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Highlights 26 

• Modelling the impacts of coal mining and coal seam gas extraction on streamflow 27 

• Reductions in annual streamflow are proportional to the area of coal mine coverage 28 

• For coal seam gas, reductions in annual streamflow are proportional to well density 29 

• A zone of potential hydrological change is identified, wherein impacts may be felt 30 

Abstract 31 

This manuscript presents examples of the modelling of the impacts of coal mining and coal 32 

seam gas extraction on streamflow in five study catchments in Australia.  The manuscript 33 

includes details on data preparation and model set-up and calibration.  The modelling 34 

methodology enables the prediction of cumulative impacts from multiple future coal 35 

resource developments and distributes these predictions at multiple locations in the 36 

landscape.  It is framed in terms of a structured uncertainty analysis to provide information 37 
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on the likelihoods and potential ranges of various impacts.  Also included is a qualitative 38 

uncertainty analysis which subjectively assesses the likely impact on model results of various 39 

assumptions made during the modelling procedure.  Model results suggest that, in the 40 

Australian context, maximum percentage reductions in annual streamflow are 41 

approximately commensurate with the proportion of coal mine coverage.  In coal seam gas 42 

fields, reductions in annual streamflow are proportional to well density.  The manuscript 43 

goes on to demonstrate how these modelling results can be used to identify a zone of 44 

potential hydrological change within a catchment.  This zone delineates those parts of the 45 

landscape where water-dependent landscape classes and assets may be vulnerable to 46 

change associated with changes in the streamflow regime.  A corollary of this is that any 47 

parts of the landscape outside the zone of potential hydrological change are unlikely to be 48 

affected by coal resource development. 49 

Keywords: hydrological modeling; coal mining; coal seam gas extraction; cumulative impacts 50 

1. Introduction 51 

Over the past century, coal has been widely used around the world as a fuel source for 52 

transport and industry and to generate electricity.  Modern mining methods for coal include 53 

surface and underground mining.  Surface mining (also known as open cut, open cast, or 54 

mountaintop removal mining) is appropriate for seams that occur sufficiently close to the 55 

land surface that it is economical to remove the overburden in order to access the seam.  56 

Deeper coal seams require underground mining, and this is typically achieved by longwall or 57 

bord and pillar methods.  Longwall mining features the controlled collapse of overlying rock 58 

once the coal has been extracted. 59 

In recent decades, the commercial extraction from coal seams of adsorbed methane (also 60 

known as coal seam gas or coalbed methane) has increased around the world.  This is 61 
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typically achieved by drilling wells to intersect the target seam and sometimes requires 62 

hydraulic fracturing to stimulate gas flow. 63 

Coal mining and coal seam gas extraction can result in adverse hydrological and ecological 64 

consequences.  These potentially include changes to surface topography, the soil profile, 65 

vegetation cover, water quantity and quality, and air quality.  In particular, coal mining 66 

produces significant amounts of waste material (overburden, spoil, tailings) that is usually 67 

stored on site and the interactions of this waste with incidental water can give rise to 68 

increased erosion, acid mine drainage and high concentrations of dissolved solids, and can 69 

seep into waterways and aquifers. 70 

The literature on applications of hydrological modelling to assess the impacts of coal 71 

resource development appears to be quite sparse.  Ping et al. (2017) used MIKE-SHE to 72 

evaluate the impact of coal mining on river flows in China.  They calibrated the model to pre-73 

mine conditions (using one response gauge and a monthly time step) then compared 74 

simulations during a subsequent mining period with observed river flows.  The results 75 

suggest that each ton of raw coal reduces river flow by 2.87 m3, 8% of which is due to 76 

reductions in surface runoff and 92% due to reductions in baseflow.  We note that the 77 

reliance of this methodology on observed flows means that it is not amenable to prediction 78 

of future developments.  A similar methodology using the YRWBM model was reported by 79 

Guo et al. (2017) and suggested an average annual flow reduction of about 60% in a large 80 

catchment with a surface coal mine coverage of about 29%. 81 

The focus of the current paper is very much on the cumulative impacts of multiple proposed 82 

coal resource developments and the chosen methodology reflects this. A different approach 83 

is called for to investigate the potential impacts of individual mines and coal seam gas 84 

developments, and this approach is common in Environmental Impact Assessments lodged 85 

by mine proponents. The current study does not seek to replace these approaches, but 86 
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rather to present a methodology specifically designed to assess the cumulative impacts of 87 

multiple coal resource development in close proximity. 88 

Viney et al. (2021) presented a methodological framework for modelling the impacts of 89 

future coal mining and coal seam gas extraction on surface water resources and streamflow.  90 

This methodology enables the prediction of cumulative impacts from multiple coal resource 91 

developments and distributes these predictions at multiple locations in the landscape.  It is 92 

framed in terms of a structured uncertainty analysis to provide information on the 93 

likelihoods and potential ranges of various impacts. 94 

Viney et al. (2021) proposed a modelling structure that considers three futures or scenarios.  95 

The first of these is an undeveloped scenario, which simulates the hydrological regime that 96 

would prevail in the absence of any coal resource development.  This scenario is employed 97 

largely for model calibration purposes.  A second scenario, the baseline future, encompasses 98 

the impact (which may be ongoing) of any existing developments.  The third scenario – the 99 

expansion future – accounts for both pre-existing and proposed developments.  The impacts 100 

of the future expansion of resource development are given by the differences in modelled 101 

streamflow characteristics between the expansion and baseline futures. 102 

This paper explores, by way of example, several aspects of the implementation of the 103 

modelling framework described by Viney et al. (2021) for assessing the cumulative impacts 104 

of multiple future coal resource developments on surface water hydrology. 105 

2. Study background 106 

2.1 Modelling time periods 107 

In all the study locations outlined below, each scenario is run for the period 1983 to 2102 108 

with common local climate inputs.  For the period 1983 to 2012, the baseline and expansion 109 
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scenarios share a common pattern of resource development and include all operations that 110 

were in commercial production prior to December 2012.  After 2012, both the baseline and 111 

expansion scenarios include all ongoing operations and explicitly take account of the effects 112 

of expansions that were planned and approved prior to 2013.  However, in addition, the 113 

expansion scenario includes any new developments coming into operation after December 114 

2012 and any expansions to existing operations that had not been approved before 2013.  115 

Only those proposals that were subjectively judged (as at December 2012) to be likely to 116 

proceed are included in the modelling, however, it should be noted that since the modelling 117 

commenced, some of these proposals have now been abandoned while others have since 118 

been proposed. 119 

2.2 Study locations 120 

The examples reported in this manuscript come from five surface water modelling domains 121 

covering various coal-bearing geological basins in eastern Australia (Figure 17).  The 122 

modelling domains range in size from 2,417 km2 to 71,532 km2.  Some host existing open-cut 123 

or underground coal mines.  At the time of modelling, all modelled catchments were subject to 124 

proposals for new coal resource developments or for expansions to existing operations that 125 

required regulatory approval.   126 

 127 

[***INSERT FIGURE Figure 17 NEAR HERE***] 128 

 129 

The five modelling domains and their assumed development scenarios are described below. 130 

2.1.1 Suttor River 131 

The Galilee geological basin spans an area of about 248,000 km2 in Queensland.  The basin 132 

currently has no significant coal resource extraction.  Our modelling assumes the future 133 
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development of seven coal mines, two of which will be open cut only and five of which will 134 

include both open cut and underground operations.  All proposed mines are in the 135 

catchment of the Belyando River, a tributary of the Suttor River.   The hydrological modelling 136 

domain thus comprises an area of 71,532 km2 in the Suttor River catchment above Burdekin 137 

Falls Dam.  138 

2.1.2 Gloucester and Karuah rivers 139 

The Gloucester geological basin occupies 348 km2 in New South Wales.  It contains two 140 

existing open cut coal mines.  Our modelling assumes the future expansion of both these 141 

mines, along with development of a third open cut mine and a coal seam gas field.  The 142 

hydrological modelling domain encompasses the catchments of the Gloucester and Karuah 143 

rivers and covers a total area of 3,100 km2.  144 

2.1.3 Hunter River 145 

The modelled catchment of the Hunter River occupies 17,787 km2 in New South Wales.  146 

Together with many abandoned mines, it contains more than 20 existing open cut coal 147 

mines and eight underground longwall mines.  Our modelling assumes the future expansion 148 

of 11 of these existing mines and the development of three new open cut mines and two 149 

new underground mines.  There are no existing or proposed coal seam gas operations.  A 150 

feature of the Hunter river basin is an auction and trade system that allows mining 151 

companies to acquire or transfer permits to discharge saline water to the stream network at 152 

times of peak natural streamflow. 153 

2.1.4 Namoi River 154 

The Namoi river basin (38,501 km2) in New South Wales overlies the Gunnedah coal basin 155 

and is home to five existing open cut coal mines and one underground mine.  We model the 156 
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impacts of expansion proposals for two of these, together with development proposals for 157 

three new open cut coal mines, two underground coal mines and a new coal seam gas field.  158 

The Namoi catchment contains three major reservoirs that supply water for agricultural, 159 

domestic and municipal users.  Supply from these reservoirs is controlled by a licencing 160 

system and water sharing plan administered by the New South Wales government. 161 

2.1.5 Richmond River 162 

The Richmond river basin in New South Wales currently has no coal resource extraction, 163 

while our modelling assumes the future development of a coal seam gas extraction field.  164 

The hydrological modelling domain is limited to an area of 2,417 km2 of the catchment of 165 

the Richmond River above the tidal zone and includes the tributaries Eden Creek and 166 

Shannon Brook. 167 

2.3 Hydrological models 168 

Surface water changes associated with coal resource development are assessed using the 169 

AWRA-L model (Vaze et al., 2019).  AWRA-L is the landscape component of the AWRA 170 

modelling system (Viney et al., 2014) and is a biophysical model of the water balance 171 

between the atmosphere, the soil, groundwater and surface water stores. 172 

AWRA-L has a flexible spatial resolution that is usually dictated by the resolution of the 173 

meteorological input data.  For use in this study, AWRA-L is forced by gridded meteorological 174 

data (precipitation, solar radiation, air temperature, etc.) with a spatial resolution of 0.5 175 

degrees (about 5 km).  It operates at a daily time step.   176 

Each spatial unit (grid cell) in AWRA-L is divided into a number of hydrological response units 177 

(HRUs) representing different landscape components.  Hydrological processes are modelled 178 

separately for each HRU before the resulting fluxes are combined to give cell outputs.  The 179 
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version of AWRA-L used here includes two HRUs which notionally represent (i) tall, deep-180 

rooted vegetation (i.e., forest), and (ii) short, shallow-rooted vegetation (i.e., non-forest).  181 

Hydrologically, these two HRUs differ in their aerodynamic control of evaporation, in their 182 

interception capacities and in their degree of access to different soil layers. 183 

In application catchments in which river regulation is prominent (Namoi and Hunter), a 184 

dedicated routing model, AWRA-R (Dutta et al., 2017), is used.  AWRA-R, the river system 185 

component of the AWRA system, is a conceptual hydrological model designed for both 186 

regulated river systems.  The model includes six components: a rainfall-runoff response, a 187 

routing scheme, an irrigation model, a river-groundwater interaction component, storages 188 

and a floodplain model. 189 

Although in this paper, the AWRA-L model is used to estimate landscape fluxes of water and 190 

AWRA-R is used to route this water downstream (where needed), the methodology 191 

presented here is agnostic of the specific models used. As a result, it can be applied 192 

anywhere in the world, using whichever model(s) are required to adequately capture the 193 

hydrologic impacts of coal resource development. It could potentially even be used to assess 194 

other types of development, particularly those associated with extractive industries, 195 

although this has not been tested thus far. 196 

As described by Viney et al. (2021) the application of AWRA-L and AWRA-R to predict the 197 

impact of coal resource development requires estimates of groundwater-mediated fluxes 198 

from a suitable groundwater model.  In this study, different groundwater models are used in 199 

different modelling domains, depending on the specific requirements of each domain.  They 200 

are: 201 

 Gloucester and Karuah Rivers:  regional analytic element groundwater model and 202 

MODFLOW alluvial groundwater model (Harbaugh et al., 2000). 203 
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 Hunter River:  a finite element mesh model. 204 

Namoi River:  regional groundwater model built using MODFLOW code. 205 

 Richmond River:  regional groundwater model built using MODFLOW code. 206 

  Suttor River:  regional analytic element groundwater model. 207 

These groundwater models will not be described or discussed further here.  We simply 208 

assume that they provide estimates of groundwater–surface water fluxes that are likely to 209 

be more accurate than those that can be obtained from a typical surface water model.  In 210 

practice however, we acknowledge that the coarse spatial resolution of groundwater 211 

models, combined with their typically long timesteps make them unsuitable for assessing 212 

some of the impacts of coal resource development on groundwater, and particularly on 213 

surface water-groundwater interactions. These limitations were minimised by using a 214 

variable grid approach in the Hunter and Namoi regions, as well as an alluvial groundwater 215 

model in the Gloucester/Karuah region. While this allowed us to assess the impacts of coal 216 

resource development on drawdown, reductions in baseflow due to subsidence-induced 217 

cracking were unable to be represented in these models. For a discussion of a suitable 218 

groundwater modelling framework for coal resources, the reader is referred to Crosbie et al. 219 

(2016). 220 

The points of linkage between the surface water and groundwater models and the 221 

sequencing of their application are described by Viney et al. (2021). 222 
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3. Data preparation 223 

3.1 Disaggregation 224 

In order to facilitate the prediction of streamflow changes at multiple locations within a 225 

modelling domain, the catchment must be discretised into smaller sub-units or sub-226 

catchments.  A model node represents the outlet point of an associated sub-catchment.  227 

Ideally, model nodes should be located at streamflow gauges, above major confluences, 228 

immediately below proposed coal mine and coal seam gas developments, and at any other 229 

locations that are required for impact modelling (e.g., at ecologically sensitive or culturally 230 

significant locations). 231 

 232 

[***INSERT FIGURE Figure 18 NEAR HERE***] 233 

 234 

[***INSERT FIGURE Figure 19 NEAR HERE***] 235 

 236 

Figure 18 shows the 63 node locations chosen for modelling in the Hunter River basin.  A 237 

schematic representation of the modelling network is shown in Figure 19.  In this example, 238 

more than half of the 63 model nodes are co-located with streamflow gauges.  A further 239 

one-third are located just above major confluences and three are immediately downstream 240 

of major impoundments.  Many of the nodes (e.g., nodes 9, 21, 43) are located immediately 241 

downstream of coal mines included in the expansion scenario, while several are at locations 242 

that are important for river regulation. Similar model node locations were chosen in the 243 

other four study areas. 244 
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3.2 Climate trends 245 

The main aim of this study is to predict the impacts of potential future coal resource 246 

developments on streamflow.  As described by Viney et al. (2021), this can be achieved by 247 

comparison of two futures – one without the potential proposals and one with.  As such, 248 

both scenarios should use common climate inputs.  Whilst this can mostly be achieved 249 

without incorporating notional temporal changes in climate during the simulation period, it 250 

is conceivable that such changes can have an impact on streamflow changes (Chiew et al., 251 

2018).   252 

In this study, future climate inputs are simulated using repetitions of historical, observed 253 

climate.  In particular, observed climate inputs from 1983 to 2012 are replicated for a further 254 

three thirty-year periods to 2102.  In each of the replication periods, the climate inputs are 255 

scaled using local seasonal scaling factors derived from global climate models (GCMs).  In 256 

each modelling domain, we use seasonal scaling factors to calculate the change in mean 257 

annual precipitation associated with a 1-degree global warming for each of 15 available 258 

GCMs.  We then select the GCM with the median impact on mean annual precipitation and 259 

apply its seasonal scaling factors to the observed record.  Assumed global warming in each 260 

of the three thirty-year replicates (2013–2042, 2043–2072 and 2073–2102) are 1.0 degrees, 261 

1.5 degrees and 2.0 degrees, respectively.  262 

 263 

[***INSERT FIGURE Figure 20 NEAR HERE***] 264 

 265 

Figure 20 shows an example for the Richmond River domain.  The median GCM has a 266 

reduction in mean annual precipitation of 1.8% per degree of global warming.  The 267 

respective seasonal scaling factors are +4.3%, –5.7%, – 2.5% and –7.5% for summer, autumn, 268 
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winter and spring.  In other words, projected increases in precipitation in the wettest 269 

season, summer, are more than offset by projected decreases in the other three seasons. 270 

Figure 20 depicts the resulting time series of basin-averaged annual precipitation with 271 

increasingly trended climate change scalars.  It can be seen that the decrease in precipitation 272 

from 2013 to 2102 is less than the typical interannual variability. 273 

We acknowledge that this approach does not account for likely climate change induced 274 

increases in daily rainfall intensities or changes in wet day frequencies and associated 275 

temporal patterns.  These changes may be of importance, particularly for high flow 276 

streamflow metrics.  However, as the same climate sequence is used for both the baseline 277 

and development futures, the impacts of these changes would be unlikely to be observed in 278 

the model outputs in any case. 279 

3.3 Mine footprints 280 

Each coal mine is associated with an area of disturbance (or footprint) in which potential 281 

changes in surface hydrology can be expected.  For a surface mine, the footprint area 282 

includes not just mine pits, but also roads, spoil dumps, water storages and other 283 

infrastructure.  It may also include otherwise undisturbed parts of the landscape from which 284 

natural runoff is retained in storages.  The footprint does not include rehabilitated areas 285 

from which runoff can enter the stream network or catchment areas upstream of drainage 286 

channels that divert water around a mine site but do not retain it.  287 

In Australia, regulations governing surface coal mines usually prohibit the discharge of any 288 

surface water or pumped groundwater from the footprint area.   The footprint fraction in a 289 

subcatchment thus provides a surrogate for the proportion of natural surface water flows 290 

that are no longer discharged to the stream network. 291 
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The footprint of an underground mine is the area above the mine workings that is 292 

potentially susceptible to subsidence.  This area may experience changes in surface 293 

topography that give rise to increased ponding or increased recharge. 294 

Mine footprint areas change over the lifetime of a mine’s operations.  As new parts of the 295 

lease are opened up for active use, the footprint increases.  As mined parts of the lease are 296 

rehabilitated, and their runoff returned to natural drainage, the footprint decreases 297 

although not necessarily to pre-mining conditions. As well as the area of any final voids, the 298 

final mine footprint may also include the area covered by any infrastructure (e.g. dams, 299 

levee banks, roads) that are intended to remain on the site after final rehabilitation. 300 

Time series of mine footprints for baseline and expansion mines were compiled from spatial 301 

data supplied by mining companies and government regulators, or extracted from 302 

environmental impact statements and related documents, and remote sensing imagery. 303 

 304 

[***INSERT FIGURE Figure 21 NEAR HERE***] 305 

 306 

Examples of the temporal evolution of mine footprint for three coal mines are shown in 307 

Figure 21.  Figure 21a represents an open cut mine with baseline and expansion scenarios.  308 

Under baseline development, the mine’s footprint reaches a maximum of 5.5 km2 by 2012 309 

before site rehabilitation commencing in 2023 gradually reduces the footprint to a 310 

permanent residual of less than 1.0 km2 by 2032.  Under the expansion scenario, the 311 

footprint increases to a peak of 19 km2, before reducing under rehabilitation to a residual of 312 

less than 4 km2. 313 

Figure 21b shows the evolution of expansion footprint areas for a greenfields mine (i.e., no 314 
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baseline component) with both surface and underground workings.  The mine is projected to 315 

commence surface operations in 2019, reaching a peak footprint of 143 km2 by 2034 before 316 

rehabilitation reduces the permanently disturbed area to less than 7 km2 by 2080.  317 

Underground operations are projected to commence in 2024 and reach a peak footprint of 318 

86 km2 after 40 years.   319 

Figure 21c shows baseline and expansion footprints for a mine with both surface and 320 

underground operations.  Under pre-existing plans (as at 2013) the surface footprint of the 321 

baseline scenario is assumed to continue to increase until 2019 to a maximum of 16 km2 322 

before rehabilitation reduces this to a permanent residual of less than 3 km2 by 2039.   323 

Under the expansion scenario the open cut footprint increases to a peak of 24 km2 by 2029.  324 

A relatively brief period of underground mining commencing in 2011 under the baseline 325 

scenario is supplemented by an expansion to an area of 18 km2 by 2028. 326 

4. Calibration 327 

4.1 Streamflow model 328 

Streamflow models should ideally be calibrated against observed flow records from gauging 329 

stations whose catchments are not affected by coal resource development.  For a 330 

distributed model like AWRA-L the most robust calibration is achieved through using an 331 

objective function that combines goodness of fit measures from several gauging stations.  It 332 

is not imperative that these stations should be located within the modelling domain; nearby 333 

stations are acceptable provided they share similar climatic, topographic and soil 334 

characteristics with the modelling domain. 335 

In each modelling domain, separate calibrations are performed for high flow conditions and 336 

for low flow conditions.  These are achieved by varying the Box-Cox transformation 337 
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parameter (lambda value).  A transformation parameter value of 1.0 emphasises high flows, 338 

while a value of 0.1 places greater emphasis on low flows. 339 

For each calibration catchment a local goodness of fit function, F, is defined by (Viney et al., 340 

2009) 341 

FH = (Ed(λ) + Em)/2 – 5|ln(1+B)|2.5 for the high flow calibration (λ = 1); and 342 

FL = Ed(λ) – 5|ln(1+B)|2.5 for the low flow calibration (λ = 0.1). 343 

where Ed(λ) is the Nash-Sutcliffe efficiency of daily flows (Nash and Sutcliffe, 1970) 344 

calculated with a Box-Cox transformation parameter of λ, Em is the Nash-Sutcliffe efficiency 345 

of monthly flows and B is the overall prediction bias (total prediction error divided by total 346 

observed streamflow). 347 

For each separate calibration, the objective function for the entire domain is then given by 348 

the mean of the 25th, 50th, 75th and 100th percentiles of all the F values in the domain. 349 

As an example, for modelling in the Gloucester-Karuah basin, observed streamflow data 350 

from 16 gauging stations was used in calibration.  Four of these stations are in the 351 

catchments of the Gloucester and Karuah rivers, while the remainder are in adjacent 352 

catchments.  The resulting median F values are 0.62 for the high flow calibration and 0.58 for 353 

the low flow calibration.  354 

These two calibrated parameter sets were then assessed in the same 16 catchments for 355 

their ability to predict a range of hydrological response variables that reflect different 356 

components of the flow regime.  The response variables, which are all accumulated to 357 

annual time series, are 358 

1. Annual streamflow 359 
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2. Daily streamflow at the 99th percentile 360 

3. Number of days with streamflow above the long-term 90th percentile 361 

4. Interquartile range of daily streamflow 362 

5. Daily streamflow at the 1st percentile 363 

6. Number of days with streamflow below the long-term 10th percentile 364 

7. Number of continuous spells with streamflow below the long-term 10th percentile 365 

8. Longest low streamflow spell 366 

9. Number of zero-flow days (defined for practical reasons as flow below 1 ML/d) 367 

The first four of these represent high flow characteristics of the hydrological regime and the 368 

last five represent low flow characteristics.  In general terms, response variable 9 is only 369 

relevant for intermittent streams, or streams which become intermittent under the 370 

expansion scenario.  For such streams, response variable 5 is likely to be zero.  In general, for 371 

a particular location, only one or the other of response variables 5 and 9 is likely to produce 372 

useful information, but not both. 373 

 374 

[***INSERT FIGURE Figure 22 NEAR HERE***] 375 

 376 

For the Gloucester-Karuah modelling domain, the range in bias for each parameter set and 377 

for each response variable is shown in Figure 22.  While both parameter sets predict the high 378 

flow variables better than the low flow variables, it is clear that the high flow parameter set 379 

provides better predictions of the high flow variables and the low flow parameters provide 380 

better predictions of the low flow variables. 381 

The two resulting deterministic model predictions are not used directly in reporting 382 

streamflow changes.  Instead they are used to (i) inform prior parameter distributions for 383 
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the uncertainty analysis (Subsection 5.1); (ii) provide recharge estimates for surface water – 384 

groundwater modelling; and (iii) provide system inflows for calibration of the river system 385 

model. 386 

4.2 River system model 387 

Unlike the streamflow model, a river system model can only be calibrated using observed 388 

streamflow records from within the modelling domain itself.  Also, unlike the streamflow 389 

model which is calibrated regionally, calibration of the river model is done on a reach by 390 

reach basis.  One consequence of this is that river system calibration can partly compensate 391 

for errors in inflows from the streamflow model.  This means that prediction bias in river 392 

model output is typically quite small.  It also means that even where two quite distinct 393 

parameter sets (e.g., a high flow parameter set and a low flow parameter set) for the 394 

streamflow model are used to generate inflows into the river model, the resulting 395 

predictions from the two realisations of the river model tend to converge. 396 

 397 

[***INSERT FIGURE Figure 23 NEAR HERE***] 398 

 399 

Examples of this are shown in Figure 23 for the Namoi modelling domain.  Here the 400 

calibrated biases of predictions of the hydrological response variables across the 23 gauging 401 

stations is much smaller, particularly for annual flow (response variable 1 in Figure 23).  402 

Secondly, there is much less divergence between the high flow and low flow simulations 403 

than is the case with the streamflow model. Note however that the biases in Figures 6 and 7 404 

are not directly comparable as Figure 6 shows results for the Gloucester-Karuah region and 405 

Figure 7 shows results for the Namoi region. Despite this, these reductions in bias between 406 

AWRA-L and AWRA-R are consistent across all five regions. 407 
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5. Uncertainty 408 

5.1 Quantitative uncertainty 409 

The aim of the quantitative uncertainty analysis is to provide probabilistic estimates of the 410 

changes in the hydrological response variables due to coal resource development.  A large 411 

number of parameter combinations are evaluated and, in line with the Approximate 412 

Bayesian Computation outlined by Peeters et al. (2016) for propagating uncertainty through 413 

models, only those parameter combinations that result in acceptable model behaviour are 414 

included in the parameter ensemble used to make predictions.  415 

Model parameters are sampled from a prior distribution that takes account of the values 416 

and spread of the optimised parameters from the two calibrated parameter sets, as outlined 417 

by Viney et al. (2021). 418 

Acceptable model behaviour is defined for each hydrological response variable based on the 419 

capability of the model to reproduce historical, observed time series of the hydrological 420 

response variable.  For each hydrological response variable, a goodness of fit between 421 

model simulated and observed annual hydrological response variable, as well as an 422 

acceptance threshold, are defined. 423 

In each modelling domain, 3000 parameter combinations are generated from the AWRA-L 424 

and AWRA-R model parameters, together with the parameter combinations for the 425 

groundwater model.  The acceptance threshold for each hydrological response variable is set 426 

to the 90th percentile of the average goodness of fit between observed and simulated 427 

hydrological response variable values obtained from model nodes at available streamflow 428 

gauging sites.  This means that out of the 3000 model replicates, the 300 best (10%) are 429 

selected for each hydrological response variable. 430 
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The selection of the 10% threshold is based on two considerations: (i) guaranteeing enough 431 

prediction samples to ensure numerical robustness, and (ii) the sample’s prediction 432 

performance is close to that obtained from the high- and low-streamflow model calibrations. 433 

Furthermore, it is expected that the full 3000 replicates contain many with infeasible 434 

parameter combinations (caused, for example, by parameter correlations that are not 435 

considered in the independent random sampling) and that these are likely to be filtered out 436 

by sampling only the best 10% of replicates. 437 

The ensemble of predictions are the changes in hydrological response variables simulated 438 

with the parameter combinations for which the goodness of fit exceeds the acceptance 439 

threshold.  The resulting ensembles are presented in Subsection 6.1. 440 

5.2 Qualitative uncertainty 441 

However comprehensive the uncertainty quantification, there will always be aspects of the 442 

chain of models that cannot be accounted for, due to data availability, constraints on time 443 

and budget or technical limitations.  The uncertainty quantification can therefore be 444 

complemented by a qualitative uncertainty analysis (Kloprogge et al., 2011; Peeters, 2017). 445 

Such a qualitative uncertainty analysis systematically discusses the assumptions and model 446 

choices made, scores the extent to which the assumptions were affected by data availability, 447 

budget and time constraints or technical limitations, and most importantly assesses the 448 

extent to which the assumption may affect the predictions. 449 

 450 

[***INSERT TABLE Table 2 NEAR HERE***] 451 

 452 

The major assumptions and model choices underpinning the surface water modelling 453 
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described here are listed in Table 2. The goal of this qualitative uncertainty analysis is to 454 

provide a non-technical overview of the model assumptions, their justification and effect on 455 

predictions, as judged by the modelling team.  This also facilitates an open and transparent 456 

review of the modelling. 457 

Each assumption in Table 2 is rated against three attributes (data, resources and technical) 458 

and their effect on predictions.  459 

1. The data rating is the degree to which the question ‘If more or different data were 460 

available, would this assumption or choice still have been made?’ would be 461 

answered positively.  A low rating means that the assumption is not influenced by 462 

data availability, while a high rating indicates that this choice would be revisited if 463 

more data were available.  464 

2. The resources rating reflects the extent to which resources available for the 465 

modelling, such as computing resources, personnel and time, influenced this 466 

assumption or model choice.  Again, a low rating indicates the same assumption 467 

would have been made with unlimited resources, while a high rating indicates the 468 

assumption is driven by resource constraints.  469 

3. The technical rating reflects the extent to which the assumption is influenced by 470 

technical and computational issues.  A high rating is assigned to assumptions and 471 

model choices that are predominantly driven by computational or technical 472 

limitations of the model code.  These include issues related to spatial and temporal 473 

resolution of the models.  474 

The most important rating relates to the effect of the assumption or model choice on the 475 

predictions. This is a qualitative assessment by the modelling team of the extent to which a 476 

model choice will affect the model predictions, with low indicating a minimal effect and high 477 
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a large effect. 478 

A detailed discussion of each of the assumptions, including the rationale for the scoring, 479 

follows. 480 

Selection of calibration catchments 481 

The parameters that control the transformation of rainfall into streamflow are adjusted 482 

based on a comparison of observed and simulated historical streamflow.  Only a limited 483 

number of the model nodes have historical streamflow.  To calibrate the surface water 484 

model, it may be necessary to use data from a number of catchments outside the modelling 485 

domain with the parameter combinations that achieve an acceptable agreement with 486 

observed flows being deemed suitable for all catchments in the subregion. 487 

The selection of calibration catchments is therefore almost solely based on data availability, 488 

which results in a medium rating for this criterion.  As it is technically trivial to include more 489 

calibration catchments in the calibration procedure and as it would not appreciably change 490 

the computing time required, both the resources and technical columns have a low rating. 491 

The regionalisation methodology is valid as long as the selected catchments for calibration 492 

are not substantially incompatible with those in the prediction domain in terms of size, 493 

climate, land use, topography, geology and geomorphology.  The majority of these 494 

assumptions can be considered valid and the overall effect on the predictions is therefore 495 

deemed to be low. 496 

High-flow and low-flow objective function 497 

AWRA-L simulates daily streamflow. High-streamflow and low-streamflow conditions are 498 

governed by different aspects of the hydrological system and it is difficult for any streamflow 499 

model to find parameter sets that are able to adequately simulate both extremes of the 500 
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hydrograph. In recognition of this issue, two objective functions are chosen: one tailored to 501 

medium and high flows and another one tailored to low flows. 502 

Even with more calibration catchments and more time available for calibration, a high-flow 503 

and low-flow objective function would still be necessary to find parameter sets suited to 504 

simulate different aspects of the hydrograph. Data and resources are therefore scored low, 505 

while the technical criterion is scored high. 506 

The high-streamflow objective function is a weighted sum of the Nash–Sutcliffe efficiency 507 

and the bias.  The former is most sensitive to differences in simulated and observed daily 508 

and monthly streamflow, whereas the latter is most affected by the discrepancy between 509 

long-term observed and simulated streamflow.  The weighting of both components 510 

represents the trade-off between simulating short-term and long-term streamflow 511 

behaviour.  It also reflects the fact that some parameters are more sensitive to daily 512 

behaviour and some are more sensitive to long-term hydrology. 513 

The low-streamflow objective function is achieved by transforming the observed and 514 

simulated streamflow through a Box-Cox transformation (Box and Cox, 1964) which ensures 515 

that a small number of large discrepancies in high streamflow will have less prominence in 516 

the objective function than a large number of small discrepancies in low streamflow. Like the 517 

high-streamflow objective function, the low-streamflow objective function consists of two 518 

components, the efficiency transformed by a Box-Cox power of 0.1 and bias, which again 519 

represent the trade-off between short-term and long-term accuracy. 520 

The choice of the weights between both terms in both objective functions is based on the 521 

experience of the modelling team (Viney et al., 2009). The choice is not constrained by data, 522 

technical issues or available resources.  Although different choices of the weights will result 523 

in a different set of optimised parameter values, previous with the calibration of AWRA-L on 524 
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a continental scale, has shown the calibration to be fairly robust against the weights in the 525 

objective function (Vaze et al., 2013). 526 

Although the selection of objective function and its weights is a crucial step in the surface 527 

water modelling process, the overall effect on the predictions is marginal through the 528 

uncertainty analysis, hence the low rating. 529 

Selection of goodness-of-fit function for each hydrological response variable 530 

The goodness-of-fit function for each hydrological response variable for uncertainty analysis 531 

has a very similar role to the objective function in calibration.  Where the calibration focuses 532 

on identifying a single parameter set that provides an overall good fit between observed and 533 

simulated values, the uncertainty analysis aims to select an ensemble of parameter 534 

combinations that are best suited to make the chosen prediction. 535 

Within the context of assessing the hydrological impacts of coal resource development, the 536 

calibration aims to provide a parameter set that performs well at a daily resolution, whereas 537 

the uncertainty analysis focuses on specific aspects of the yearly hydrograph. 538 

The goodness-of-fit function is tailored to each hydrological response variable and averaged 539 

over a number of selected catchments that contribute to flow in the modelling domain. This 540 

ensures parameter combinations are chosen that are able to simulate the specific part of the 541 

hydrograph relevant to the hydrological response variable, at a local scale.  542 

Like the objective function selection, the choice of summary statistic is primarily guided by 543 

the predictions and to a much lesser extent by the available data, technical issues or 544 

resources. This is the reason for the low rating for these attributes. 545 

The impact on the predictions is deemed minimal (low rating) as it is an unbiased estimate 546 

of model mismatch and because it summarises the same aspect of the hydrograph as is 547 
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needed for the prediction. 548 

Selection of acceptance threshold for uncertainty analysis 549 

The acceptance threshold ideally is independently defined based on an analysis of the 550 

system for propagating uncertainty through models.  For the surface water hydrological 551 

response variables, such an independent threshold definition can be based on the 552 

observation uncertainty, which depends on an analysis of the rating curves for each 553 

observation gauging station as well as at the model nodes.  There are limited rating curve 554 

data available, hence the medium rating.  Even if this information were available, the 555 

operational constraints might prevent such a detailed analysis – although it is technically 556 

feasible.  The resources column therefore receives a high rating while the technical column 557 

receives a medium rating.  558 

The choice of setting the acceptance threshold equal to the 90th percentile of the summary 559 

statistic for a particular hydrological response variable (i.e. selecting the best 10% of 560 

replicates) is a subjective decision made by the modelling team.  By varying this threshold 561 

through a trial-and-error procedure in the testing phase of the uncertainty analysis 562 

methodology, the modelling team learned that this threshold is an acceptable trade-off 563 

between guaranteeing enough prediction samples and overall good model performance. 564 

Although relaxing the threshold may lead to larger uncertainty intervals for the predictions, 565 

the median predicted values are considered robust to this change. A formal test of this 566 

hypothesis has not yet been carried out. The effect on predictions is therefore scored a 567 

medium rating. 568 

Interaction with the groundwater model 569 

The coupling between the results of the groundwater model and the surface water model 570 

represents a pragmatic solution to account for surface water – groundwater interactions at a 571 
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regional scale.  Even if a suitable algorithm for integrated coupling of fluxes between the 572 

surface water and groundwater models were available, the differences in spatial and 573 

temporal resolution would require non-trivial upscaling and downscaling of spatio-temporal 574 

distributions of fluxes.  For these reasons and also for practical reasons related to run times 575 

and computational storage issues, the modelling methodology for the modelling domains 576 

described here involves a one-directional feed of changes in the groundwater flux to streams 577 

from the groundwater model, rather than a fully coupled implementation.  Thus, the rating 578 

for the technical attribute is high. 579 

The data and resources columns are rated medium because even if it were technically 580 

feasible to fully integrate the models, the implementation would be constrained by the 581 

available data and the operational constraints.  In an integrated model, a simulation would 582 

likely involve multiple iterations between the groundwater and stream components and 583 

increase the computational load significantly. 584 

The overall effect on the predictions is assumed to be small, as the change in baseflow due 585 

to coal mining is small compared to the other components of the water balance and the 586 

effect of rainfall interception by mine sites. 587 

Implementation of the expansion scenario 588 

The coal resource expansion plan is implemented through the interaction with the 589 

groundwater model and by removing the fraction of runoff in the catchment that is 590 

intercepted by the mine footprint from the total catchment runoff.  The key choices that are 591 

made in implementing this scenario are (i) determining which mining developments are 592 

included, and (ii) deciding on the spatial and temporal development of their hydrological 593 

footprints. 594 

In catchments in which the mine footprint is only a small fraction of the total area of the 595 



27 
 

catchment, the precise delineation of the spatial extent of the mine footprint is not crucial 596 

to the predictions.  In catchments in which the footprint is a sizeable fraction, accurate 597 

delineation of mine footprint becomes very important. 598 

Similarly, the temporal evolution of mine footprints is crucial as it will determine how long 599 

the catchment will be affected. This is especially relevant for the post-mining rehabilitation 600 

of mine sites, when it becomes possible again for runoff generated within the mine footprint 601 

to reach the streams. 602 

The accuracy with which mine footprints are represented in the model depends largely on 603 

the accuracy of the planned mine footprints published or provided by the mine proponents.  604 

This therefore is one of the crucial aspects of the surface water model as it potentially has a 605 

high impact on predictions and it is driven by data availability rather than availability of 606 

resources or technical issues. The data attribute is therefore rated high, while the resources 607 

and technical columns are rated low. The effect on predictions is rated high. 608 

6. Examples of prediction outcomes 609 

6.1 Metrics of hydrological change 610 

The impacts of coal resource development on the streamflow regime at each model node 611 

are evaluated using the nine hydrological response variables outlined in Section 4.1.  These 612 

hydrological response variables were chosen to be able to quantify changes across the entire 613 

flow regime.  For each of these hydrological response variables a time series of annual 614 

values for the period 2013 to 2102 is constructed for each model node. 615 

In order to more directly represent physically significant streamflow stages, three further 616 

response variables are introduced.  Unlike the first nine variables, which are calculated as 617 

annual time series, the remaining three are calculated as average occurrence frequencies 618 
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over the three 30-year time periods (2013–2042, 2043–2072 and 2073–2102) and are 619 

referenced to the modelled average baseline occurrences in the reference period, 1983–620 

2012.  They are therefore designed to facilitate direct comparison of changes between the 621 

four time periods.  These variables are: 622 

10. The average number of events per year over a 30-year period where peak daily flow 623 

in flood events exceeds the modelled flow with a return period of 0.3 years in the 624 

reference period.  This metric is designed to be approximately representative of 625 

over-bench flow events. 626 

11. The average number of events per year over a 30-year period where peak daily flow 627 

in flood events exceeds the modelled flow with a return period of 3 years in the 628 

reference period.  This metric is designed to be approximately representative of 629 

over-bank flow events. 630 

12. The average number of days per year with streamflow below 10 ML/d during a 30-631 

year period.  This threshold is designed to be approximately representative of the 632 

flow rate at which all river pools will join up and form a continuously flowing reach.  633 

Each of these three variables has specific ecological significance.  Response variable 10 is 634 

significant for vegetation seeding and recruitment.  Response variable 11 is significant for 635 

floodplain inundation.  Response variable 12 is significant for the mobility of flow-dependent 636 

fauna.  These three response variables are used in a method outlined by Hosack et al. (2018) 637 

to make inferences about the impact of coal resource development on water-dependent 638 

ecological assets. 639 

For each model node, 3000 sets of randomly selected parameter values were used to 640 

generate 3000 replicates of development impact. From these, the best 300 replicates for 641 

each hydrological response variable – as assessed by their ability to predict that hydrological 642 

response variable at a number of observation sites – were chosen for further analysis.  The 643 
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assessment nodes are chosen for their availability of suitable observational data.  Results are 644 

presented using a series of boxplots for each hydrological response variable.  Each boxplot 645 

was generated from the resulting 300 samples and shows differences between the predicted 646 

expansion and baseline scenarios.  The boxplots (examples of which are shown for five of 647 

the response variables selected across the five study regions in Figure 24 to Figure 28) show 648 

the distributions over the 300 replicates of the maximum raw change (amax) for selected 649 

response variables between the baseline and expansion predictions, the corresponding 650 

maximum percent change (pmax) and the year of maximum change (tmax).  In general, the 651 

most meaningful diagnostic for the flux-based metrics (1, 2, 4 and 5) is pmax, while the most 652 

meaningful diagnostic for the frequency-based metrics (3, 6, 7, 8 and 9) is amax. 653 

It is important to recognise that the amax and pmax values give the largest annual departure 654 

between the expansion and baseline predictions for the respective hydrological response 655 

variables.  As such, amax and pmax represent extreme responses. They do not represent the 656 

magnitudes of responses that would be expected to occur every year.  657 

 658 

[***INSERT FIGURE Figure 24 NEAR HERE***] 659 

 660 

Changes in annual flow (hydrological response variable 1) for model nodes in the Suttor 661 

River basin are shown in Figure 24.  Changes in amax accumulate with distance downstream.  662 

For the 300 model replicates, the median of the maximum annual reduction in streamflow 663 

reaches a peak of 74 GL at the bottom of the basin.  However, much of this reduction is 664 

sourced from further upstream, in the parts of the basin where maximum development 665 

occurs.  The biggest changes in local streamflow occur closer to the location of the 666 

developments themselves and reach a peak median reduction of 21% at node 3 in Sandy 667 
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Creek.  In most nodes, the year of maximum impact on annual streamflow is predicted to be 668 

between 2038 and 2051.  This timing reflects the approximate time of maximum coal mine 669 

development footprint for a number of the modelled mines. 670 

 671 

[***INSERT FIGURE Figure 25 NEAR HERE***] 672 

 673 

Changes in the magnitude of peak flow events (response variable 2) in the Hunter River 674 

catchment show a similar pattern (Figure 25), with amax accumulating with distance 675 

downstream and pmax being greatest in those tributaries where maximum development 676 

occurs.  The greatest median reductions in peak flow occur in the smaller, heavily developed 677 

sub-catchments with a maximum of 68% at node 52, which has a 25 km2 catchment and a 678 

maximum open cut mine footprint covering 66% of the sub-catchment area.  Once again, the 679 

timing of the maximum change in peak flow reflects the approximate time of maximum coal 680 

mine development. 681 

 682 

[***INSERT FIGURE Figure 26 NEAR HERE***] 683 

 684 

Changes in the annual number of days with low flow (response variable 6) in the Gloucester-685 

Karuah modelling domain are shown in Figure 26.  In general, there is an increase in the 686 

number of low flow days as a result of mining development, but in some sub-catchments 687 

there is a modelled reduction at the 5th percentile.  The greatest median increase in low 688 

flow frequency occurs at node 14 and represents an extra 12 days per year.  However, the 689 
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timing of the biggest impacts on response variable 6 show considerable spread with medians 690 

sometimes occurring very late in the modelling period. 691 

 692 

[***INSERT FIGURE Figure 27 NEAR HERE***] 693 

 694 

Changes in the annual number of low flow spells (response variable 7) in the Namoi River 695 

basin are shown in Figure 27.  The number of low flow spells is predicted to increase at most 696 

nodes, but at the 5th percentile, some nodes show decreases as shorter spells coalesce.  The 697 

impact on number of spells is relatively small in the main river channel (median impact is no 698 

greater than one spell per year), but the median of the maximum change rises to 23 extra 699 

spells per year at the tributary node 25.  There is considerable uncertainty in the projections 700 

of tmax in Figure 27, although most median tmax values occur before 2050. 701 

 702 

[***INSERT FIGURE Figure 28 NEAR HERE***] 703 

 704 

Changes in the length of the longest low flow spell (response variable 8) in the Richmond 705 

River basin are shown in Figure 28.  The Richmond River modelling domain is the only one of 706 

the five discussed here for which changes in streamflow are mediated entirely by coal seam 707 

gas developments.  The largest change in the median of the maximum spell length is six days 708 

at node 6.  The timing of maximum change tends to be relatively late in the modelling 709 

period, if not beyond 2102, because groundwater changes tend to increase over time and 710 

groundwater levels have often not reached equilibrium by the end of the modelling period. 711 

 712 
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[***INSERT FIGURE Figure 29 NEAR HERE***] 713 

 714 

The average increase in stream disconnectedness (as assessed by response variable 12) for 715 

three 30-year time periods in the Suttor River basin is shown in Figure 29.  Mines are located 716 

along Sandy Creek and above node 34 on the Belyando River.  The response in the first 30 717 

year period is for substantial increases in the occurrence of stream disconnectedness in 718 

reaches of the relatively drier Sandy Creek, coupled with smaller increases further 719 

downstream.  By the second 30-year time period, substantial increases in stream 720 

disconnectedness have propagated further downstream and this pattern persists in the final 721 

30-year time period.  However, in Sandy Creek there is a recovery in stream connectedness 722 

after 2042 when most of the mining operations in that area have ceased and mine footprints 723 

have reduced. 724 

 725 

[***INSERT FIGURE Figure 30 NEAR HERE***] 726 

 727 

[***INSERT FIGURE Figure 31 NEAR HERE***] 728 

 729 

It is not unreasonable to expect that the overall impact on streamflow characteristics of coal 730 

seam gas extraction and coal mining should relate to the magnitude and density of the 731 

extractive operations.  In  Figure 30 and Figure 31, we assess the maximum changes in 732 

annual streamflow as a function of extraction density.  Figure 30 shows the relationship 733 

between well density and predicted maximum change in annual streamflow for different 734 

model nodes in and near the proposed coal seam gas field in the Richmond River basin.  735 
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There is a clear linear relationship with the greatest reductions in streamflow occurring at 736 

nodes with the highest density of wells within their catchments.  It should be noted, 737 

however, that the changes in annual streamflow are very small and represent percentage 738 

changes of less than 1%. 739 

Similarly, Figure 31 shows that modelled streamflow in the Hunter, Namoi and Suttor 740 

modelling domains, which are dominated by coal mining, is strongly dependent on the 741 

proportion of a sub-catchment that comprises mine footprints.  The greater the footprint 742 

proportion in a sub-catchment, the greater the corresponding reduction in percentage 743 

streamflow.  This is not entirely unexpected since the model algorithm adopted here for coal 744 

mining mandates that reductions in surface runoff generation are equal to the footprint 745 

area.  Departures from this notional one-to-one relationship in Figure 31 are caused by the 746 

added imposition of groundwater-mediated changes and of water extraction for irrigation 747 

and industry, and by cases where the modelled maximum change in streamflow does not 748 

exactly coincide with the year of maximum mine footprint.  The latter anomaly is more likely 749 

to occur if the maximum footprint occurs in a year with small baseline streamflow.   750 

The impacts on annual streamflow that are modelled here for coal mining appear to be 751 

slightly less than those reported in the modelling study by Guo et al. (2017).  This difference 752 

might be associated with a greater impact of groundwater on streamflow changes in the 753 

latter study. 754 

6.2 Thresholds of acceptable change 755 

In order to rule out water-dependent landscape assets that are very unlikely to be impacted 756 

by changes in surface water hydrology, it is necessary to define what a significant change in 757 

hydrology is and which reaches of the stream network are and are not showing a significant 758 

hydrological change.  A significant hydrological change is defined conservatively for each of 759 
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the eight hydrological response variables. For: 760 

• the high-flow flux-based hydrological response variables 1, 2 and 4, this is a greater 761 

than 5% chance of a 1% or greater change in the variable (i.e. if more than 5% of 762 

model replicates show a maximum difference between the expansion and baseline 763 

scenarios of at least 1% of the baseline value). 764 

• the low-flow flux-based hydrological response variable 5, this is a greater than 5% 765 

chance of a 1% or greater change in the variable and the change in runoff depth is 766 

greater than 0.0002 mm.  The addition of a runoff depth threshold is designed to 767 

exclude reaches where the absolute change in runoff is negligible. 768 

• the frequency-based variables 3, 6, 8 and 9, this is a greater than 5% chance of there 769 

being a change in the variable of at least 3 days in any year. 770 

• the frequency-based variable 7, this is a greater than 5% chance of there being a 771 

change in the variable of at least two spells in any year.  772 

Significant, as defined here, does not mean that changes that exceed these thresholds are 773 

necessarily large or will have a noticeable impact; the thresholds have been defined very 774 

conservatively.  Rather it is used to delineate areas where streamflow is very unlikely to be 775 

impacted by the additional coal resource development.  If results from the surface water 776 

modelling indicate that for all eight variables at a model node there is a less than 5% 777 

probability that the hydrological changes will exceed the thresholds, then the landscape 778 

classes and assets that depend on streamflow at that location can be considered very 779 

unlikely to be impacted.  Thus these significance thresholds form the basis for defining the 780 

zone of potential hydrological change (Subsection 6.3), outside of which the potential for 781 

impacts is very unlikely. 782 
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 783 

Using these definitions, at 18 nodes in the Hunter River catchment, there are no significant 784 

hydrological changes due to the additional coal resource development; at 10 nodes, there 785 

are significant changes in all eight hydrological response variables; at all other nodes, there 786 

are significant changes in some hydrological response variables, but not others. The majority 787 

of nodes (44 of 63) experience changes in three of the low-streamflow hydrological response 788 

variables (variables 6, 7 and 8) and in the high flow response variable 4 (41 of 63); about half 789 

(31 of 63) experience a significant change in annual streamflow (variable 1). 790 

Zone of potential hydrological change791 

 792 

Figure 18 enables results at a model node to be applied to some length of reach upstream 793 
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and downstream of the node, as appropriate to do so. The information in can be used to 794 

identify the reaches of the Hunter blue line river network which are likely to have a 795 

significant hydrological change from additional coal resource development shown.   796 

 797 

[***INSERT FIGURE Figure 32 NEAR HERE***] 798 

 799 

Figure 32 shows reaches predicted to experience a significant change in at least one 800 

hydrological response variable due to additional coal resource development. For some 801 

reaches (e.g. node 18 to node 19; node 55 to node 59), the change from a significant 802 

hydrological change to a non-significant hydrological change occurs somewhere between 803 

the two nodes. These reaches are shown as dashed pink lines and other information is 804 

needed to determine where to delineate the change from significant to non-significant 805 

hydrological change. Note that these streams can show potential impacts upstream of the 806 

mine locations due to groundwater drawdown potentially impacting streamflow. In both 807 

cases shown here, it is likely that significant impacts only extend for a few kilometres 808 

upstream of the node immediately above the coal mines, but in the absence of further 809 

information, this cannot be verified. Similarly, upstream of the pink headwater model nodes 810 

in Figure 32 (i.e. those showing a significant change in hydrology), there will be some length 811 

of stream that is also potentially affected by coal resource development.  The potentially 812 

affected reaches comprise more than 600 km of the modelled Hunter River stream network. 813 

Note that Figure 15 shows that the impact of coal mining on streamflow decreases moving 814 

further downstream from the mine site, however Figure 16 shows that the Hunter River is 815 

potentially impacted all the way to the end of the modelling domain at Node 1. This is 816 

because one or more of the hydrological response variables has a greater than 5% chance of 817 
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exceeding the specified change all the way to the end of the modelling domain (as can be 818 

seen in Figure 9 showing results for the 99th percentile of flow in the Hunter River. As a 819 

result, we are unable to rule these parts of the river out in terms of potential impacts from 820 

coal mining. 821 

To define the zone of potential hydrological change for any impact and risk analysis – that is, 822 

the area outside of which it is very unlikely that the water-dependent landscape classes and 823 

assets will be impacted – we need to determine the upstream extents of the stream network 824 

likely to experience a significant hydrological change. This final step is addressed by Post et 825 

al. (2020) where drawdown results from the groundwater modelling and mine footprint data 826 

are used to identify stream reaches that are not explicit in the surface water model node-827 

link network and where hydrological changes from the expansion scenario are potentially 828 

significant.   829 

Conclusions 830 

This manuscript presents examples of the modelling of the impacts of coal mining and coal 831 

seam gas extraction on streamflow in five study catchments in Australia. The modelling 832 

methodology enables the prediction of cumulative impacts from multiple future coal 833 

resource developments and distributes these predictions at multiple locations in the 834 

landscape.  It is framed in terms of a structured uncertainty analysis to provide information 835 

on the likelihoods and potential ranges of various impacts.   836 

A qualitative uncertainty analysis, which subjectively assesses the likely impact on model 837 

results of various assumptions made during the modelling procedure, indicates that model 838 

predictions are most sensitive to uncertainty in the implementation of the expansion 839 

scenario for future resource development.  It further suggests that this uncertainty can be 840 

ameliorated, in part, by the incorporation of better data on resource development.  The 841 
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qualitative uncertainty analysis also indicates that model results are relatively insensitive to 842 

model choices involving model calibration and interactions with the groundwater model. 843 

Predictions of hydrological change associated with coal resource development suggest that, 844 

in the Australian context, maximum percentage reductions in annual streamflow are 845 

approximately commensurate with the proportion of coal mine coverage.  Departures from 846 

this notional one-to-one relationship are caused by the added imposition of groundwater-847 

mediated changes and of water extraction for irrigation and industry, and by cases where 848 

the modelled maximum change in streamflow does not exactly coincide with the year of 849 

maximum mine footprint. 850 

In coal seam gas fields, reductions in modelled annual streamflow are proportional to well 851 

density.  However, these reductions are substantially smaller than those associated with coal 852 

mining. 853 

The predictions of hydrological change associated with future coal resource development in 854 

the Hunter River basin are used to identify a zone of potential hydrological change within 855 

the catchment.  This zone delineates those parts of the landscape where water-dependent 856 

landscape classes and assets may be vulnerable to change associated with changes in the 857 

streamflow regime.  A corollary of this is that any parts of the landscape outside the zone of 858 

potential hydrological change are unlikely to be affected by coal resource development.  859 

Model results suggest that as much as 600 km of the Hunter River basin’s stream network 860 

may be vulnerable to significant flow changes.  Such changes might include reductions in the 861 

magnitude of annual flow and in the frequency of flood events and increases in the 862 

prevalence of low flow frequency and persistence. 863 
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Figure captions 924 

Figure 1.  Location of the five study catchments in eastern Australia. 925 

Figure 2.  Subcatchment disaggregation and node locations for the Hunter River modelling 926 

domain. 927 

Figure 3.  Schematic representation of the node-link network for the Hunter River basin.  928 

Model nodes number from most downstream node upstream. Blue nodes correspond to 929 

stream gauging stations; orange nodes correspond to model-specific nodes. The thicker blue 930 

line depicts the regulated part of the river system. 931 

Figure 4.  Time series of observed (1900–2012) and projected (2013–2102) annual 932 

precipitation averaged over the Richmond River modelling domain (blue line); the red line is 933 

a centrally weighted moving average. 934 

Figure 5.  Assumed temporal variation of footprint area for three individual coal mines: (a) 935 

an open-cut mine in the Namoi River basin with baseline and expansion scenarios; (b) a 936 

proposed open-cut and underground mine in the Suttor River basin; and (c) an open-cut and 937 

underground mine in the Hunter River basin with both baseline and expansion scenarios. 938 

Figure 6.  Biases of eight hydrological response variables in 16 calibration catchments for the 939 

streamflow model AWRA-L in the Gloucester-Karuah modelling domain.  Boxplots show 940 

10th, 25th, 50th, 75th and 90th percentiles for the high flow calibration (blue) and the low 941 

flow calibration (red). 942 

Figure 7.  Biases of eight hydrological response variables in 23 calibration catchments for the 943 

river model AWRA-R in the Namoi modelling domain.  Boxplots show 10th, 25th, 50th, 75th 944 

and 90th percentiles for the high flow calibration (blue) and the low flow calibration (red). 945 
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Figure 8.  Maximum absolute change (amax), maximum percentage change (pmax) and time 946 

of maximum change (tmax) in hydrological response variable 1 (annual flow) at selected 947 

model nodes within the Suttor River catchment.  The streamflow network accumulates 948 

towards the left of the figure.  Shading indicates nodes that are on tributaries of the named 949 

watercourses.  Boxplots show the 5th, 25th, 50th, 75th and 95th percentiles. 950 

Figure 9.  Maximum absolute change (amax), maximum percentage change (pmax) and time 951 

of maximum change (tmax) in hydrological response variable 2 (99th percentile flow) at 952 

selected model nodes within the Hunter River catchment.  The streamflow network 953 

accumulates towards the left of the figure.  Shading indicates nodes that are on tributaries 954 

of the named watercourses.  Boxplots show the 5th, 25th, 50th, 75th and 95th percentiles. 955 

Figure 10.  Maximum absolute change (amax) and time of maximum change (tmax) in 956 

hydrological response variable 6 (number of low flow days) at 19 model nodes within the 957 

Gloucester-Karuah modelling domain.  The streamflow network accumulates towards the 958 

left of the figure to nodes 1 and 30.  Shading indicates nodes that are on tributaries of the 959 

named watercourses.  Boxplots show the 5th, 25th, 50th, 75th and 95th percentiles. 960 

Figure 11.  Maximum absolute change (amax) and time of maximum change (tmax) in 961 

hydrological response variable 7 (number of low flow spells) at selected model nodes within 962 

the Namoi River catchment.  The streamflow network accumulates towards the left of the 963 

figure.  Shading indicates nodes that are on tributaries of the named watercourses.  Boxplots 964 

show the 5th, 25th, 50th, 75th and 95th percentiles. 965 

Figure 12.  Maximum absolute change (amax) and time of maximum change (tmax) in 966 

hydrological response variable 8 (length of longest low flow spells) at 14 model nodes within 967 

the Richmond River catchment.  The streamflow network accumulates towards the left of 968 
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the figure.  Shading indicates nodes that are on tributaries of the named watercourses.  969 

Boxplots show the 5th, 25th, 50th, 75th and 95th percentiles. 970 

Figure 13.  Average increase in hydrological response variable 12 (stream disconnectedness) 971 

over three 30-year time periods, expressed in average number of days per year, for a 972 

contiguous transect of model nodes in the Suttor River (nodes 27–25), the Belyando River 973 

(nodes 55–11) and Sandy Creek (nodes 8–3).  The streamflow network accumulates towards 974 

the left of the figure. 975 

Figure 14.  95th percentile of maximum change in annual flow at model nodes in the 976 

Richmond River catchment as a function of the density of coal seam gas wells within 2 km of 977 

the node subcatchment. 978 

Figure 15.  Predicted maximum change in annual streamflow as a function of the maximum 979 

proportion of mine footprint in a catchment for model nodes in the Hunter, Namoi and 980 

Suttor river basins.  For the Namoi River basin, only model nodes with catchments further 981 

than 20 km from a proposed coal seam gas field are included. 982 

Figure 16.  Reaches in the Hunter River catchment that are potentially susceptible to 983 

changes in streamflow characteristics under the expansion scenario.  984 
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Table captions 985 

Table 1.  Qualitative uncertainty analysis for the surface water modelling in the Namoi 986 

modelling domain. 987 

  988 
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 989 

Figure 17.  Location of the five study catchments in eastern Australia.   990 
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 991 

Figure 18.  Subcatchment disaggregation and node locations for the Hunter River 992 

modelling domain.  993 
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 994 

Figure 19.  Schematic representation of the node-link network for the Hunter River 995 

basin.  Model nodes number from most downstream node upstream. Blue nodes 996 

correspond to stream gauging stations; orange nodes correspond to model -specific 997 

nodes. The thicker blue line depicts the regulated part of the river system.   998 
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 999 

Figure 20.  Time series of observed (1900–2012) and projected (2013–2102) annual 1000 

precipitation averaged over the Richmond River modelling domain (blue line); the 1001 

red line is a centrally weighted moving average.  1002 
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 1003 

Figure 21.  Assumed temporal variation of footprint area for three individual coal 1004 

mines: (a) an open-cut mine in the Namoi River basin with baseline and expansion 1005 



51 
 

scenarios; (b) a proposed open-cut and underground mine in the Suttor River basin; 1006 

and (c) an open-cut and underground mine in the Hunter River basin with both 1007 

baseline and expansion scenarios.  1008 
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 1009 

 1010 

Figure 22.  Biases of eight hydrological response variables in 16 calibration 1011 

catchments for the streamflow model AWRA-L in the Gloucester-Karuah modelling 1012 

domain.  Boxplots show 10th, 25th, 50th, 75th and 90th percentiles for the high flow 1013 

calibration (blue) and the low flow calibration (red).  1014 
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 1015 

Figure 23.  Biases of eight hydrological response variables in 23 calibration 1016 

catchments for the river model AWRA-R in the Namoi modelling domain.  Boxplots 1017 

show 10th, 25th, 50th, 75th and 90th percentiles for the high flow calibration (blue) 1018 

and the low flow calibration (red).  1019 
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 1020 

Figure 24.  Maximum absolute change (amax), maximum percentage change (pmax) 1021 

and time of maximum change (tmax) in hydrological response variable 1 (annual 1022 

flow) at selected model nodes within the Suttor River catchment.  The streamflow 1023 

network accumulates towards the left of the figure.  Shading indicates nodes that are 1024 

on tributaries of the named watercourses.  Boxplots show the 5th, 25th, 50th, 75th and 1025 

95th percentiles. 1026 



55 
 

 1027 

Figure 25.  Maximum absolute change (amax), maximum percentage change (pmax) 1028 

and time of maximum change (tmax) in hydrological response variable 2 (99 th 1029 

percentile flow) at selected model nodes within the Hunter River catchment.  The 1030 

streamflow network accumulates towards the left of the figure.  Shading indicates 1031 

nodes that are on tributaries of the named watercourses.   Boxplots show the 5th, 1032 

25th, 50th, 75th and 95th percentiles. 1033 
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 1034 

Figure 26.  Maximum absolute change (amax) and time of maximum change (tmax) in 1035 

hydrological response variable 6 (number of low flow days) at 19 model nodes within 1036 

the Gloucester-Karuah modelling domain.  The streamflow network accumulates 1037 

towards the left of the figure to nodes 1 and 30.  Shading indicates nodes that are on 1038 

tributaries of the named watercourses.  Boxplots show the 5th, 25th, 50th, 75th and 1039 

95th percentiles.  1040 
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 1041 

Figure 27.  Maximum absolute change (amax) and time of maximum change (tmax) in 1042 

hydrological response variable 7 (number of low flow spells) at selected model nodes 1043 

within the Namoi River catchment.  The streamflow network accumulates towards 1044 

the left of the figure.  Shading indicates nodes that are on tributaries of the named 1045 

watercourses.  Boxplots show the 5 th, 25th, 50th, 75th and 95th percentiles.  1046 
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 1047 

Figure 28.  Maximum absolute change (amax) and time of maximum change (tmax) in 1048 

hydrological response variable 8 (length of longest low flow spells) at 14 model 1049 

nodes within the Richmond River catchment.  The streamflow network accumulates 1050 

towards the left of the figure.  Shading indicates nodes that are on tributaries of the 1051 

named watercourses.  Boxplots show the 5 th, 25th, 50th, 75th and 95th percentiles.  1052 
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 1053 

Figure 29.  Average increase in hydrological response variable 12 (stream 1054 

disconnectedness) over three 30-year time periods, expressed in average number of 1055 

days per year, for a contiguous transect of model nodes in the Suttor River (nodes  1056 

27–25), the Belyando River (nodes 55–11) and Sandy Creek (nodes 8–3).  The 1057 

streamflow network accumulates towards the left of the figure.   1058 
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 1059 

Figure 30.  95th percentile of maximum change in annual flow at model nodes in the 1060 

Richmond River catchment as a function of the density of coal seam gas wells within 1061 

2 km of the node subcatchment. 1062 
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 1063 

Figure 31.  Predicted maximum change in annual streamflow as a function of the 1064 

maximum proportion of mine footprint in a catchment for model nodes in the 1065 

Hunter, Namoi and Suttor river basins.  For the Namoi River basin, only model nodes 1066 

with catchments further than 20 km from a proposed coal seam gas field are 1067 

included.  1068 
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 1070 

 1071 

Figure 32.  Reaches in the Hunter River catchment that are potentially susceptible to 1072 

changes in streamflow characteristics under the expansion scenario.   1073 
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Assumption or model choice Data Resources Technical Effect on 

predictions 

Selection of calibration catchments Medium Low Low Low 

High-flow and low-flow objective function Low Low High Low 

Selection of goodness-of-fit function for each hydrological 

response variable 

Low Low Low Low 

Selection of acceptance threshold for uncertainty analysis Medium High Medium Medium 

Interaction with the groundwater model Medium Medium High Low 

Implementation of the expansion scenario High Low Low High 

 1074 

Table 2.  Qualitative uncertainty analysis for the surface water modelling in the 1075 

Namoi modelling domain.  1076 
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