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Left ventricular dyssynchrony can be assessed with phase parameters from

radionuclide ventriculography (RNVG), including approximate entropy (ApEn). The

input values used to calculate ApEn will affect the results significantly, so it is essential

to optimise ApEn for the application. However to date, no optimisation for ApEn

applied to images has been published. In this paper, generated data were used to

simulate patient phase images, allowing the input parameters for ApEn to be tested

and optimised in a controlled environment. Clinical images were then used to confirm

that the selected parameters were appropriate. The results demonstrate the effect of

input parameters for ApEn and the most appropriate use with RNVG phase images.

This work demonstrates the importance of optimisation and standardisation when using

ApEn as a measure of dyssynchrony.
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1. Introduction

Measures of left ventricular cardiac function provide important clinical information

relating to diagnosis, treatment, and patient outcome [1–3]. Radionuclide

ventriculography (RNVG) is an established cardiac imaging technique used to measure

left ventricular ejection fraction (LVEF) and assess ventricular wall motion.

LVEF is a measure, expressed as a percentage, of how much blood is pumped by the

left ventricle during each contraction and is known to be a powerful prognostic indicator

of cardiovascular disease. It is a predictor of morbidity and mortality after a myocardial

infarction (MI), and a low LVEF can indicate heart failure. Recently, there has been

increased interest in using cardiac imaging to assess the mechanical dyssynchrony of the

left ventricle. Left ventricular dyssynchrony can be quantified using several different

phase parameters, including the standard deviation of the phase pixel values (phase
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SD) and the bandwidth of the phase histogram. Approximate entropy (ApEn) has been

applied to phase images to quantify dyssynchrony [4, 5], but to date no optimisation for

this application has been published. The selection of input values used will significantly

affect the value of ApEn, therefore, this work aims to optimise ApEn for application to

nuclear cardiology images and demonstrate the effect of changing input parameters.

1.1. RNVG phase images

An RNVG scan is performed by labelling the patient’s red blood cells with Technetium-

99m Pertechnetate, allowing the changing volume of blood within the ventricles to be

imaged from the resultant gamma emissions.

A phase image can be created from gated RNVG data to assess ventricular

dyssynchrony [6, 7], using the time-activity curve from the first-order Fourier analysis

for each pixel in the RNVG image. The resulting phase image represents the timing

of contraction, relative to the R-R interval of the ECG. In a phase image for a patient

with normal ventricular contraction, the pixels within the ventricles will all have a

similar phase value, representing synchronous contraction. Regions of dyssynchronous

contraction will have a higher phase value indicating delayed contraction as illustrated

in Figure 1, where the phase for a patient who has had an MI has a distinctly different

phase pattern compared to the patient with normal contraction. The time-activity

curve for each example shows the average change in counts in the left ventricle (LV)

over the average cardiac cycle. Comparing the normal and MI curves, the MI patient

has noticeably slower filling. Other conduction abnormalities such as left bundle branch

block (LBBB), a conduction delay that affects the timing of contraction, also have a

distinct phase pattern. Dyssynchronous cardiac contraction can severely reduce the

efficiency of the heart and worsen the clinical outcome for the patient.

1.2. Approximate entropy

Various cardiac dyssynchrony parameters have been established. However, most are

derived from the first-order statistics, such as the mean and phase SD.

Synchrony and entropy were derived by O’Connell et al. as measures of cardiac

dyssynchrony. Synchrony describes the contraction of the left ventricle using the phase

and amplitude data extracted from the region defining the LV, and entropy (from

Shannon information theory, [8]), is a measure of randomness within the ventricle [9].

They demonstrated that for discriminating between a normal and abnormal contraction,

synchrony and entropy were superior to the phase SD.

However, the parameters previously investigated (mean, phase SD, synchrony and

entropy) do not take into account the spatial relation between the phase values. More

advanced statistical parameters, such as ApEn, can also be used to assess ventricular

phase quantitatively. ApEn is a regularity statistic developed from Kolmogorov-Sinai

entropy by Pincus [8], which calculates the probability that a series of length m remains
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Figure 1. Example showing the phase pattern, LV phase histogram and associated

time-activity curve for (a) a patient with normal LV function with similar phase values

throughout the ventricles, (b) a patient who has an MI, resulting in late phase values in

the area of the MI. In the phase image, the left and right ventricles (LV and RV) have

a region of interest drawn around them. The pixel values within the LV are plotted in

the associated phase histogram. The left and right atria (LA and RA) can also be seen

in the phase image; the different colour represents the difference in timing between the

ventricles and atria.

within a tolerance r at the next sequence in the data series. Unlike entropy, ApEn

takes into account the similarity of adjacent data points.

ApEn is used in other fields including heart rate variability and gait analysis [9–16],

but has not been widely investigated for assessing images.

ApEn was used for serial assessment of RNVG images for a small study of

breast cancer patients, where a significant change in ejection fraction and ApEn was

demonstrated over the course of treatment. Recent work carried out by our group

demonstrated the predictive value of ApEn combined with LVEF for baseline assessment

of breast cancer patients, before undergoing cardiotoxic chemotherapy [5].

ApEn is defined as

ApEn = −(N −m)−1

N−m∑
i=1

ln

(
Cim+1(r)

Cim

)
(1)

where N is the length of data series, m is the sequence length, and r is the tolerance.

C im(r) is the conditional probability that when a sequence is within the tolerance, the
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next element will also be within tolerance. For this application, the pixel values are

considered as a data series. Each sequence of ’m’ pixels will be compared to every other

sequence of ’m’ pixels within the region of interest, including itself. If it is within the

tolerance value r, it will be counted. This is repeated for every sequence of ’m’ pixels

then carried out using a new sequence of ’m+1’ to calculate C im and C im+1 . For example,

if m = 2 then each sequence of 2 pixels will be compared to every other sequence of 2

pixels within the data. The comparison would then be repeated for a sequence of ’m +

1’. In this example, this would mean a sequence of 3 pixels would be then be compared.

ApEn includes a ’self match’ when calculating C im , creating a bias towards

regularity. Published data suggest that ApEn lacks relative consistency, resulting in

the value of ApEn ’flipping’ when the input parameters are changed [17, 18]. For

example, when using a low value of r, ApEn for a normal data series would be higher

than for an abnormal data series. However, using a higher value of r, this would be the

other way around. For this reason, sequence length m and tolerance r should be fixed

when comparing data sets. There is currently no established m, r or normal range for

ApEn applied to phase images. The selection of m and r will markedly affect ApEn, so

it is essential to optimise the input parameters for the data being considered [18–20].

2. Method

2.1. Generated data

All data analysis and statistics were performed in R 3.6.3 (R Development Core

Team, Vienna, Austria) [21]. In order to gain full control of the input data a Monte

Carlo generator based on a simple repeated random number sampling algorithm was

developed. Image pixels in a chosen region of interest were divided into sixteen radial

segments, with the phase value for each pixel assigned randomly according to a user-

defined probability distribution function for each segment. This was implemented with

Gaussian probability distribution functions for which the user would define the mean

and SD. The region of interest size and pixel values of the simulated data were based

on clinical data. Pixels outside of the LV region of interest were set to zero and excluded

from the ApEn calculation. Simulated normal and MI phase images were created to

investigate the effect of the input parameters.

2.2. Selecting m and r

ApEn was calculated for varying values of sequence length m and tolerance r to

demonstrate the effect of these input parameters. Some publications suggest using

a value of r between 0.1 - 0.2 of the standard deviation of the dataset [8, 22]. However,

for improved consistency, it is better to use a constant value of r [19]. For the groups

of patient data used, the average SD of the phase pixel values was 8.1 for the normal

group, and 18.2 for the MI group. 0.1 - 0.2 times the standard deviation for this data

would suggest a range of r between 0.81 and 3.64, which was initally used as a starting



5

point. The final range tested was m between 1 and 5, with r from 0.25 extending until

ApEn approached zero for a normal phase image. The majority of published papers use

m = 2, although there is limited justification for this choice in the literature.

The initial optimisation was carried out using simulated images representing a

normal and MI phase pattern. This was then repeated using clinical images for normal

(187 patients), MI (164 patients) and LBBB (112 patients). The patient groups were

defined by their clinical diagnosis, so some of MI patients may still have normal, or close

to normal, LV function with a normal phase image.

2.3. Effect of data length

Left and right ventricular volumes vary from patient to patient, and subsequently, the

number of pixels in the region of interest for each ventricle also varies. Simulated data

were used to investigate the relation between ApEn and LV size. Simulated data as

described in Section 2.1 was created with a radius varying from 7 to 15 pixels to cover

the clinically significant range. ApEn was calculated for each LV size, to ensure that

any difference between patients would be independent of LV size.

2.4. Data Order

First-order measures such as synchrony and entropy have no dependence on data order.

However, for ApEn, the order is important. The algorithm reads the phase image and

converts it into a matrix, with each pixel representing the phase value. The matrix

is then converted into a one-dimensional data series for the ApEn calculation. The

direction that the matrix is read in will change the order of the pixel values used in the

ApEn calculation. ApEn is usually applied to time series data, where the order is set,

so to investigate the effect of reading the matrix in different directions, the code was

modified to read the data in different orders to allow comparison. The m and r values

used for the testing data order were selected based on the optimisation work.

The diagram in Figure 2 illustrates the four different directions that the image data

were read. In Figure 2 (a), the data is read from left to right, but this means that in

a group of m pixels, they may not be adjacent to each other in the image even though

they are adjacent in the data series. One pixel could be from the lateral wall of the

LV, and the next pixel would be from the septum at the start of the next line. This is

unlikely to make a difference in a normal phase image where all the pixels have a similar

value but could have an impact when investigating a patient with a more abnormal

phase image. The group tested consisted of 187 normal and 164 MI patients. Receiver

operator characteristic (ROC) analysis was used to determine if the data order affected

the ability to discriminate between normal and MI patients. The mean ± SD, area

under the curve (AUC) with 95% confidence intervals (CI) were calculated for each

data order.
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Figure 2. The four directions tested for reading the image matrix, reading image from

(a) left to right, (b) top to bottom, (c) left - right, right - left etc (d) top - bottom,

bottom to top etc.

3. Results and discussion

3.1. Final selection of sequence length (m)

The variation of ApEn with sequence length m and tolerance r is shown in Figure 3.

At higher values of m, there will be fewer matches, and ApEn decreases towards zero,

meaning there would not be sufficient separation to distinguish between normal and

abnormal phase images. This data illustrates the importance of optimising m and r and

suggests that a value of m equal to 1 or 2 would be most appropriate. However, a value

of 1 would result in a reduced dependence on the spatial relation of each pixel. For this

reason, a sequence length of m = 2 was chosen.

(a) (b)

Figure 3. Simulated data demonstrating how ApEn varies with m and r for (a)

normal phase image and (b) a phase image for an MI
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3.2. Final selection of tolerance parameter (r)

To determine the optimal value of r, ApEn was calculated and plotted for simulated

normal and MI phase patterns using m=2, and a range of r, as shown in Figure 4. These

graphs demonstrate that ApEn increases from zero, peaks, then decreases gradually to

zero again as r is increased. The maximum discrimination between the two groups that

are plotted is r = 1.75. Importantly, there is a value of r where the ApEn calculated

from both phase images is equal, emphasising the need for using an appropriate value of

r. If a value of r is selected that is below the ’flip point’, then a higher ApEn is normal,

whilst if a larger value of r is used, a higher ApEn would suggest that the phase is

abnormal. These results are consistent with the literature, which suggests that ApEn

can flip when the input values are changed [19].

Plotting the results of the normal, MI and LBBB patient groups (Figure 5) shows

that the maximum discrimination for this group is at r=1 and the point where all

three patient groups had equal ApEn was at r = 2.75. The most critical point when

considering the selection of input parameters is avoiding the area where abnormal and

normal are equal. This point on the graph will vary, depending on how ’abnormal’ the

phase is. At this point, work was continued with two values of r, r = 1 and r = 7.

These values were chosen because they provided adequate separation between normal

and abnormal phase but were not close to the ’flip’ point.

3.3. Effect of data length

ApEn does not vary significantly as the number of pixels is increased when r=7, as

demonstrated in Figure 6. However, for ApEn[r=1] the value of ApEn increases when

the LV size increases, meaning that ApEn[r=1] is not appropriate for this data. A

possible explanation for this might be that when the chosen value of r is low, the bias

effect due to the self-matches has a more significant impact. Unlike time-series data like

an ECG or gait, it is impossible to control the length of the data series for RNVG phase

data. The length of the data will depend on the size of the LV, which will be patient

dependent so ApEn should be consistent across the clinical range. For this reason, a

final value of r = 7 was selected for ApEn.

3.4. Data order

Table 1 shows the mean ApEn(m=2,r=7) for each group and the AUC value with 95%

CI for phase data read in different directions. As expected, there is a small difference in

ApEn for different data orders. However, the results indicate that the data order does

not affect the ability of ApEn to discriminate between normal and abnormal phase. The

ROC curves for each data order are shown in Figure 7. AUC values ranging from 0.715

to 0.746 were achieved for the four different data orders. ApEn is lower for directions

(c) and (d), this is likely because for each group of m the pixels are next to each other,

resulting in more matches and lower ApEn. While the data order did not significantly
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Figure 4. Simulated data which represents a phase image for normal LV contraction

(in red) and a large MI (in blue), demonstrating how ApEn varies with increasing

tolerance r, where sequence length m = 2. The shaded area represents the difference

in ApEn between the normal and MI phase images.

Table 1. Summary of statistics for data order

Data Order Normal Group MI Group AUC 95% CI

Mean ± SD Mean ± SD

(a) 0.460 ± 0.138 0.556 ± 0.116 0.72 0.66-0.77

(b) 0.457 ± 0.129 0.566 ± 0.119 0.75 0.67-0.77

(c) 0.418 ± 0.135 0.520 ± 0.118 0.73 0.65-0.76

(d) 0.414 ± 0.133 0.524 ± 0.124 0.74 0.67-0.77

affect the AUC values, order (c) and (d) are preferred because the pixels in each group

of m are adjacent.
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Figure 5. Average ApEn for normal (red), MI (green) and LBBB (yellow) patient

groups using varying values of tolerance r, where m= 2.
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Figure 6. Variation of ApEn with LV size for (a) m=2, r=1 (b) m=2, r=7,

demonstrating a lack of consistency for r=1 with increasing ventricle size for simulated

data.

4. Conclusions

Appropriate input parameters for ApEn applied to RNVG phase images have been

established using both simulated and patient data. The results justify the input
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Figure 7. ROC analysis for each data order, comparing the difference between normal

and MI groups

parameters selected and demonstrate that they are appropriate for application to RNVG

phase images. This work highlights the importance of optimising input parameters when

using novel indices, such as ApEn, to characterise clinical images. Standardisation is

crucial, and although this work investigates ApEn for a specific case, it demonstrates the

importance of optimisation and standardisation. Further work is required to establish

the reproducibility and normal range for clinical use.
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