stations, 16 of which also have E-bikes for 
rent. The pricing scheme for standard bikes offers 
a £1 per 30 minutes pay-as-you-go option, as well as 
monthly and annual memberships (£10 per month and 
£60 per year), where rentals of 30 minutes or less are 
free.

3.2 Data sources and data cleaning

We obtained one year of Nextbike trip data 
(30 August 2018 to 29 August 2019) from the 
Glasgow City Council. We also obtained a list of sta
tions, their capacities and locations. Due to inconsis
tencies in the naming of stations between the two 
files, we only included trips from stations that were 
present in both the stations list and the trip data. 
Trips with missing start and end stations were also 
excluded. To focus on the current active stations, we 
removed trips from two stations that had very few 
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total trips (<200) and no trips during the past several 
years. Lastly, we removed trips that had the same 
starting and end station and had a duration of 
three minutes or less. This was done in order to 
avoid double counting of instances where a user 
returns the bike (e.g. due to a bike malfunction), 
and uses another bike for their trip. After cleaning 
the data, the number of trips totalled 751,571 and 
the total number of stations was reduced to 63. The 
entirety of our data cleaning process is summarized 
in Figure 2.

(Figure 2. Data cleaning flowchart.)

For analysis of spatial equity, we used the 2020 
Scottish Index of Multiple Deprivation (Scottish Index 
of Multiple Deprivation 2020). The SIMD overall rank
ing provides a measure of deprivation for each data 
zone; it is a combination of income, geographic 
accessibility, health, employment, education, housing 
and crime rankings. Data zones are groupings of 
Census output areas with populations between 500 
and 1000 residents, and are the standard small area 
statistical geography unit in Scotland.

For the demand analysis, we used the trip data from 
30 August 2018 to 29 August 2019 for a total of 62 

Figure 1. Study area (shown in grey) in Glasgow, Scotland.

Figure 2. Data cleaning flowchart.
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stations. One station, Riverside Museum, was removed 
since it had no trips recorded until July 2019. For our 
analyses, we selected 11 independent variables – shown 
in Table 1 – which were a mixture of socio-demographic 
factors and built environment factors based on previous 
studies. We used road network data, including cycling 
lanes, from Open Street Map (OpenStreetMap, 2020). For 
socio-demographic data, we used the 2020 SIMD data, 
and for factors not available in the SIMD dataset, we used 
the 2011 Census data (Scotland’s Census, 2011). The 2011 
Census data used included the percentage of households 
without a car, and the percentage of the population aged 
16–34 by output area. We again used the Open Street 
map data, and 2011 Census data for our final maximum 
covering location problem (MCLP) model.

(Table 1. Summary statistics of independent 
variables.)

For each of the area-based variables, we used the 
Zonal Statistics tool in ArcGIS to calculate the mean 
value a defined station buffer. We selected a 300 m 
buffer for each of the sociodemographic variables, as it 
represents the expected distance people are typically 
willing to walk to use a bike-sharing service (National 
Association of City Transportation Officials 2015). 
However, the expected walking distance to transit sta
tions is slightly higher at around 400 m (National 
Association of City Transportation Officials 2015); there
fore, we considered the presence of a transit station 
within a 400 m buffer. A slightly larger buffer area of 
500 m was also used for the slope and cycling lane 
variables in order to capture more of the area that 
users may bike on once they rent a bike.

4. Methodology

We used a multi-step approach in order to achieve our 
final goal of siting new station locations. The main steps 

of our approach are displayed in the flow-chart in 
Figure 3. Following an exploratory data analysis of the 
trips datasets, our methodology is split into demand 
analysis and accessibility analysis.

(Figure 3. Methodology framework.)
In terms of assessing spatial equity, we first quantified 

overall spatial equity by comparing the distribution of 
SIMD 2020 overall ranking levels within the Nextbike 
service area to the entire Glasgow City Council area. 
Secondly, to assess spatial equity in terms of the number 
of bikes available and the population served by stations 
across Glasgow, we used the two-step floating catch
ment area (2SFCA) methodology to calculate spatial 
accessibility scores by data zone. The 2SFCA methodol
ogy was originally developed by Luo and Wang, 2003 to 
assess access to health care services. In the case of health 
care services, the 2SFCA methodology assesses accessi
bility based on the ratio of healthcare providers to the 
population served. We adapted the 2SFCA methodology 
by considering the station capacity in place of the num
ber of healthcare providers. Although there are many 
other types of accessibility indices, the 2SFCA methodol
ogy has the advantage of providing an easily interpre
table measure of accessibility.

In order to determine the factors affecting ridership in 
Glasgow, we ran an ordinary-least squares regression 
model, focusing on trip generation. The dependent vari
able was the total number of departing trips per station 
for a one-year period: 30 August 2018 to 29 August 2019. 
Given the regression results, we generated bike-sharing 
demand scores for the Glasgow area. To do so, we used 
a weighted raster-based GIS suitability analysis. This is 
a commonly used method for determining potential 
bike-sharing ridership, previously employed in feasi
bility studies conducted by both local governmental 
authorities and academic researchers (Jehn, 
Atiquzzaman, and LaMondia 2018; Murphy et al. 
2013). In a weighted-overlay method, raster layers 

Table 1. Summary statistics of independent variables.
Mean Min Max St. Dev.

Sociodemographic
Population density (people per square km) 2,080.9 88.5 4,543.8 1,089.4
Job density (jobs per square km) 15,350 1,084 108,839 21,498
Percentage of people aged 16–34 years old 51% 19% 79% 16%
Percentage of households without a car 27.5% 12% 48.5% 8.4%
Percentage of 17–21 years old entering university 9.1% 1% 29% 5.8%
Percentage of people who are income deprived 10.8% 1% 30% 6.8%
Built Environment
Slope in degrees 1.9 0.3 5.2 1.1
Network distance to the nearest transit station (subway or railway) (m) 496.9 38.6 1754.9 356
Ratio of cycling lane distance to streets distance (within 500 m buffer area) 0.1 0.0 0.3 0.1
Euclidean distance in metres to Downtown* 2072.2 81 5746 1265.3

N (%)
Presence of transit station (within 400 m buffer area) 

YES = 1 
NO = 0

27 (44%) 
35 (56%)

Note: *We defined Downtown as a point in the centre of George Square.
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for selected criteria are weighted and then overlaid to 
combine the criteria to a single layer/map. For our 
analysis, we selected criteria based on the factors 
found significant in the regression model to deter
mine high/low demand areas.

Finally, in order to find exact new station locations 
given the weighted overlay and accessibility results, 
we employed a location analysis by using MCLP. 
MCLP is an effective spatial optimization methodol
ogy for selecting a specified number of facilities from 
possible candidate locations to serve the most 
demand points (population).

5. Analysis

5.1 Assessment of overall spatial equity

We used the SIMD 2020 overall rankings for Scotland 
to create a quintile ranking for the area of Glasgow, 
where 1 indicates areas that are most deprived and 
5 indicates areas that are least deprived. We cate
gorized the SIMD overall rankings into quintiles as 

follows: 1 = 0 to 424, 2 = 425 to 1209, 3 = 1210 to 
2504, 4 = 2505 to 4624, 5 = 4625 to 6957).

We defined the bike-sharing service area by using 
a 500 m Euclidean distance buffer from each station. 
Therefore, if a SIMD data zone fell within the 500 m buffer, 
it was included as part of the area served. Commonly used 
buffer distances in previous bike-sharing research range 
from 200 to 1000 m (Eren and Uz 2019). However, we 
selected 500 m as a maximum realistically convenient walk
ing distance. Following the service area analysis, we calcu
lated the proportion of data zones that were within the 
buffer area for each quintile. This methodology is similar to 
studies conducted by Hosford and Winters(2018) and Smith 
et al.(2015).

5.2 Assessment of spatial access to bike-sharing 
across Glasgow

The methodology for calculating the 2SFCA accessibility 
indices can be separated into two main steps. Firstly, we 
generated 500 m service areas around each bike-sharing 

Figure 3. Methodology framework.
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station and sum up the population points (demand) served 
around each station. We then calculated Rj, the ratio of 
bikes to population served at station j (see equation (1)): 

Rj ¼
SjP

k2 dkj�d0f g
Dk (1) 

where Sj is the capacity for station j (i.e. the maximum 
number of available bikes), Dk is the total population 
that falls within the catchment area, defined by the 
threshold distance d0, and dkj is the distance between 
station j and population point k. It is worth nothing that 
the station capacity does not represent the number of 
bike available in real-time but the original station 
capacity.

Secondly, we generated 500 m services areas from 
the demand points in each data zone. The demand 
points were generated by converting data zones to 
centroid points based on the SIMD 2020 population by 
data zone. We then calculated the accessibility index for 
each data zone, by summing up the previously calcu
lated ratios of bikes to population that fall within the 
catchment area. The final accessibility measure is 
defined as equation (2): 

Ai ¼
P

j2 dij�d0f g

Rj ¼
P

j2 dij�d0f g

sjP
k2 dkj�d0f g

Dk

 !

(2) 

where Rj is the availability of bikes to demand ratios that 
fall within the catchment area of the data zone centroid 
i, and dij is the distance between data zone centroid 
i and the station j.

5.3 Analysis of demand: linear regression model

The distribution of station ridership is skewed, such that 
a majority of stations have less than 6000 total trips, 
however, a few stations have higher ridership. We, there
fore, used a log-transformation of the station ridership 
variable in our analysis.

Due to the fact that our sample size is relatively small, 
with only 62 stations, it was necessary to reduce the num
ber of variables for the regression model to prevent over
fitting of the model. To do so, we began with a lasso 
regression, which is useful for identifying less important 
features that can be dropped. By including all 11 variables 
in a lasso regression model, the coefficients for five vari
ables – the job density, slope, no car percentage, income 
deprivation and presence of a nearby transit station – were 
all reduced to zero and dropped from the model. We con
firmed that these features should be removed through 
a correlation analysis and by examining scatterplots. The 
age variable had a moderately high correlation with the 
distance from downtown (−0.68), and the employment 

deprivation rate (0.64). Therefore, we removed age from 
the lasso regression model thereby limiting overfitting of 
the model.

For comparison purposes, we built a second model 
using a stepwise regression method using AIC criterion. 
Lastly, to further verify the significance of the variables, 
we ran a stepwise regression model with the three ‘outlier 
stations’ removed – the three stations with the highest 
number of trips.

5.4 Demand-based site-suitability analysis

We selected the factors that were found to be significant in 
the regression model to perform the site-suitability analysis 
in ArcGIS. We first converted each of the layers to a raster 
layer and then reclassified the layers to transform the dif
ferent factors to a common scale from 1 to 9, where 1 
represents lowest demand and 9 represents highest 
demand. We then assigned percentage weights to each 
layer – signifying the importance of each factor – whereby 
the sum of the assigned weights totals 100%. Lastly, we 
used the weighted sum function to combine the layers; we 
produced the demand suitability map by reclassifying the 
weighted sum values on a scale from 1 to 5 using equal 
interval classification, where 1 represents the lowest 
demand and 5 represents the highest demand.

5.5 Location analysis for new station siting

We fixed the existing bike share stations and determined 
the exact sites for new stations by applying the MCLP. Given 
the existing locations, the MCLP determines the optimal 
locations for a specified number of new facilities, such that 
the total demand served (i.e. population) is maximized. 
Demand served is defined by a set impedance cut-off: 
a specified threshold of travel time or distance from each 
station. The mathematical representation for the MCLP in 
determining optimal station locations is as follows (Church 
and Murray 2009).

Consider the following notations: 
i; j¼ index of demand points and potential facility

sites; respectively 
I; J¼ set of demand points and potential facility

sites; respectively 

Xj ¼
1; if a facility is located at potential site j

0; otherwise

�

Yi ¼
1; if demand i is covered by at least one facility

0; oterwise

�

aij ¼
1; if facility located at site j covers demand point i

0; otherwise

�

p ¼ number of facilities to be located

ANNALS OF GIS 117



gi = service demand in unit i 

Maximize
X

i2I

giYi (3) 

Subject to:  
X

j2J

aijXj � Yi"i 2 I (4) 

X

j2J

Xj ¼ p (5) 

Xj ¼ 0; 1f g"j 2 J (6) 

Yi ¼ 0; 1f g"i 2 I (7) 

The objective, (3), is to maximize the amount of cov
ered demand for bike sharing. Constraints (4) define 
whether coverage has been provided to a given demand 
i based upon the location decisions. Constraints (5) spe
cify that p facilities (bike sharing stations) will be located. 
Integer restrictions on the siting and coverage variables 
are stipulated in constraints (6) and (7).

In the empirical analysis, we used ArcGIS’s Network 
Analyst extension to solve the MCLP. The ArcGIS 
Network Analyst uses a heuristic to generate near- 
optimal results (a vertex substitution heuristic (Teitz and 
Bart 1968)). We created a network dataset in ArcGIS using 
the road network from Open Street Map. Our incorpora
tion of demand-based suitability alongside accessibility 

factors related to our selection of candidate locations. We 
selected candidate locations from network road junctions 
that met the following criteria:

● Junctions are in high suitable demand areas (score 
> 3 from the demand suitability analysis results, 
which corresponds to selecting 5.8% of the total 
Glasgow City Council area as the area of greatest 
demand)

● Junctions are in low accessibility areas (score < 
0.002 from the 2SFCA results, which corresponds 
to removing 7.9% of total Glasgow City Council area 
with the highest accessibility)

To generate demand points, we used the centroids 
of Census output areas, weighted by the 2011 Census 
population values. Given that Nextbike has previously 
added no more than 10 new stations over one 
calendar year, we ran the analysis to select 10 new 
locations as well as 5 new locations, given the 63 
existing stations as fixed locations. We also set the 
impedance distance to 500 m, meaning that users 
are assumed to walk no more than 500 m to use the 
bike-sharing service. Ideally, the impedance value 
would equal 300 m, i.e. the expected distance people 
will walk to use a bike-sharing station. However, given 
the geographical inaccuracy from using polygon cen
troids as demand points, we set a slightly larger impe
dance value.

Figure 4. Trips per month from September 2018 to August 2019.
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6. Results

6.1 Exploratory data analysis

Figure 4 shows the number of trips per month from 
September 2018 to August 2019. There was a total of 

263,014 trips, compared to 163,629 in the previous 
twelve months (an increase of 61%). There is clear 
seasonal variation in the number of trips, with trips 
highest in the summer months and lowest in the 
winter months.

Figure 5. Number of bike-sharing trips by station.

Figure 6. Quintile deprivation ranking by data zone in the Nextbike service area.
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(Figure 4. Trips per month from September 2018 to 
August 2019.)

Figure 5 shows the map of stations with the 
colour and size reflecting the total number of trips 
departing from each station for the most recent 
12 months of trip data (30 August 2018 to 
29 August 2019). The majority of the stations with 
the most trips are located near the downtown area, 
and conversely, the stations located on the periph
ery have the least number of trips. However, it is 
also notable that there are a number of stations in 
the West End area and Govan (areas that are more 
densely populated) that have between 6,000 and 
10,000 trips. The two stations with the most depart
ing trips are Broomielaw and St. Enoch Square – 

both located near the city centre and near the 
River Clyde.

(Figure 5. Number of bike-sharing trips by station.)

6.2 Assessment of overall spatial equity

Figure 6 shows the distribution of deprivation quintiles 
across the service area. If stations were equitably distrib
uted spatially, we would expect the proportions across 
quintiles to be fairly equal, i.e. close to 20% for each 
quintile.

(Figure 6. Quintile deprivation ranking by data zone in 
the Nextbike service area.)

Table 2 shows that areas of lower deprivation do 
have better access to stations, with the 4th and 5th 
quintiles making up 51% of the data zones within the 
service area. The distribution could be considered 
relatively close to being balanced in comparison to 
the bike-sharing systems across Canada and the 
United States, where systems are significantly skewed 
towards serving advantaged neighbourhoods 
(Hosford and Winters 2018; Smith, Oh, and Lei 2015). 
Nevertheless, the results suggest that Nextbike could 
improve spatial equity of accessibility to stations by 
expanding to areas that are more deprived.

Table 2. The proportion of data zones inside the Nextbike 
service area by SIMD ranking.

Deprivation Quintile 
Ranking Proportion of data zones inside service area

1 (most deprived) 14%
2 16%
3 19%
4 23%
5 (least deprived) 28%

Figure 7. Two-step floating catchment area accessibility scores by data zone.
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(Table 2. The proportion of data zones inside the 
Nextbike service area by SIMD ranking.)

6.3 Assessment of spatial access to bike-sharing 
across Glasgow

The results from the 2SFCA analysis are presented in 
Figure 7. The areas of highest accessibility are present 
primarily in the city centre areas, however, there are also 
other areas of high accessibility present in neighbour
hoods surrounding the city centre. The low population 
density and one station present in Drumoyne and 
Shieldhall makes the data zone have a high accessibility 
score. In this data zone, the 2SFCA method does not 
provide a completely accurate picture of accessibility. 
Areas of low accessibility that are nearby areas of high 
accessibility include Partick, Kelvingrove, Govan, Ibrox, 
Pollokshields and Woodside. These results suggest that 
the addition of stations in these neighbourhoods may be 
beneficial towards improving access, while still expand
ing outwards from the city centre.

(Figure 7. Two-step floating catchment area accessi
bility scores by data zone.)

6.4 Linear regression model

Based on the three regression models (the lasso-based 
regression, stepwise regression, and stepwise regression 
model with the three highest ridership stations removed), 
we selected the stepwise model as the best model given 
its slightly higher model fit and accuracy (Regression 
analysis code can be found at https://github.com/ 
qszhao/BikeSharePaper2021). The linear regression results 
for the stepwise regression are presented in Table 3.

(Table 3. Stepwise regression results.)
The adjusted R2 value for the stepwise regression 

model is 0.415, meaning that 41.5% of the variation in 
ridership can be explained by the selected variables. All 
variables in the model are significant (the distance to the 
nearest transit station, the distance to downtown, the 
ratio of cycling lanes to streets, and the employment 

deprivation rate). These variables also match the vari
ables found to be significant in the lasso regression. In 
the stepwise model with outlier stations removed, the 
same four variables remain significant, indicating that 
they remain important determinants of demand even 
when the outliers – all stations in Downtown – are 
removed. The signs for the coefficients are all as 
expected and consistent with results found in previous 
studies (see Section 2.1). Increases in the two distance- 
related variables are associated with decreases in rider
ship, while an increase in the percentage of cycling lanes 
is associated with an increase in ridership. The percen
tage of people employment-deprived is negatively cor
related with ridership.

Overall, we can conclude from this regression analysis 
that in Glasgow, increased distances to public transit and 
the city centre are associated with lower bike-sharing 
demand. Additionally, bike-sharing ridership is signifi
cantly higher among populations that have fewer 
employment deprived residents, and in areas with 
a higher proportion of cycling lanes.

6.5 Site suitability analysis for new stations

Our GIS weighted overlay results are based on the four 
significant factors found in the regression model. In the 
overlay analysis, we assigned a weight of 30% to the 
percentage of cycling lanes, the employment depriva
tion rate, and the proximity to transit stations. The dis
tance to downtown factor was assigned a lower weight 
of only 10% due to the fact the Downtown area already 
has many stations. We used the Euclidean distance tool 
for the distance to Downtown, creating buffer rings of 
600 m, and the Network service area tool for the distance 
to transit stations with rings of 100 m. For the cycling 
lane factor, we calculated the ratio of the cycling lane 
distances to the total distance of all streets by data zone.

The bike-sharing demand map using the assigned 
weights is shown in Figure 8. Many of the highest 
demand areas are located along the River Clyde. Other 
high-demand areas, with scores from 4 to 5, are scat
tered throughout other neighbourhoods, such as 
Maxwell Park, Battlefield and North Kelvin. However, 
there are several gaps in areas of high demand. For 
example, although the neighbourhoods of Ibrox, 
Govan and Linthouse are adjacent to the River Clyde, 
their demand scores are relatively low. Demand is also 
comparatively low to the north of the city centre (e.g. in 
Keppochhill, Cowlairs and Port Dundas).

(Figure 8. Bike-sharing demand scores for the 
Glasgow City Council area.)

Table 3. Stepwise regression results.

Variable Estimate
Standard 

error t-value p-value VIF

Distance to nearest 
transit station (m)

−0.0002 0.0001 −2.577 0.013** 1.08

Distance to Downtown 
(m)

−0.0001 0.00003 −2.674 0.010*** 1.09

Ratio of cycling lanes to 
streets

1.503 0.4837 3.107 0.003*** 1.01

Employment deprivation 
rate

−0.017 0.0046 −3.629 0.001*** 1.03

Adjusted R2 0.415

** Significant at 0.05 *** Significant at 0.01
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6.6 Location analysis

Our results for two MCLP models are shown in Figures 9 
and Figure 10. Figure 9 shows the results for candidate 
locations based on a consideration of 5 new stations and 
Figure 10 shows the results considering 10 new stations. 
In both results, the selected new station facilities expand 
the service area outwards slightly and also fill in some 
gaps in more central areas. When considering 10 new 
stations, in comparison with 5, the additional stations 
are primarily located west of the city centre.

(Figure 9. Five proposed new station locations)
(Figure 10. Ten proposed new station locations.)
According to previous research, it is recommended that 

to increase ridership and system convenience, bike-sharing 
stations are located approximately 300 m apart across the 
service area (National Association of City Transportation 
Officials 2015). Therefore, for improved service, the outer
most proposed locations could benefit from additional 
connecting stations.

7. Discussion

At the city scale, the proposed junction locations appear to 
provide useful and suitable options for Nextbike’s consid
eration. Further analysis may be done to determine if the 
exact locations are in fact feasible for construction, consid
ering additional criteria such as slope and land usage. It is 
important to note that with the goal of maximizing 

coverage to serve the greatest population, areas of low- 
population density may remain excluded. The minimizing 
impedance function may be used to create a more spatially 
equitable uniform coverage of stations; however, it has 
previously been shown to lead to stations that are dis
persed with unsuitable spacing in between stations 
(García-Palomares, Gutiérrez, and Latorre 2012). In our 
case, running the model with the goal of minimizing impe
dance also led to many isolated stations in peripheral areas. 
However, depending on priorities for expansion, further 
analysis may be done to focus more on serving lower- 
density areas, and on how these results would impact 
accessibility and coverage.

A main advantage of our methodology lies in the fact 
that the criteria and inputs of the model can be altered 
based on the company’s objectives for system expansion. 
For instance, for a greater emphasis on serving low acces
sibility areas, it is possible to consider only candidate junc
tion locations that currently have zero accessibility to bike- 
sharing. On the other hand, the criteria for demand could 
be set to only the highest demand suitability scores for 
increased focus on ensuring high demand. For different 
expansion objectives, the weighting of demand factors in 
the overlay analysis can also be altered.

A primary limitation of this analysis is the use of data 
from the population of areas served. The impact of varying 
the set buffer distance has been acknowledged as a factor 
that has not yet been thoroughly investigated, but may 
significantly impact results (Eren and Uz 2019). Ideally, we 

Figure 8. Bike-sharing demand scores for the Glasgow City Council area.
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would use NextBike user information or membership sur
vey data, which would lead to more conclusive findings 
regarding the determinants of demand.

As mentioned previously, the regression analysis is 
also limited by the small sample size. With more stations, 
it would be possible to include more variables found 
significant in other studies, which would likely improve 
the explanatory power of the model. Certain variables 
not included in this analysis, but found significant in 
other studies, are job density, median income, and the 
proportion of commuters who take public transit, walk 
or bike to work (Rixey 2013). Road slope may also play an 
important role, but based on our buffer area analysis was 
found to be not significant. This can somewhat be 

attributed to the fact that existing stations have rela
tively flat surrounding areas; however, determining 
more conclusively the potential impact of slope would 
require further analysis of trips and route direction. The 
model could also be improved with more specific data 
(e.g. income, or percentage owning abicycle), as well as 
more recent data (i.e. the no car percentage, and per
centage aged 16–34 from the 2011 Census).

Lastly, the weighted overlay results in Section 6 are 
determined by the four significant demand factors from 
the regression results. Similar to the regression model 
limitations, there are likely other potentially relevant 
factors excluded from this analysis (e.g. points of interest 
and employment centres). Nevertheless, the results can 

Figure 9. Five proposed new station locations.
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provide useful insight into potential areas of high and 
low demand.

8. Conclusion

Over the five years of bike-sharing service operation in 
Glasgow, usage has steadily increased; however, com
pared to other cities of similar size across the UK and 
Europe, the number of bike-sharing stations in Glasgow 
is relatively low (O’Brien 2020). In seeking to expand the 
system and increase its usage, it is vital that new stations 
are placed in areas of high demand to ensure financial 
success, while also ensuring expansion to areas with 
poorer access. In this project, we determined suitable 
locations for new bike-sharing station development in 

Glasgow with a multi-step approach. Our methods 
allowed for a way to incorporate spatial equity consid
erations and demand factors into spatial optimization 
modelling to site new stations. While our project focused 
on incorporating analysis of spatial accessibility, further 
research may be done to consider social equity and 
socio-demographic factors, allowing for an even more 
comprehensive assessment of bike-sharing services in 
Glasgow.

Acknowledgements

This research was made possible by the ESRC’s on-going 
support for the Urban Big Data Centre (UBDC) [ES/L011921/1 
and ES/S007105/1]. The authors want to thank the Glasgow 
City Council and Nextbike for sharing their bike sharing 

Figure 10. Ten proposed new station locations.

124 J. BEAIRSTO ET AL.



dataset, as well as the anonymous reviewers for their insight
ful comments and suggestions on an earlier version of this 
manuscript.

Funding

This work was supported by the Economic and Social Research 
Council [ES/L011921/1]; Economic and Social Research Council 
[ES/S007105/1].

ORCID

Qunshan Zhao http://orcid.org/0000-0002-5549-9457
Jinhyun Hong http://orcid.org/0000-0003-2322-2637

Conflicts of interest

No potential conflict of interest was reported by the author(s).

References

Bachand-Marleau, J., Lee, B. H., & El-Geneidy, A. M. 2012. Better 
understanding of factors influencing likelihood of using 
shared bicycle systems and frequency of use. Transportation 
Research Record, 2314 (1): 66–71.

Bhuyan, I. A., C. Chavis, A. Nickkar, and P. Barnes. 2019. “GIS-Based 
Equity Gap Analysis: Case Study of Baltimore Bike Share 
Program.” Urban Science 3 (2): 42. doi:10.3390/urbansci3020042.

Buck, D., and R. Buehler. 2012. Bike Lanes and Other 
Determinants of Capital Bikeshare Trips. In 91st 
Transportation research board annual meeting. In 91st trans
portation research board annual meeting.

Chen, Z., Y. Guo, A. L. Stuart, Y. Zhang, and X. Li. 2019. 
“Exploring the Equity Performance of Bike-sharing Systems 
with Disaggregated Data: A Story of Southern Tampa.” 
Transportation Research Part A: Policy and Practice 130: 
529–545. doi:10.1016/j.tra.2019.09.048.

Chen, Z., van Lierop, D., & Ettema, D. 2020. Dockless bike- 
sharing systems: what are the implications?. Transport 
Reviews, 40(3), 333-353.

Church, R. L., and A. T. Murray. Business Site Selection, Location 
Analysis, and GIS. Hoboken, NJ: John Wiley & Sons 2009.

Conrow, L., A. T. Murray, and H. A. Fischer. 2018. “An 
Optimization Approach for Equitable Bicycle Share Station 
Siting.” Journal of Transport Geography 69: 163–170. 
doi:10.1016/j.jtrangeo.2018.04.023.

Cycling Scotland. (2017). Annual Monitoring Report 2017.
Eren, E., and V. E. Uz. 2019. “A Review on Bike-sharing: The 

Factors Affecting Bike-sharing Demand.” Sustainable Cities 
and Society 101882. doi:10.1016/j.scs.2019.101882.

Faghih-Imani, A., N. Eluru, A. M. El-Geneidy, M. Rabbat, and 
U. Haq. 2014. “How Land-use and Urban Form Impact 
Bicycle Flows: Evidence from the Bicycle-sharing System 
(BIXI) in Montreal.” Journal of Transport Geography 41: 
306–314. doi:10.1016/j.jtrangeo.2014.01.013.

Fishman, E., S. Washington, and N. Haworth. 2012. “Barriers and 
Facilitators to Public Bicycle Scheme Use: A Qualitative 
Approach.” Transportation Research. Part F, Traffic Psychology 
and Behaviour 15 (6): 686–698. doi:10.1016/j.trf.2012.08.002.

García-Palomares, J. C., J. Gutiérrez, and M. Latorre. 2012. 
“Optimizing the Location of Stations in Bike-sharing 
Programs: A GIS Approach.” Applied Geography 35 (1): 
235–246. doi:10.1016/j.apgeog.2012.07.002.

Goodman, A., and J. Cheshire. 2014. “Inequalities in the London Bicycle 
Sharing System Revisited: Impacts of Extending the Scheme to 
Poorer Areas but Then Doubling Prices.” Journal of Transport 
Geography 41: 272–279. doi:10.1016/j.jtrangeo.2014.04.004.

Hosford, K., and M. Winters. 2018. “Who are Public Bicycle 
Share Programs Serving? an Evaluation of the Equity of 
Spatial Access to Bicycle Share Service Areas in Canadian 
Cities.” Transportation Research Record 2672 (36): 42–50. 
doi:10.1177/0361198118783107.

Jehn, N., M. Atiquzzaman, and J. LaMondia. 2018. A GIS 
Performance Measure-based Methodology for Prioritizing 
Bike Share System Expansion. January 8.

Litman, T. 2002. “Evaluating Transportation Equity.” World 
Transport Policy & Practice 8: 50–65.

Lu, W., D. M. Scott, and R. Dalumpines. 2018. “Understanding 
Bike Share Cyclist Route Choice Using GPS Data: 
Comparing Dominant Routes and Shortest Paths.” Journal 
of Transport Geography 71: 172–181. doi:10.1016/j. 
jtrangeo.2018.07.012.

Luo, W., and F. Wang. 2003. “Measures of Spatial Accessibility 
to Health Care in a GIS Environment: Synthesis and a Case 
Study in the Chicago Region.” Environment and Planning. B, 
Planning & Design 30 (6): 865–884. doi:10.1068/b29120.

Martens, K., A. Golub, and G. Robinson. 2012. “A 
Justice-theoretic Approach to the Distribution of 
Transportation Benefits: Implications for Transportation 
Planning Practice in the United States.” Transportation 
Research Part A: Policy and Practice 46 (4): 684–695. 
doi:10.1016/j.tra.2012.01.004.

McNeil, N., J. Broach, and J. Dill. 2018. “Breaking Barriers to Bike 
Share: Lessons on Bike Share Equity.” ITE Journal (Institute of 
Transportation Engineers) 88: 31–35.

McPherson, K. 2017. Glasgow’s Public Cycle Hire Scheme: 
Analysis of Usage between July 2014 and June 2016. 
Glasgow Centre for Population Health.

Médard de Chardon, C., G. Caruso, and I. Thomas. 2017. “Bicycle 
Sharing System ‘Success’ Determinants.” Transportation 
Research Part A: Policy and Practice 100: 202–214. 
doi:10.1016/j.tra.2017.04.020.

Murphy, S., A. Buckley, A. Forsthoefel, M. Lindsay, G. Neeley, 
E. Wilk, and A. Williamson. 2013. Dayton Bikeshare Feasibility 
Study. Dayton: Bike Miami Valley.

National Association of City Transportation Officials (NACTO). 
(2015) Walkable Station Spacing Is Key to Successful, 
Equitable Bike Share. NACTO Bike Share Equity 
Practitioners’ Paper #1.

National Association of City Transportation Officials. (2019, 
April 17). 84 Million Trips Taken on Shared Bikes and 
Scooters Across the U.S. in 2018. National Association of 
City Transportation Officials.https://nacto.org/2019/04/ 
17/84-million-trips-on-shared-bikes-and-scooters/ .

Nickkar, A., C. Chavis, I. A. Bhutan, P. Barnes, and S. Grasso. 2018. 
Bicycle Justice or Just Bicycles? Analyzing Equity in Baltimore’s 
Bike Share Program. Department of Transportation and Urban 
Infrastructure at Morgan State University.

O’Brien, O. (2020). Bike Share Map. Retrieved April 26, 
2020,  f rom 26 Apr i l  2020 https : //oobr ien.com/ 
bikesharemap/ 

ANNALS OF GIS 125

https://doi.org/10.3390/urbansci3020042
https://doi.org/10.1016/j.tra.2019.09.048
https://doi.org/10.1016/j.jtrangeo.2018.04.023
https://doi.org/10.1016/j.scs.2019.101882
https://doi.org/10.1016/j.jtrangeo.2014.01.013
https://doi.org/10.1016/j.trf.2012.08.002
https://doi.org/10.1016/j.apgeog.2012.07.002
https://doi.org/10.1016/j.jtrangeo.2014.04.004
https://doi.org/10.1177/0361198118783107
https://doi.org/10.1016/j.jtrangeo.2018.07.012
https://doi.org/10.1016/j.jtrangeo.2018.07.012
https://doi.org/10.1068/b29120
https://doi.org/10.1016/j.tra.2012.01.004
https://doi.org/10.1016/j.tra.2017.04.020
https://nacto.org/2019/04/17/84-million-trips-on-shared-bikes-and-scooters/
https://nacto.org/2019/04/17/84-million-trips-on-shared-bikes-and-scooters/
https://oobrien.com/bikesharemap/
https://oobrien.com/bikesharemap/


OpenStreetMap. (2020). OpenStreetMap. Retrieved 12 
September 2020, from https://www.openstreetmap.org/ 

Rixey, R. A. 2013. “Station-Level Forecasting of Bikesharing 
Ridership: Station Network Effects in Three U.S. Systems.” 
Transportation Research Record 2387 (1): 46–55. doi:10.3141/ 
2387-06.

Scotland’s Census. Scotlandscensus.gov.uk. (2011). Retrieved 
12 September 2020, from https://www.scotlandscensus. 
gov.uk .

Scottish Government. (2020, January 28). Scottish Index of 
Multiple Deprivation 2020. Retrieved April 26, 2020, from 
26 April 2020 https://www.gov.scot/news/scottish-index-of- 
multiple-deprivation-2020/ 

Scottish Index of Multiple Deprivation 2020. (2020). Retrieved 12 
September 2020, from https://simd.scot/#/simd2020/ 
BTTTFTT/9/-4.0000/55.9000/ .

Shaheen, S. A., H. Zhang, E. Martin, and S. Guzman. 2011. “China’s 
Hangzhou Public Bicycle: Understanding Early Adoption and 

Behavioral Response to Bikesharing.” Transportation Research 
Record 2247 (1): 33–41. doi:10.3141/2247-05.

Smith, C. S., J.-S. Oh, and C. Lei. 2015. Exploring the Equity 
Dimensions of US Bicycle Sharing Systems. Western 
Michigan University. Transportation Research Center for 
Livable Communities. doi:10.13140/RG.2.2.30941.72163.

Sun, F., P. Chen, and J. Jiao. 2018. “Promoting Public 
Bike-sharing: A Lesson from the Unsuccessful Pronto 
System.” Transportation Research Part D: Transport and 
Environment 63: 533–547. doi:10.1016/j.trd.2018.06.021.

Teitz, M. B., and P. Bart. 1968. “Heuristic Methods for 
Estimating the Generalized Vertex Median of 
a Weighted Graph.” Operations Research 16 (5): 955–961. 
doi:10.1287/opre.16.5.955.

Wang, X., Lindsey, G., Schoner, J. E., & Harrison ,A. 2016. 
Modeling bike share station activity: Effects of nearby 
businesses and jobs on trips to and from stations. 
Journal of Urban Planning and Development, 142 (1), 
04015001.

126 J. BEAIRSTO ET AL.

https://www.openstreetmap.org/
https://doi.org/10.3141/2387-06
https://doi.org/10.3141/2387-06
https://www.scotlandscensus.gov.uk
https://www.scotlandscensus.gov.uk
https://www.gov.scot/news/scottish-index-of-multiple-deprivation-2020/
https://www.gov.scot/news/scottish-index-of-multiple-deprivation-2020/
https://simd.scot/#/simd2020/BTTTFTT/9/-4.0000/55.9000/
https://simd.scot/#/simd2020/BTTTFTT/9/-4.0000/55.9000/
https://doi.org/10.3141/2247-05
https://doi.org/10.13140/RG.2.2.30941.72163
https://doi.org/10.1016/j.trd.2018.06.021
https://doi.org/10.1287/opre.16.5.955

	Abstract
	1. Introduction
	2. Background
	2.1 Determinants of bike-sharing demand
	2.2 Equity

	3. Study area and data
	3.1 Study area
	3.2 Data sources and data cleaning

	4. Methodology
	5. Analysis
	5.1 Assessment of overall spatial equity
	5.2 Assessment of spatial access to bike-sharing across Glasgow
	5.3 Analysis of demand: linear regression model
	5.4 Demand-based site-suitability analysis
	5.5 Location analysis for new station siting

	6. Results
	6.1 Exploratory data analysis
	6.2 Assessment of overall spatial equity
	6.3 Assessment of spatial access to bike-sharing across Glasgow
	6.4 Linear regression model
	6.5 Site suitability analysis for new stations
	6.6 Location analysis

	7. Discussion
	8. Conclusion
	Acknowledgements
	Funding
	ORCID
	Conflicts of interest
	References

