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Abstract 13 

This study presents a development of a multi-layer perceptron (MLP) model to spatially 14 

estimate and analyze the variability of effective cohesion for residual soils that are commonly 15 

associated with rainfall-induced slope failures in Singapore. A number of soil data were 16 

collected from the various construction sites, and a set of qualified Nanyang Technological 17 

University (NTU) data were utilized to determine a criterion for data selection. Four index 18 

properties (i.e., percentage of fines and coarse fractions, liquid and plastic limits) were used as 19 

training parameters to estimate the effective cohesion of residual soils from different geological 20 

formations. Ordinary kriging analyses were carried out to analyze the spatial distribution and 21 

variability of effective cohesion. As a result, the appropriate effective cohesions can be 22 

estimated using the MLP model with the incorporation of the selected values of measured 23 

effective cohesion as training data and four index soil properties as input data. In the 24 

combination of estimated and measured effective cohesions, the spatial analysis using Kriging 25 
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method can clearly differentiate the variations in effective cohesion with respect to the different 26 

geological formations.   27 

Keywords: residual soil; effective cohesion; index properties; artificial neural networks 28 

 29 

1. Introduction 30 

Slope failures have become one of the most frequent geo-hazards all over the world. 31 

Rainfall-induced slope failure is a common problem in many tropical areas, such as Singapore 32 

during rainy seasons. These type of slope failures are commonly found in residual soils that 33 

were derived from various geological formations. (Rahardjo et al., 2012; 2016). Furthermore, 34 

rapid growth of regional economies has resulted in tremendous demand for hillside 35 

developments involving engineered and fill slopes. These failures can pose potential danger to 36 

infrastructures and public safety (Kim et al., 2018; Rahardjo et al., 2019a).   37 

The geology of Singapore is closely related to the Malaysian geology. Located in the 38 

proximity of the tip of the South Malaysian Peninsula, the main North-North-West to South-39 

South-East parallel belts are strongly defined in the Singapore realm. Thus, the Eastern and 40 

Central Belts of Malaysia continue to Singapore Island (Oliver and Gupta, 2017; Ip et al., 2021), 41 

predominant with the sandstones and mudstones. The geology of Singapore shows eight units 42 

but it consists mainly of three formations: 1) Jurong Formation (JF) which exhibits sedimentary 43 

rocks in the west; 2) Bukit Timah Granite (BTG) which exhibits igneous rocks of granite in the 44 

central and northwest; 3) Old Alluvium (OA) which exhibits semi-hardened alluvium in the 45 

east of Singapore (PWD, 1976). Fig. 1 shows a simplified geology map that outlines the 46 

distribution of the three major geological formations of Singapore.   47 

Residual soil is the final product of the in-situ mechanical and chemical weathering of 48 

underlying rocks (Blight and Leong, 2012). The most important characteristic of residual soils 49 

is its reduced strength from the original rock’s strength due to the destruction of the bonds and 50 
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the cementation of the material due to the weathering processes (Zhai et al., 2018). In addition, 51 

slopes covered with these residual soils in Singapore often have a problem during heavy rainfall 52 

events since the infiltration of rainwater into the unsaturated zone increases the pore-water 53 

pressure and subsequently decreases the shear strength (Fredlund and Rahardjo, 1993). As a 54 

result, rainfall-induced slope failures frequently happen in areas that are covered with residual 55 

soils (Rahardjo et al., 2013; 2014). 56 

 57 

Fig. 1. Geological map of Singapore and locations of NTU database. 58 

Shear strength properties of a soil are important parameters in determining stability of 59 

geotechnical structures. In particular, effective cohesion (!’) is one of the important shear 60 

strength parameters to evaluate slope stability. Therefore, theoretical equations to calculate 61 

factor of safety incorporates the term of !’. US Army Corps of Engineers (2003) observed that 62 

the factor of safety is significantly affected by !’. However, the weathering processes resulted 63 

in the change and the variation of !’ for residual soils in Singapore. Rahardjo et al. (2012) and 64 

Zhai et al. (2017) investigated the variability of residual soil properties with different soil 65 

depths and discussed that typical !’ of residual soils from Jurong Formation (JF), Bukit Timah 66 
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Granite (BTG), and Old Alluvium (OA) decreases with depth due to the decrease in the 67 

percentages of fine fractions. The mean values of !’ for residual soils vary from 8 kPa to 24 68 

kPa over Singapore. Although the variability of !’ represented the characteristics of residual 69 

soils and the weathering processes in Singapore, a set of soil samples used has limited 70 

capabilities in representing the entire region due to its restricted sampling location coverage. 71 

Therefore, for the study on rainfall-induced slope failures, it is necessary to collect big data on 72 

soil properties to quantify the characteristics of !’ for residual soil with respect to the three 73 

different geological formations.  74 

Recently, artificial neural network (ANN) models have drawn significant attention 75 

from the geotechnical engineering field. The ANN model can be applied to the analysis of 76 

geotechnical structures, e.g., shallow foundations (Kalinli et al., 2011) and landslides (Choi et 77 

al., 2012), and soil properties, e.g., shear strength of soils (Khanlari et al., 2012). Despite a 78 

growing interest in ANN models to deal with big geotechnical data, very few studies have 79 

considered soil properties that govern soil behavior because of the uncertainties in the 80 

variability of soil properties and difficulties in collecting soil samples. In addition, high-81 

performance computing devices have made ANNs possible to have multi hidden layers and 82 

thousands of nodes. Such techniques with various hyperparameters have not been applied to 83 

past research works. 84 

The main objective of this study is to spatially analyze the variability of effective 85 

cohesion for residual soils in Singapore. Soil data were collected from the various construction 86 

sites, and the qualified Nanyang Technological University (NTU) database was used to 87 

determine the upper and lower limits for data selection purposes. Index properties (i.e., 88 

percentage of fines and coarse fractions, liquid and plastic limits) were adopted as training data 89 

to estimate !’ using a multi-layer perceptron (MLP) model that can differentiate the variability 90 
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of !’ for residual soils from different geological formations. In addition, the spatial distributions 91 

of  !’ were obtained by conducting ordinary kriging, and the variability of !’ was discussed. 92 

 93 

2. Artificial neural networks (ANNs) for the estimation of effective cohesion 94 

2.1 Introduction to ANNs 95 

Artificial neural networks (ANNs) are complex computing systems inspired by the 96 

biological neural networks resembling how neurons are tightly connected to form a layered 97 

network structure. Such systems learn to solve various tasks, including approximation, 98 

classification, and clustering, by thoroughly analyzing provided big data without exploiting 99 

prior-knowledge and task-specific rules (Luger, 2005).  100 

There are three key advantages of ANNs as compared to conventional machine learning 101 

techniques. First, with sufficient training data, ANNs can learn and model latent relationships 102 

between inputs and outputs that are not obvious to human experts, which potentially leads to 103 

better performance. Second, ANNs can generalize its learned relationships to make accurate 104 

inference and prediction results in practice where unseen, yet from similar probabilistic 105 

distributions, data are often observed. Note that the learned characteristics (or features) are 106 

hidden behind the complex network structure. Therefore, ANNs are often denoted as a black-107 

box system. Third, ANNs do not impose any restrictions on the input variable, which can 108 

quickly initiate the training process using the raw data instead of spending hours and days 109 

finding a set of feasible features that might represent the relationship between the inputs and 110 

outputs. In fact, with sufficient training data and carefully designed network architecture, 111 

ANNs demonstrated its significance over other conventional machine learning techniques in 112 

many domains (Shahin et al., 2001; Abiodun et al., 2018).  113 

The use of ANN models has been found in the studies addressing issues in geotechnical 114 

structures and soil properties. For geotechnical structures, many researchers studied an ANN 115 
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model to predict bearing capacity of deep foundations (Goh, 1995; Chan et al., 1995; Lee and 116 

Lee, 1996). Settlement of shallow foundations was also inferred using an ANN model 117 

(Sivakugan et al., 1998; Shahin et al., 2000). Stability of slopes was evaluated by combining 118 

the fuzzy sets theory with ANNs (Ni et al., 1996). For soil properties, Ellis et al. (1995) 119 

proposed an ANN model to predict grain size distribution and stress history of sand. Cal (1995) 120 

developed an ANN model to generate a quantitative soil classification from index properties 121 

e.g., plastic index, liquid limit, and clay content. Romero and Pamukcu (1996) presented an 122 

ANN model to characterize shear modulus and granular materials. The application of ANNs to 123 

different aspects has increased in recent years. ANNs have been applied in predicting water 124 

quality (May and Sivakumar 2009), modeling of the rainfall-runoff process (Ju et al. 2009), 125 

forecasting of sewer overflow (Fernando et al. 2005) and river flow (Fernando and Shamseldin 126 

2009), and predicting pore-water pressure in response to rainfall (Mustafa et al., 2012). 127 

Recently, ANNs are extended to multi-hidden layered architectures in multi-layer perceptron 128 

(MLP), which is one of the widely used ANN architectures resulting from developments of 129 

high-performance computing devices. MLP is computationally more efficient (e.g., faster 130 

training time, a smaller number of parameters, etc.) as compared to other predictive models 131 

(e.g., deep feedforward neural networks, convolutional neural networks, recurrent neural 132 

networks) that are not designed to address the soil data used in this study. Thus, MLP is suitable 133 

for analysis of scattered soil data. 134 

 135 

2.2 MLP and Hyperparameters  136 

In this study, MLP was employed to estimate the effective cohesion for residual soils 137 

in Singapore. As illustrated in Fig. 2, a typical MLP architecture includes multiple layers of 138 

nodes, namely an input layer, a set of hidden layers, and an output layer. The number of nodes 139 

in each layer is determined as follows. First, the input layer equals to the number of input 140 
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variables (e.g., the number of soil properties used to predict the effective cohesion). Second, 141 

the number of hidden layers and the number of nodes in each hidden layer are iteratively 142 

determined in accordance with the data for training. Lastly, the output layer contains a single 143 

node to make estimations based on the input data. An empirical experiment was conducted to 144 

identify a suitable MLP design for this study, which includes two hidden layers, each 145 

containing one thousand nodes. It is noteworthy that increasing the depth of the network by 146 

adding more layers, which eventually leads to a deep feedforward neural network, decreased 147 

performance due to the overfitting issue. On the other hand, with a fixed number of hidden 148 

layers (e.g., two hidden layers) increasing the number of nodes, to a certain limit, improve the 149 

overall performance. This analysis suggests that the network must be shallow while the width 150 

is wide enough.  151 

The initial inputs to the network are the borehole data # = {#!, … , #" , … , ##} that must 152 

be analyzed and learned to estimate the corresponding effective cohesion. Here, ) denotes the 153 

number of soil properties, and * refers to the property index. Once # is fed to the network, each 154 

node sequentially calculates the weighted sum of its inputs and transmits an output value 155 

determined by an activation function. As shown in Fig. 2, each node is fully connected with 156 

nodes from another layer by allowing the output of a node to become the input of the others. 157 

The activation function provides a differentiable transition in output values as input values 158 

change, allowing each node to decide whether to produce an output or not based on the input 159 

they received. There are several activation functions designed to serve different purposes (e.g., 160 

rectified linear unit, sigmoid, linear functions, etc.), and it is important to select a proper 161 

activation function to train the network (Luger, 2005). To effectively train the network, the 162 

rectified linear unit (ReLU) was employed while the output node exploited the linear activation 163 

function to make accuracy effective cohesion estimations. The advantages of using ReLU 164 

compared to other functions are 1) better gradient propagation which is necessary to update all 165 
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weights throughout the network, 2) computationally efficient by only using only addition and 166 

multiplication, and 3) sparse activation leading to better generalization (Nair et al., 2010). The 167 

ultimate output of the network +, is made at the output layer, which tends to be erroneous during 168 

the early stages of training. The accuracy of  +, gradually improves as the network learns the 169 

latent relationship between the input data # and the target (ground-truth) data +. 170 

 171 

Fig. 2. Schematic diagram of a multi-layer perceptron.  172 

The learning procedure involves adjusting the weights of the network to improve the 173 

accuracy of the estimation results. This is governed by three key factors, including loss function, 174 

learning rate, and backpropagation. To minimize the error, which leads to better performance, 175 

a loss function (e.g., root mean square error) quantifies the difference between the estimation 176 

result +, and the ground-truth value +. The training process is determined to be completed when 177 

the error does not significantly decrease after updating the weights. In this study, the loss (error) 178 

is computed using root mean square error (RMSE) as follows: 179 

-./0 = 1∑ (+,$ − y$)%&
'(!

78         (1) 180 

where 9 is the number of training data instances while : is the data instance index.  181 

The backpropagation is a method to adjust each of the weights in the network in order 182 

to produce outputs closer to the target values, thereby minimizing the error. The derivation of 183 
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the backpropagation was performed by applying the chain rule to the error function partial 184 

derivative  185 

)*
)+!"#

= )*
),"#

),"#

)+!"#
           (2) 186 

where ;-
. is the activation of node < in layer = before it is passed to the nonlinear activation 187 

function to generate the output. The first term is often denoted as the error 188 

>-
. = )*

),"#
           (3) 189 

while the second term is computed as: 190 

),"#

)+!"#
= )

)+!"#
?∑ @"-

.A"
./!0#$%

"(1 B = A2
./!        (4) 191 

where C./! is the number of nodes in layer = − 1 and A2
./! is the output of node E in layer = −192 

1. Thus, the partial derivative of the error 0 with respect to a weight @2-
.  is 193 

)*
)+!"#

= >-
.A2

./!           (5) 194 

which is a product of the error at node < in layer = and the output A2
./! in layer = − 1. Since 195 

the error >-
. depends on the values of error terms in the next layer = + 1, the computation of 196 

the error terms will proceed backwards from the output layer down to the input layer, thus 197 

backpropagating the errors. In this study, Stochastic Gradient Descent (SGD) algorithm was 198 

exploited to train the model, which iteratively optimizes the network using an estimate of the 199 

gradient (calculated from a randomly selected subset of the data) instead of the actual gradient 200 

(calculated from the entire dataset).  201 

 Once the amount of adjustment needed for each weight is computed using SGD, the 202 

learning rate is applied to control the actual amount of adjustment made to the weights. A 203 

higher learning rate shortens the training time by making drastic changes to the weights but 204 

lowers overall accuracy due to the likelihood of finding a local minimum. On the other hand, 205 

a lower learning rate takes longer since we are making smaller changes to the weights but has 206 
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a higher chance of finding a global minimum (or a local minimum closer to that of global) 207 

yielding better performances. Each weight is thus updated as  208 

@G2-
. = @2-

. − H )*
)+!"#

	          (6) 209 

where H is the learning rate. In this study, the learning rate was set to 0.000001. 210 

 211 

2.3 Detailed Training Procedure 212 

The training procedure used in this study can be summarized into five stages, as shown 213 

in Fig. 2, including 1) create a training dataset J , 2) feedforward input data through MLP, 3) 214 

compute the loss, 4) calculate gradient, and 5) adjust the weights by backpropagation.  215 

The very first step to creating a train and test dataset was to import raw data composed 216 

of five columns representing the % fine fraction, % coarse fraction, liquid limit (LL), plastic 217 

limit (PL), and !3. Once the raw data were loaded, the four index properties were used as the 218 

input data # ∈ J while !3 was taken as the target data + ∈ L. Lastly, J and L were split into 219 

train and test sets where 75% of the data was used for training, while the other 25% was used 220 

for testing. Once the data was ready, the following steps were taken to train the MLP.   221 

1. Randomly initialize the weights M  222 

2. Feed the training data = {input #, target +} 223 

3. Attain estimation value +, 224 

4. Calculate the errors 0 = RMSE(+,,  +) 225 

5. Backpropagate the error 0 by computing ∂0 ∂@2-
.⁄  using equations 2 to 5  226 

6. Determine the actual adjustment needed for each weight using equation 6 227 

7. Update the network weights 228 

8. Repeat steps 2 to 7 until the required performance is met.  229 
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The early stopping of the training process was triggered if one of the followings was satisfied: 230 

1) the loss (RMSE) is less than or equal to a predefined value or 2) the training takes longer 231 

than a specified number of epochs. 232 

 233 

3. Methodology 234 

3.1. Collection of soil data 235 

Two sets of soil data were collected in this study. First, residual soil samples were 236 

collected from 37 slopes which are located in the three different formations in Singapore, i.e., 237 

Jurong Formation (JF), Bukit Timah Granite (BTG), and Old Alluvium (OA), as shown in Fig. 238 

1. A Mazier sampler was used, and the drillings of each borehole were carried out up to 6 m 239 

depth. All soil samples were waxed and stored inside a curing room with a constant water 240 

content (@) to maintain the natural condition. Index property tests were carried out to obtain 241 

grain-size distributions (ASTM D422-63, 2002) and Atterberg limits (ASTM D4318-00, 2002). 242 

For mechanical properties, consolidated undrained triaxial tests with pore-water pressure 243 

measurements on saturated soil specimens (ASTM D4767-04, 2002) and consolidated drained 244 

triaxial tests on unsaturated soil specimens (Satyanaga and Rahardjo, 2019) were carried out 245 

to obtain shear strength parameters of the soils. Table 1 summarizes the index and mechanical 246 

properties of residual soils, and hereafter called the NTU soil database.  247 

 248 

Table 1. Summary of residual soil properties in Singapore (NTU soil database). 249 

No. 
 

Geological 
formation 

USCS* 
 

% Coarse 
 

% Fine 
 

LL (%) 
 

PL (%) 
 

!′ (kPa) 
 

1 BTG MH 22 78 52 34 9 
2 BTG MH 30 70 54 29 11 
3 BTG SM 58 42 56 38 5 
4 BTG SC 65 35 72 31 6 
5 BTG SC 66 34 48 37 6 
6 BTG SM 54 46 52 31 9 
7 BTG SM 61 39 108 47 7 
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8 BTG MH 38 62 105 47 11 
9 BTG MH 5 95 72 45 13 
10 BTG CH 36 64 71 34 12 
11 BTG MH 42 58 61 36 7 
12 BTG MH 44 56 54 33 8 
13 JF CL 0 100 49 24 15 
14 JF CL 25 75 N/A N/A 16 
15 JF CL 14 86 29 18 8 
16 JF SC 30 70 N/A N/A 6 
17 JF MH 20 80 45 24 6 
18 JF MH 37 63 62 36 9 
19 JF CH 18 82 N/A N/A 8 
30 JF CL 3 97 39 19 14 
21 JF CL 2 98 38 18 13 
22 JF SC 87 13 47 14 4 
23 JF CL 24 76 36 17 6 
24 JF MH 30 70 32 20 7 
25 JF N/A 25 75 N/A N/A 8 
26 JF CL 14 86 39 29 9 
227 JF CL 23 77 47 26 7 
28 JF MH 27 73 55 33 10 
29 JF ML 44 56 42 27 6 
30 JF CL 23 77 47 26 20 
31 JF CL 15 85 34 20.5 20 
32 JF CL 13 87 39 24 13 
33 OA SC 70 30 47 23 3 
34 OA CH 51 49 42 19 5 
35 OA SC 80 20 34 18 6 
36 OA SP 96.8 3.2 N/A N/A 2 
37 OA SM 68 32 72 28 2 
38 OA CL 75 25 60 36 9 
*: Unified Soil Classification System 250 

Second, borehole data obtained from the Integrated Land Information Service (INLIS) 251 

portal with bore logs information from the various construction sites were collected in this 252 

study. In total, 1870 bore logs were analyzed consisting of 23,936 boreholes across Singapore, 253 

ranging from 1990 to 2014. Typical information found in the bore logs are the results of the 254 

index properties test, standard penetration test, soil classification, grain-size distribution test, 255 

triaxial test, piezometer reading, and others. In this study, soil information up to 6 m depth was 256 

retrieved for the study on rainfall-induced slope failure because shallow failures in residual 257 

soils are the predominant mode of rainfall-induced slope failures in Singapore (Rahardjo et al. 258 
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2007). Table 2 summarizes the number of results of the various relevant soil properties used in 259 

this study. The total number of available data sets including index properties and effective 260 

cohesion from JF, BTG, and OA areas are 64, 332, and 209 sets, respectively.   261 

 262 

Table 2 Summary of the total number of soil information up to 6 m depth 263 

Information Total number 
Construction project 1870 
Borehole 23936 
Unit weight 23694 
Grain-size distribution 7822 
Atterberg limits 3613 
Effective cohesion 2093 
Available data in Jurong Formation 64 
Available data in Bukit Timah Granite 332 
Available data in Old Alluvium 209 

 264 

2.2 Selection of qualified soil data  265 

In general, the soil properties from site investigations in Singapore include natural water 266 

content, specific weight, Atterberg limits, grain size distributions, saturated permeability, 267 

effective cohesion, effective internal friction angle, etc. Among them, index properties, i.e., LL, 268 

PL, percentages of fine and coarse fractions, were selected as input parameters in the prediction 269 

because the index properties can be easily obtained from the simple laboratory tests. In addition, 270 

the effective cohesion (!′) exhibits linear relationships with the percentage of fine fractions. 271 

Fig. 3 shows the !′ distribution with the percentage of fine fraction from the NTU soil database. 272 

The !′ tended to increase with an increase in the percentage of fine fractions.  273 

The upper and lower limits of the !′ distributions were calculated using a confidence 274 

interval approach (Kool and Parker, 1988; Satyanaga et al., 2017; Rahardjo et al., 2019b). 275 

Confidence limits of the parameters could be determined from individual parameter variance 276 

as approximated using t-statistics. In this study, two-sided confidence limits with a 99 % level 277 

of confidence and t-statistics tool were adopted for the determination of confidence limits of 278 
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the !′ distribution with respect to the percentage of fine fraction for residual soil in Singapore. 279 

For the selection of the qualified soil data, upper and lower limits with a 99 % level of 280 

confidence were applied to the collected borehole data. Fig. 4 shows the selected training data 281 

of each rock formation.  282 

 283 
Fig. 3. Upper and lower limits of the NTU database on the relationship between effective 284 

cohesion and percentage of fine fraction  285 

 286 
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 288 
(b) Bukit Timah Granite area 289 

 290 
(c) Old Alluvium area 291 

Fig. 4. Selected training data of each geological formation. 292 

 293 

3.3 Spatial distribution of effective cohesion 294 

Soil shear strength parameters such as effective cohesion (!’) from site investigations 295 

exist discrete measurement points in space. Therefore, digital soil mapping is capable of 296 
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characterizing the properties of residual soil at all locations. It requires statistical methods such 297 

as kriging to interpolate the values of a random field at an unobserved location from 298 

observations of its value at nearby locations. Previous studies provide various examples of 299 

kriging used to develop slope susceptibility maps. Roslee et al. (2012) and Jibson et al. (2000) 300 

used simple kriging when developing landslide susceptibility analyses. Ordinary kriging has 301 

also been used to develop landslide prediction and to produce rainfall maps in Taiwan (Chiang 302 

and Chang, 2009; Ip et al., 2020; 2019). They found that ordinary kriging predicted the closest 303 

to radar rainfall estimates and performed better in predicting both landslide-prone and stable 304 

areas.  305 

In this study, ordinary kriging was conducted to interpolate the values of effective 306 

cohesion over Singapore. Ordinary kriging is a form of kriging that assumes the underlying 307 

random process to be intrinsically stationary with a constant mean over a local area, and the 308 

variation in the regionalized variable depends only on separation in distance and direction 309 

between points and not on absolute position (Goovaerts, 1997). The kriging estimate is a linear 310 

weighted sum of observations from the surrounding area: 311 

QR(S4) = ∑ T2U(S5)
6
2(!           (7) 312 

where QR(S4)  is the estimated soil property by ordinary kriging, 7  is the number of 313 

observations, T2  is the weights, U(S5) is the observed soil parameter. The ordinary kriging 314 

weights are chosen such that the kriging variance is minimized, and the estimate is unbiased 315 

through Eq. 8 and 9: 316 

∑ T2V?S5, S7B + W(
6
2(! S8) = V?S8, S7B	for	all	j      (8) 317 

∑ T2 = 16
2(!            (9) 318 

where W(S8) is the Lagrange multiplier, V?S5, S7B is the semivariance between observation 319 

locations and V?S8, S7B  is the semivariance between the estimation and the observation 320 

locations. 321 
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4. Results and discussion 322 

1) Validation 323 

A total number of complete data sets for residual soils from JF, BTG, and OA used for 324 

the MLP training was 37, 85, and 185 sets, respectively. A 25 % of the training data was used 325 

for validation at each geological formation, as explained in Section 2.3. Fig. 5 shows the 326 

relationship between estimated and measured effective cohesion within each area, and the 327 

corresponding loss associated with the predictions in JF, BTG, and OA areas was 5.4, 5.1, and 328 

2.8 %, respectively. The results confirmed the fact that the developed ANN model and 329 

hyperparameters were appropriate to estimate the effective cohesion of residual soils based on 330 

index soil properties.  331 

 332 

(a) Jurong Formation (JF) area 333 
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 334 

(b) Bukit Timah Granite (BTG) area 335 

 336 

(c) Old Alluvium (OA) area 337 

Fig. 5. Comparisons between predicted and measured effective cohesions. 338 
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2) Results of !’ estimation  342 

Effective cohesions of residual soils from JF, BTG, and OA areas were estimated using 343 

the MLP model based on the index properties (i.e., grain size distributions and Atterberg limits). 344 

The combination of the MLP architecture and the learning rate used in the training produced 345 

accurate results with errors approximately up to 5 %. As expected, the estimated values of 346 

effective cohesion ranged between upper and lower boundaries, as depicted in Fig. 6 because 347 

the training data were selected by following the same upper and lower boundaries. 348 

Consequently, the estimated effective cohesions using the MLP model were found to be 349 

appropriate. Some effective cohesions exhibited outer boundaries due to numerical errors, but 350 

the values are still in a reasonable range. A total number of the estimated !’ of residual soils 351 

from JF, BTG, and OA areas was 244, 1592, and 795, respectively. Table 3 summarizes the 352 

number of data sets used for the !’ estimation. Note that the terms of available data and training 353 

data in Table 3 indicate the total number of collected data over Singapore and the selected data 354 

by upper and lower confident limits for MLP training, respectively. 355 
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 358 

(b) Bukit Timah Granite (BTG) area 359 

 360 

(c) Old Alluvium (OA) area 361 

Fig. 6. Relationships between predicted effective cohesion and percentage of fine fraction  362 
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Table 3 Total number of data used in the estimation.  366 

Formation Available dataa  Training datab Estimated datac  Total (a+c) 
JF 64 37 244 308 
BTG 332 185 1529 1861 
OA 209 85 795 1004 

 367 

3) Spatial distribution of !’ 368 

The spatial distributions of !’  were estimated utilizing an ordinary kriging method 369 

based on available data from JF (64 points), BTG (332 points), and OA (209 points), which did 370 

not include the results of !’ estimation from the MLP model, as shown in Fig. 6. The variances 371 

with distance from the spatial distribution of !’ for JF, BTG, and OA areas are presented in Fig. 372 

7a, 7b, and 7c, respectively. It can be seen that the R2 of the estimated data from the Kriging 373 

analysis is quite low (between 0.5 – 0.6). Hence, the spatial distribution of !’ is not comparable 374 

with the measured !’ data. In addition, the variances of BTG and OA areas indicated a high 375 

uncertainty in the estimation of !’ using the kriging analysis.  376 

 377 

(a) Jurong Formation (JF) area 378 
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 379 

(b) Bukit Timah Granite (BTG) area 380 

 381 

(c) Old Alluvium (OA) area 382 

Fig 6. Spatial distribution of effective cohesion before the !’ estimation 383 
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 384 

(a) Jurong Formation (JF) area 385 

 386 

(b) Bukit Timah Granite (BTG) area 387 

 388 

(c) Old Alluvium (OA) area 389 

Fig. 7. Variances with distance from spatial distribution of !’ without MLP results 390 
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The spatial distributions of !’ were estimated utilizing ordinary kriging methods based 391 

on total data from JF (308 points), BTG (1861 points), and OA (1004 points), which have 392 

included the results of !’ estimation from the MLP model, as shown in Fig. 8. The variances 393 

with distance from the spatial distribution of !’ for JF, BTG, and OA are presented in Fig. 9a, 394 

9b, and 9c, respectively. It can be seen that the R2 of the estimated data from the Kriging 395 

analysis is close to 0.9 indicating a good agreement between the estimated and measured !’ 396 

data. 397 

 398 

(a) Jurong Formation (JF) area 399 

 400 

(b) Bukit Timah Granite (BTG) area 401 
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 402 

(c) Old Alluvium (OA) area 403 

Fig 8. Spatial distribution of effective cohesion after the !’ estimation. 404 
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 409 

(c) Old Alluvium area 410 

Fig. 9. Variances with distance from spatial distribution of !’ with MLP results 411 
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(2004) in their experimental study. In addition, higher !’ was obtained in OA as compared to 428 

BTG in this study. The ranges of !’ predicted in BTG and OA are relatively similar to those 429 

presented in the literature of 4-17 kPa and 5-23 kPa, respectively (Rahardjo et al., 2012). 430 

Overall, the MLP is capable in predicting accurate values of !’ for residual soils in Singapore 431 

and clearly differentiating !’ values with respect to the different geological formations. 432 

 433 

(a) without MLP results 434 

 435 

(b) with MLP results 436 

Fig. 10. Comparisons of effective cohesion obtained from kriging analyses and borehole data 437 

(a) without MLP results; (b) with MLP results for Jurong Formation area. 438 
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 439 

(a) without MLP results 440 

 441 

(b) with MLP results 442 

Fig. 11. Comparisons of effective cohesion obtained from kriging analyses and borehole data 443 

(a) without MLP results; (b) with MLP results for Bukit Timah Granite area. 444 
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 447 

(b) with MLP results 448 

Fig. 12. Comparisons of effective cohesion estimated from kriging analyses and borehole data 449 

(a) without MLP results; (b) with MLP results for Old Alluvium area. 450 
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5. Conclusions 452 
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basis for estimating effective cohesion in a regional area where the shear strength parameter is 465 

urgently needed for geotechnical engineering problems. 466 
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