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Abstract—It is widely acknowledged that the agile reconfigu-
ration of network slice according to traffic demand is of vital
importance in 5G-and-beyond systems. Existing relevant works
make reconfiguration decisions based either on point prediction
of the uncertain demand, which lacks indications on how accurate
it is, or on handcrafted uncertainty set with robust optimization,
which may lead to resource over-provisioning due to the lack
of prediction mechanism. To overcome these drawbacks, in
this paper, we propose a predictor-optimizer framework that
intelligently performs inter-slice reconfiguration with the aim of
minimizing the energy consumption of serving these slices. Specif-
ically, the predictor produces a prediction interval comprised of
lower and upper bounds that bracket the future traffic demands
with a prespecified probability. Then by regarding the prediction
interval as the uncertainty set, we formulate the network slice re-
configuration problem as a Robust Mixed Integer Programming
(RMIP). We solve this RMIP by using linearization technique
and robust optimization. Numerical results demonstrate that the
proposed framework outperforms traditional methods in terms
of robustness and energy consumption. Meanwhile, the trade-
off between robustness and the energy consumption can be
automatically adjusted according to the type of slice and traffic
demands.

I. INTRODUCTION

Etwork slicing has been regarded as a key technology to

address the diversified service requirements of various
scenarios in 5G-and-beyond systems [1], [2]. Based on the
flexibility provided by Software Defined Network (SDN) and
Network Function Virtualization (NFV), network slicing en-
ables the on-demand, fully-atomized provisioning of services
according to the user’s traffic demands. However, the traffic
demands in a network are highly dynamic. Thus, during their
lifetime, network slices need to be adaptively reconfigured
according to the customers’ traffic demands.

A network slice is defined by its Service Function Chain
(SFC), which is composed of sequentially interconnected
Virtual Network Functions (VNFs) [3]. Therefore, inter-slice
reconfiguration mainly involves VNF scaling and VNF migra-
tion [4], which are time-consuming and costly. Moreover, from
the Quality of Service (QoS) perspective, migrating VNFs may
cause service interruption due to the migration of the virtual
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machines and their associated traffic data. Therefore, con-
sidering reconfiguration cost and QoS degradation, proactive
slice reconfiguration with respect to traffic demand becomes
imperative.

Recently, two techniques are widely used to accomplish
proactive reconfiguration: Robust Optimization (RO)-based
methods and prediction-based methods. In RO-based inves-
tigations such as [5], [6], the traffic demands are assumed to
be within an uncertainty set which is used to formulate an
RO model. The solution of the RO model is “robust” enough
such that any constraints in the uncertainty set should be
satisfied. Due to the lack of prediction mechanism, the width
of the uncertainty set in these works cannot be automatically
adjusted, leading to an issue of resource over-provisioning
even under the scenarios with low traffic variation.

On the other hand, in prediction-based researches such as
[7], [8], the authors usually choose to predict future traffic
demands and then formulate the slice reconfiguration as a
deterministic optimization problem based on the predicted
results. However, the predictor used in these methods is single
point predictor that does not provide any indication of its
accuracy. Moreover, point predictions could be unreliable and
inaccurate if the training data is sparse, or if the predicted
targets are affected by probabilistic events [9]. This causes
inaccuracy of the formulated optimization problem, and thus
the obtained optimal solution cannot accurately match future
traffic demands, resulting in resource over-provisioning or
Service Level Agreement (SLA) violation.

Unlike point prediction that forecasts the traffic demands
without confidence level, prediction interval [9] gives a range
of future traffic demand with a prespecified probability called
confidence interval (1—c«), which can be flexibly set according
to the slice types. Furthermore, since network slices are highly
dynamic networks that may have short or long-lived effects
(e.g., changes in the network topology and in the number
of connected customers), the overall traffic demands exhibit
periodicity as well as variability [10], which can be reflected
by the prediction intervals. Accordingly, this information can
be used to perform better slice reconfiguration decisions.

As such, in this paper, we propose the predictor-optimizer, a
proactive network slice reconfiguration framework that jointly
exploits prediction interval and RO. First, the predictor fore-



casts the aggregate traffic demands of each slice and produces
the (1 — «) prediction interval, where « is specified according
to the type of slice. In the design of the optimizer, we then
formulate the network slice reconfiguration problem as an
RO model by using the prediction intervals as its uncertainty
set. Finally, through linearizing the RO model and deriving
its robust counterpart, the RO model is transformed into a
Mixed Integer Linear Programming (MILP) and can be solved
efficiently.

The main contributions of this paper are summarized as
follows:

1) We propose to exploit prediction interval-oriented pre-
dictors to forecast the traffic demands with confidence level,
which guides the subsequent slice reconfiguration without
making risky decisions under uncertainty.

2) By jointly utilizing prediction interval and RO, we design
a predictor-optimizer framework that proactively reconfigures
the network slice. This novel approach opens the door for
further attempts to take advantage of prediction interval to
address the uncertainty issues in network slicing problems.

3) We employ Long Short-Term Memory (LSTM) and the
bootstrap method to produce prediction intervals for the traffic
demands. Through simulations based on real traffic data, we
demonstrate that our proposed predictor-optimizer framework
can achieve high robustness at a low resource price. Moreover,
the size of the prediction interval can be automatically and
adaptively adjusted according to the traffic demands, thereby
enabling flexible trade-off between robustness and resource
cost.

The remainder of the paper is organized as follows: Section
IT elaborates on the prediction interval oriented predictor. In
Section III, we present the system model and formulate the
network reconfiguration problem as a robust MIP. In Section
1V, the robust MIP is linearized to a robust MILP and its robust
counterpart is derived. In Section V, we present the numerical
results, and finally we conclude the paper in Section VI

II. OVERVIEW OF PREDICTOR DESIGN

We consider the scenario in which |K| network slices of
different types are running on top of a common infrastructure.
During the lifetime of these slices, their aggregated traffic
demands are varying due to the changing requirements of their
users. Therefore, the slices need to be reconfigured accordingly
to match the ever-changing demands. To overcome the demand
uncertainty, for each slice, a corresponding predictor that
generates prediction intervals of the future demands is trained
by the historical data. In the following, we elaborate the design
of the predictor.

A. The Overall Design of the Predictor

The predictor is used to predict the aggregated traffic
demands of the network slice in future time windows. The
predictions are made on the basis of historical traffic demands
of each slice, ie., 75,--- ,7F |\ Vk € K, where K is the
set of network slices in the system. The aggregated traffic
demands of a network slice is a time series which exhibits

strong periodicities and distinct overall long-term trends [10].
Therefore, the trend of traffic demands of a network slice
can be predicted by the popular LSTM network, which is an
improved Recurrent Neural Network (RNN) for long time-
dependent series predictor.

However, LSTM suffers from two limitations despite its
popularity in predicting traffic demands. LSTM produces un-
satisfactory prediction accuracy under the case of high traffic
uncertainty. This is because of the unpredictable nature of
the short-lived events which cause traffic bursts beyond the
overall trend. Moreover, LSTM only provides point estimates,
without any indication of the confidence of the forecasts.
What is worse, the accuracy and reliability of point predictions
drop sharply when the traffic demands fluctuate heavily. These
drawbacks make point predictions unable to provide sufficient
information and the reliability for subsequent resource alloca-
tion.

Instead, prediction intervals can cover future traffic values
with a given probability, thereby making the predictions more
meaningful for the subsequent decisions. Therefore, instead of
pursuing an unreliable point prediction, we propose to predict
an interval that the real traffic demands can be covered with
the prespecified probability (1 — «). Such prediction intervals
not only give the prediction results, but also the accuracy of
the prediction. There are a number of methods to produce pre-
diction intervals, such as bootstrap method, Bayesian method,
Delta method, etc [9]. In the design of our predictor, due to
the stability of the bootstrap method under data uncertainty
[9], we exploit this method to generate prediction intervals for
the traffic demands of the network slice. A detailed principle
behind the bootstrap-based prediction interval is elaborated in
the following subsection.

B. The Principle of Prediction Interval

The prediction target (i.e., the real traffic demands to be
predicted at time ¢, rf) can usually be modeled by

re =y +ef, (1)

where yF is the true regression mean, and €/ is the noise which
has zero mean and is dependently and identically distributed.
In practice, the true regression mean y¥ is approximated by
the output of the LSTM #F. Thus, we have

=g = - ) e 0
To quantify the difference between the real traffic rf and the
predicted traffic ¥, we need to evaluate the mean and variance
of their difference. The basic idea behind the bootstrap method
is that an ensemble of LSTMs will produce a less biased
estimate of the true regression y¥. Therefore, N LSTM models

are built and the true regression is approximated by the mean
of the point predictions of these LSTM models, i.e.,

AR
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where gf " is the prediction result of traffic demand of the ith
LSTM network. Suppose that yf — 7F and ¥ are statically
independent, from (2) we have

2

where O is the variance caused by model misspecification

errors, and o o is the variance of random noise. The variance
caused by model misspecification is approximated by the
variance of the N LSTM models’ output:
N
g2 _ 1 G
gf Yi

N —1+4
i=1

) (5)

From (2) and (4), the variance of the noise can be approxi-
mated by:

0% =~ Bl(r{ = 5t)°’] — o 6)

We train another LSTM with the same structure as the
ones used for the point predictions, and use it to predict the
remaining residuals from the input values:

ot = maz((yf — ;) *062570)- %)

The activation function of the residual LSTM output node

is set to be exponential, making a positive value for 0'2k

According to (7), a new dataset, {(r¥,62,)}IZ}, is created
to train the residual LSTM. The maximurﬁ likelihood is used
as the loss function, which has the following compact form
[9]:
= , 5152,k
Lf2Z[ln( o)+ 5] (8)

K
=1 €y

Now we know both the mean and variance of the point

prediction, the prediction interval can be calculated from the

t-distribution. The (1 — )% prediction interval for rf is
computed as:

k _

Pl = [ Yt

— Ti—a/2 " O U+ Ti—ay2 ogkl, 9

where 71 _q 3 is the (1 —a/2) percentlle of t-distribution. The
prediction interval generated above will be feed to the input of
the robust optimizer, which will be elaborated in the following
subsequent sections.

III. THE ROBUST NETWORK SLICE RECONFIGURATION
PROBLEM

Rather than some existing approaches in the literature which
make resource decision based on the upper bound of the
prediction [8], or apply robust optimization that uses handcraft
uncertainty set [5], we instead propose to use the prediction
interval as the uncertainty set of RO to reconfigure the network
slices. In this section, we present the system model as well as
the formulation of the robust problem. The solution of the
problem will be given in the next section.

1) Infrastructure Model: We model the substrate network
as a directed graph denoted by G = (V,FE), where V
and E denote the set of physical nodes and physical links
respectively. The computing capacity of node ¢ € V' is denoted

by ¢;, and the bandwidth of link (¢, j) € E is denoted by b;;.
Unlike the virtual network embedding problem in which the
physical nodes can offer all the required VNFs, the nodes in
network slicing can only offer a subset of the VNF set F in
the system. Thus, we use a binary indicator variable 0;(f) to
indicate whether node ¢ € V can provide function f € F
(i.e., 6;(f) = 1 if node ¢ € V is capable of function f € F,
otherwise 6;(f) = 0).

2) Network Slice Model: There are |K| slices deployed over
the substrate network, where C denotes the set of network
slices. The SFC of slice k consists of [;, ordered VNFs denoted
by Fr = {fF, - 7fl’i}. For ease of presentation, we use two
dummy VNFs f§ and ff, to denote the ingress node s
and egress node dj of slice k, respectively. The virtual link
between the virtual nodes f¥ and f% , is denoted by ef,
For each slice, we build a predictor that outputs the prediction
interval of the traffic demand at time ¢, which is denoted
by [y — 7f, 7y + 7f], where 7 = 71_4 /20,5 as that in (9).
This interval is regarded as the uncertainty set of the robust
optimizer. For ease of representation, we denote the traffic
demand of slice k¥ by 7, which falls within the prediction

interval [} — 7, 7F + 7] with probability (1 — ).

3) The Constraints: The VNF instances (VNFI) of the
network slices are created and managed by the VNF Manager
(VNFM) under the VNF-MANO framework proposed by
ESTI. Practically, a VNFI is implemented as a Virtual Machine
(VM) or container which is deployed on a specific physical
node. We use the binary variable z; (f¥ ) to indicate whether
the virtual node f* of slice k is deployed on physical node
i or not. For virtual node f, only the physical nodes with
function f% can be its mapping target. Therefore, we have

wie(fh) < 6:(fE),Vfh € Fe,VkeK,ie V. (10)

Similarly, we use binary variable z,,(ef) € {0,1} to
indicate whether virtual link eX, is mapped to the physical
link (p,q). To avoid coordination overhead caused by path
splitting, we require that each VNF is mapped to exactly one
physical node and each virtual link is mapped to exactly one
physical path. To this end, we have the following constraints
to avoid node splitting:

> win(fh) =1,9fF € Fi,Vk € K.

eV

Y

To avoid link splitting, we have the following two constraints
for node i € V:

Zzw y<1,¥me{l,-- I —1},Vke K, (12
peV
qul y<1L,¥me{l, -, —1},Vke K. (13)
qeVv

Furthermore, the variables {z,,(ef)} and {z;x(f%)}
should be constrained to form a connected path for each
network slice [11]. Therefore, for all (i,k, f%) € V x K x



Fi U{fE}, we have
Zzp,( m) ~ Zzz,p(e )=1,if p=sp,m
Zzp, (em) — Zzz,p(e J)=-L if p=di,m=1
Zzp,( m) ~ Zzz,p(e ) =

=0

zig(fE) — 2k (fE 1), else
(14)

Since some VNFs will possibly compress or encrypt the
incoming packets, the traffic rates entering each VNFs are
different. Indeed, the incoming traffic rates of VNF fF¥ is
computed as

ek _ ok TT™ Lok
rm) =1L, o) (15)
where (fF) is the compression ratio of VNF f. We assume
one unit data flow consumes [, units of computing resources
and [ units of bandwidth. Therefore, we have the following
capacity constraints on each physical node:

=Y Y Bewir(fE)F(fE) i VieV.

kEK fk eFy

allc (16)
Similarly, we have the following link capacity constraint:

l—1

DD Frzpalem

ke m=1

JFE(fE) < bp V(p,q) € B (17)

4) Objective Function: In this study, our objective is to
minimize the energy consumption of the system, since it ac-
counts for a large proportion of the operators’ expenditure and
becomes the focus of attention [12]. In our model, we focus
only on the power consumption of servers and communication
networks. For node ¢ € V, its power consumption consists of
three parts: the power consumed by the VNFs, and the power
consumed by the Network Interface Cards (NICs) which are
used for packet forwarding, and the power required to turn on
server ¢ [12], i.e.,

P Pcpu—i_P]iVIC—’_Pstatzc (18)

First, the power consumed by the VNFs on server 7 is
decided by the amount of allocated computing resources [12],
ie.,

Pczpu - (Prlnaz - Pildle) X E:J,llc/ci' (19)
where P! . is the maximum power consumption at full

utilization, Pfdle is the power consumption of server 4 on idle
state, and ¢',, . is defined as in (16).

Second, the power consumption of NICs is a significant
contributor to the system power consumption which can ac-
count for up to 10% of the total power consumption [12].
As in [12], the power consumption of NICs is different under
idle state and busy state. In our model, since the traffic flows
are not split, the activated NICs are always working in busy
state. Consequently, the power consumption model of NICs
on server ¢ is calculated as:

alle

Pi1o = Pyort X N (20)

port»

where P),,; is the power consumption of the NICs in active
mode, which corresponds t0 Pyypnamic in (129) of [12], and
Nt . is the number of activated NICs on server 7, which can

port
be calculated as:
lk 1
Nyore =2 > | Do zaleh) + D zalel) | . @D
ke m qeVv qeV

Finally, the power required to keep the ith server on is
calculated according to:

Pliatic =Y Plye, (22)

where 3 is a binary variable indicates whether server i is on
or not. The on-off state of server 7 is only dependent on the
number of active NICs, i.e.,

L, if Nj,., >0

= 23
4 {O, otherwise @3)

5) Robust Problem Formulation: Given the traffic predic-
tion intervals and the assumption discussed above, our robust
problem of network slice reconfiguration that minimizes the
power consumption is formulated as follows:

min » "~ P (24)

s.t. (10) — (23) (25)
zi(f*)e{0,1},VieVke K,me{1,--- I}  (26)
zp7q(ef§1) €{0,1},V(p,q) e E, keK,me{l, - ,l;,—1} (27)

Because the parameter 7 is a random variable that falls in
the prediction interval, this problem is therefore a robust op-
timization problem. In particular, the term P* in the objective
function is uncertain since the allocated resource ¢, . depends
on the uncertain parameter rt . In addition, for the same reason,
constraints (16) and (17) are uncertain constraints as well.

IV. THE ROBUST OPTIMIZER

In this section, we present the robust optimizer in the
following steps: 1) First, we transform the robust problem into
an MILP by linearization technique; 2) Second, the robust
counterpart is derived; 3) Finally, the robust counterpart is
solved by the MIP solver.

A. The Linearization of the Robust Problem

The robust problem formulated in the previous section
involves one nonlinear term, i.e., (23). In this subsection, we
will transform this nonlinear term into linear thus to facilitate
the optimization procedure of our problem. To represent the
nonlinear relation of y* = 1 if N;mt > 0 in (23), we
equivalently transform it to:

N < Myt y' € {0,1},

port

(28)

where M is a large positive constant which guarantees the
relationship between N;OTt and y*. To reduce the feasible
region of our problem as much as possible, M* is set to the

total number of NICs of server 7. Please note that after this



transformation, 3* becomes an optimization variable. By using
this method, the nonlinear objective in (24) can be replaced
by the following objective with the extra constraints in (28):

P =Pl +Pic+y N, (29)

B. Deriving the Robust Counterpart

The robust counterpart is a tractable deterministic equiva-
lence of the robust problem. To derive the robust counterpart
of problem (24), we need to transform our problem into the
standard robust problem [13]. Thus, we first eliminate the
uncertainty in the objective function by introducing an artificial
scalar variable p. In this way, the original robust problem is
therefore transformed into the following:

min p (30)

T,Y,2,p0
stZﬁl < p, (31)
(10) — (23),(26) — (29) (32)

By using the transformation process in [13], the robust coun-
terpart is derived as follows:
min p

T,2,Y,u,w,p

st Z Pme — zdle Z Z ﬁo fk

; (34)
: [szi,k(fm) + Tt ui,k(f:;)] <p

)Tt (fk )+ wp,q(ek )rf(fﬁz)]

(33)

lp—1

DD Ailzale

ke m=1

ZZ@

(35)
<bpg,¥(p,q) € E
Tf T k(f )+Tf Usj k(f )] <ci,VieV (36)

—ui,k(f ) < @in(fh) < win(fh) (37)
_wp’q( m) < 2p, q(e ) < wp, q(ek ) (38)
(10) — (13),(26) — (29) (39)

This problem is a Mixed Integer Linear Programming (MILP)
and can be efficiently solved by the commercial MIP solvers,
such as gurobi, CPLEX, .etc.

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to verify
the effectiveness of our proposed predictor-optimizer frame-
work. We first give the network parameters as well as the
hyper-parameters of the predictors. After that, we present our
simulation results and discussions.

A. Simulation Settings

The topology of the substrate network is the same as that in
[11], which is widely used in network slicing simulations. The
VNF set of the system contains 7 VNFs, and the compression
ratio of each VNF is uniformly distributed in [0.8,1.2]. The
VNF capability of the nodes is randomly set to contain 2 to
4 VNFs. The capacity of each node is randomly generated

12

—— point prediction
--- real data

104 90% prediction interval

Traffic demand (Gbps)
o

Time (hour)

Fig. 1. 90% prediction intervals on 100 steps of test data

in [40,200] units. Similarly, the bandwidth of each physical
link is randomly generated in [10,200] units. The SFC of
each network slice is a random VNF chain which contains
3 to 5 VNFs. The aggregated traffic demand in each slice
is sampled from the real traffic which is gathered from the
backbone network [14].

We use TensorFlow to build our prediction interval-oriented
predictor for each network slice. Each predictor is comprised
of 201 point predictors, each of which is a stacked LSTM
network. 200 of them are used to evaluate the true regression
mean and the remaining one is used to estimate the variance
of the residual. Each predictor is trained by 50% of the
historical traffic data of the corresponding network slice. The
rest of the data are equally divided into two parts, which are
used for evaluation and testing respectively. In addition, the
optimization models are solved on a PC with an Intel i7-7500U
CPU and 16GB RAM, applying the python MIP modeling
package and gurobi Version 9.0.1.

B. Numerical Results

We use the predictor to predict 100 steps of the traffic
demand in one slice with 90% prediction interval. Both the
point predictions and the prediction intervals are shown in
Fig. 1. As can be seen from the results, the prediction intervals
can cover nearly 100% of the real traffic data, while the point
predictions become less accurate when the traffic fluctuates
heavily. Furthermore, we can observe that as the fluctuation
of traffic becomes flatter, the width of the prediction interval
decrease accordingly, and vice versa. Therefore, this result
demonstrates that the width of the prediction interval can
be automatically adjusted according to the traffic demand
variations. Consequently, this property gives us the flexibility
to make trade-offs between resource cost and the achieved
robustness.

To verify the performance of the predictor-optimizer frame-
work, we plot the reconfiguration results under different confi-
dence levels ranging from 0.1 to 0.9 in Fig. 2. For comparison
purpose, the reconfiguration results of point prediction and
the handcrafted 1-std uncertainty set [5] are also shown in
this figure, which correspond to the results of the confidence
levels of 0.0 and 1.0 respectively. The results are averaged in
100 time intervals to avoid randomness.

Please note that Fig. 2 has two y-axes. The left y-axis is
used to plot the demand violation ratio (R,, defined in (40)),
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Fig. 2. Demand violation ratio and price of robustness vs. confidence
level. The results of point prediction and handcrafted 1-std uncertainty set
correspond to the confidence levels of 0.0 and 1.0, respectively.

which represents the number of time intervals of resource
under-provisioning. The right y-axis is used to plot price of
robustness (P,, defined in (41)), which indicates the added
energy consumption due to robustification compared with the
energy consumed by real traffic demands. Formally, these two
performance metrics are respectively defined as:

number of violated time intervals

R, — x 100%,  (40)

total time intervals
p—pr

*

P. = x 100%, (41)
where p* is the value of the objective value for real traffic de-
mands, and p is the objective value of the predictor-optimizer
framework. Please note that the results of P, are obtained by
evaluating the scenario with 20 network slices.

First, from Fig. 2, we find that R, decreases with the
confidence level as we expected. Furthermore, this result also
reveals that the violation ratio of the prediction interval is
worse than that of point prediction when the confidence level
is too small. Second, we can observe that R, increases with
the number of network slices. This is because the increase
of network slices intensifies resource competition, leading to
an increased risk of demand violation. Third, this result also
shows that by using the prediction interval as the uncertainty
set for the subsequent RO, the price of robustness P, of
our proposed framework is much lower than that of the
handcrafted uncertainty set. This is due to the handcrafted
uncertainty set is too conservative, leading to unnecessary
resource provisioning. By shifting (1 — «) from 1.0 to 0.9,
we can decrease P, about 7% at a cost of increasing R,
about 2.5%, which is possible in the slices with best-effort
guaranteed SLA. In this way, we can flexibly achieve a trade-
off between the robustness and the energy consumption.

VI. CONCLUSIONS

In this paper, we propose a novel robust network slice
reconfiguration framework, which jointly leverages prediction
interval and robust optimization. First, by exploiting LSTM

and bootstrap method, we design a predictor that generates
prediction intervals for the traffic demands per slice. Then we
use the prediction interval as the uncertainty set to formulate
the network slice reconfiguration problem to an RO problem,
which is solved by commercial solver after some transforma-
tions. Finally, the performance of our framework is evaluated
on real traffic data, and the numerical results demonstrate the
proposed predictor-optimizer can provide adjustable trade-off
between robustness and energy consumption.

This work provides a framework which combines predic-
tion interval and robust optimization to perform inter-slice
reconfiguration. Actually, this framework can be served as a
uniform approach for resource allocation in wireless networks
with uncertainty and service quality requirements. Therefore,
this work gives guidance and insights for constructing robust
mobile networks.
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