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The study of animal behavioral states inferred through hidden Markov models and similar

state switching models has seen a significant increase in popularity in recent years. The

ability to account for varying levels of behavioral scale has become possible through

hierarchical hidden Markov models, but additional levels lead to higher complexity and

increased correlation between model components. Maximum likelihood approaches to

inference using the EM algorithm and direct optimization of likelihoods aremore frequently

used, with Bayesian approaches being less favored due to computational demands.

Given these demands, it is vital that efficient estimation algorithms are developed

when Bayesian methods are preferred. We study the use of various approaches to

improve convergence times and mixing in Markov chain Monte Carlo methods applied

to hierarchical hidden Markov models, including parallel tempering as an inference

facilitation mechanism. The method shows promise for analysing complex stochastic

models with high levels of correlation between components, but our results show that it

requires careful tuning in order to maximize that potential.

Keywords: parallel tempering, animal movement, hierarchical hidden Markov models, Bayesian inference, MCMC

1. INTRODUCTION

In a crucial moment for the environment, while climate is rapidly changing and putting flora and
fauna under great threat, it is important to investigate the evolution of ecological populations, in
order to estimate demographic parameters and forecast their future developments.

The study of individuals of the same species and their behaviors, how they constitute the
populations in which they exist and how such populations evolve is called population ecology (King
et al., 2010). Behavioral models can be employed in population ecology to reflect the patterns
in animal behaviors and movements, enabling the analysis and identification of different modes
over time.

Hidden Markov Models (HMMs) and associated state-switching models are becoming
increasingly common time series models in ecology, since they can be used to model animal
movement data and infer various aspects of animal behavior (Leos Barajas et al., 2017). Indeed,
they are able to model the propensity to persist in such behaviors over time and to explain the
serial dependence typically found, by enabling the connection of observed data points to different
underlying ecological processes and behavioral modes.
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Many publications in the field of statistical ecology have
benefited from the versatility of HMMs for the analysis of
animal behaviors (Schliehe-Diecks et al., 2012), including to
assist in dissecting movement patterns of single or multiple
individuals into different behavioral states (Langrock et al., 2012).
Other approaches have also been identified (Joo et al., 2013;
Patin et al., 2020), however HMMs remain the approach of
choice. In fact, HMMs have a great interpretive potential that
allows to deal with unmeasured state processes and identify
transitions in “hidden” states, even if such transitions are not
evident from the observations (Tucker and Anand, 2005). By
formally extricating state and observation processes based on
manageable yet powerful mathematical properties, HMMs can be
used to interpret many ecological phenomena, as they facilitate
inferences about complex system state dynamics that would
otherwise be intractable (McClintock et al., 2020). Thus, the
success of applying HMMs in ecological systems lies in the
combination of biological expertise with the use of sophisticated
movement models as generating mechanisms for the observed
data (Leos Barajas and Michelot, 2018).

Nevertheless, many extensions of basic HMMs have been
investigated only recently in statistical literature, implying that
HMMs for modeling animal movement data have not been
recognized yet to their full extent in ecological applications
(Langrock et al., 2012). For example, the so-called hierarchical
HMMs used herein have been already employed in order to
distinguish between different handwritten letters, but also to
recognize a word, defined as a sequence of letters (Fine et al.,
1998). The framework proposed in Leos Barajas et al. (2017)
paves the way to the application of such an extension of HMMs
for the simultaneous modeling of animal behavior at distinct
temporal scales, in the light of the idea that adding hierarchical
structures to the HMM opens new opportunities in the sphere of
animal behavior and movement inference.

Considering a sequence of latent production states—
and associated observations—as the manifestation of some
behavioral processes at a cruder temporal scale, the concept
of HMM can be extended to build a hierarchical process
with multiple time scales (henceforth referred to as multi-
scale behaviors). By jointly modeling multiple data streams
at different temporal resolutions, corresponding models may
help to draw a much more comprehensive picture of an
animal’s movement patterns, for example with regard to long-
term vs. short-term movement strategies (Langrock et al.,
2012).

Themodeling framework used in this paper was proposed and
applied to the same collection of data by Leos Barajas et al. (2017).
Data were assumed to stem from two behavioral processes,
operating on distinct temporal scales: a crude-scale process that
identifies the general behavioral mode (e.g., migration), and
a fine-scale process that captures the behavioral mode nested
within the large-scale mode (e.g., resting, foraging, traveling).
Intuitively, the former may persist for numerous consecutive
dives, whereas the latter agrees to the more nuanced state
transitions at the dive-by-dive level, given the general behavioral
mode (Leos Barajas et al., 2017; Adam et al., 2019). Hence, a

behavior occurring at the crude time scale can be connected to
one of the finite internal states, such that each internal state
generates a distinct HMM, the internal states of which in turn
are linked to the actual observation at a specific point in time.

This paper aims to devise a successful strategy for the
analysis of movement data related to a harbor porpoise through
a Bayesian approach, dealing with the correlations frequently
inherent between the varying processes (Touloupou et al.,
2020) through the use of parallel inference schemes that can
avoid associated computational issues. Although it follows the
modeling structure of Leos Barajas et al. (2017), the two studies
differ in the type of inference method adopted. In fact, the main
purpose of this research is constructing a Bayesian framework for
the stochastic problem addressed in Leos Barajas et al. (2017), as
opposed to the frequentist investigation therein. Various MCMC
algorithms will be implemented on the basis of requirements
posed by either the data or the design of the study, with the
conclusions reached through the Bayesian approach compared to
the previous results.

2. MATERIALS AND METHODS

2.1. Basic Hidden Markov Models
A basic Hidden Markov Model is a doubly stochastic process
with observable state-dependent processes {Yt}

T
t=1 controlled by

underlying state processes {St}
T
t=1, through the so-called state-

dependent distributions {fi}
N
i=1 (Leos Barajas andMichelot, 2018).

Under the assumption of a time-homogeneous process, i.e.,
Ŵ
(t) = Ŵ, and that the latent production state at time t, namely St ,

can take on a finite number N ≥ 1 of states as generated by the
corresponding fi, the evolution of states over time is governed
by a Markov chain with t.p.m. Ŵ = (γi,j), where γi,j = P(St =

j|St−1 = i) for i, j = 1, . . . ,N. Hence, the distribution of the
production state St is fully determined by the previous state St−1.

It should be further assumed that any observation Yt is
conditionally independent of past and future observations and
production states, given the current production state St . In this
way, the production states effectively select which of the finitely
many possible distributions each observation belongs.

The state-dependent distributions for Yt can be represented
in terms of conditional probability density (or mass) functions
f (yt|St = i) = fi(yt), for i = 1, . . . ,N, often also called emission
probabilities (Yoon, 2009). For multivariate observations, in
which case Yt = (Y1t , . . . ,YRt), the options are to either
formulate a joint distribution fi(yt) or assume contemporaneous
conditional independence by allowing the joint distribution to
be represented as a product of marginal densities, fi(yy) =

f 1i (y1t)f
2
i (y2t) . . . f

R
i (yRt) (Leos Barajas et al., 2017).

Furthermore, defining the initial state distribution π (1) as the

vector with entries π
(1)
n = P(S1 = n), for n = 1, . . . ,N, π (1) is

usually taken to be the stationary distribution, solving πŴ = π

(Leos Barajas and Michelot, 2018).
The likelihood of the observations can be obtained by

marginalizing their joint distributions. In a basic HMM, this
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FIGURE 1 | Diagram of dependence structure in the hierarchical hidden Markov model, showing the observed measurement layer, the high-resolution upper states,

and the lower-resolution lower states, the latter two of which are unobserved latent states to be inferred.

requires the summation over all possible production state
sequences st ,

Lp =

N
∑

st=1

N
∑

st=1

π s1

T
∏

t=2

γ st−1, st

T
∏

t=1

fst (yt). (1)

According to Zucchini et al. (2016), Equation (1) can be also
written explicitly as a matrix product,

Lp = π
TP(y1)ŴP(y2)...ŴP(yT)1

T = π
TP(y1)

T
∏

t=2

ŴP(yt)1
T , (2)

for an initial distribution π , a N × N matrix P(yt) =

diag(f1(yt), . . . , fN(yt)), and a column vector of 1’s 1T (Langrock
et al., 2012). This amounts to applying the forward algorithm
to the hidden process model, a more efficient method than
calculating the full likelihood.

2.2. Hierarchical Hidden Markov Models
For a hierarchical Hidden Markov Model, two types of latent
states (production states and internal states) are assumed to occur
at different temporal scales. The production state St is taken to
be generated depending on which of K possible internal states
is active during the current time frame. Therefore, a fine-scale
sequence of observations, ym = (y1,m, . . . , yT,m) -with one such
sequence for each m = 1, . . . ,M- can be thought as produced
by a sequence of production states, S1,m, . . . , ST,m during a given
time frame (namely the m-th of M time frames) (Leos Barajas
et al., 2017). See Figure 1 for dependency structures.

The length of the sequence of the production states produced
by the k-th internal state can be chosen according to the data
collection process or dictated by the analysis. The corresponding
K-state internal state process, {Hm}

M
m=1, is such thatHm serves as

a proxy for a behavior occurring at a cruder time scale, namely
throughout the m-th time frame (Leos Barajas and Michelot,
2018).

Assuming a Markov chain at the time frame level, then
the m-th internal state is conditionally independent of all the

others given the internal state at the (m − 1)-th time point, i.e.,
P(Hm|Hm−1, . . . ,H1) = P(Hm|Hm−1). Thus, the K×K t.p.m. for
the internal states {Hm}

M
m=1 examines both the persistence in the

internal states and the transitioning between them (Leos Barajas
et al., 2017).

Defining the likelihood for the production states as in
Equation (2), the conditional likelihood for a production state
given the k-th internal state can be written as Lp(ym|Hm = k), for

k = 1, . . . ,K. Denote by π (I) a K-vector of initial probabilities
for the internal states and by Ŵ(I) the K×K t.p.m. for the internal
state process. Then, the marginal likelihood for a hierarchically
structured HMM can be expressed as

Lp,m = π
(I)⊺P(I)(y1)

M
∏

m=2

Ŵ
(I)P(I)(ym)1

T , (3)

where P(I)(ym) = diag(Lp(ym|Hm = 1), . . . , Lp(ym|Hm = K)) is
a K × K matrix (Leos Barajas et al., 2017).

2.3. Bayesian Inference
Markov chain Monte Carlo (MCMC) methods are simulation
techniques that performMonte Carlo integration using aMarkov
chain to generate observations from a target distribution. The
Markov chain is constructed in such a way that, as the parameters
are updated and the number of iterations t increases, the
distribution associated with the t-th observation gets closer to
the target distribution. Once the chain has converged to the
stationary distribution π , the sequence of values taken by the
chain can be used to obtain empirical (Monte Carlo) estimates
of any posterior summary, including posterior distributions for
parameters and latent variables. Therefore, MCMC algorithms
are designed so that the Markov chain converges to the joint
posterior distribution of the parameters given the model, the
data, and prior distributions. Many different samplers have been
created to construct Markov chains with the desired convergence
properties and the efficiency of the resulting sample generation
can vary drastically depending on the choice of algorithm and
the tuning of parameters there-in.
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The Gibbs sampler is an MCMC algorithm for generating
random variables from a (marginal) distribution directly, without
having to calculate the density. It is useful when the joint
distribution of the parameters is not known explicitly or is
difficult to sample from directly, but it is feasible to sample from
the conditional distribution of each parameter. Given the state
of the Markov chain at the t-th iteration, the Gibbs sampler
successively draws randomly from the full posterior conditional
distributions of θp.

The Metropolis-Hastings (henceforth MH) algorithm is a
MCMC method for generating a sequence of states from a
probability distribution from which it would be difficult to
sample directly. The principle of the algorithm is to sample
from a proposal (or candidate) distribution q, which is a crude
approximation of the (posterior) target distribution h (Brooks
et al., 2011). New parameter are subsequently drawn from the
proposal distribution, often a symmetric distribution centered
on the current parameter value, and hence exhibiting random
walk (henceforth RW) behavior. Proposed parameter values
are accepted with probability proportional to the ration of the
posteriors, normalized by the ratio of the proposal densities. This
induces a Markov process that asymptotically reaches the unique
stationary distribution π(θ), such that π(θ) = h(θ |x).

2.4. Parallel Tempering
MH algorithms might get stuck in local maxima, especially in
high-dimensional problems or multimodal densities. A feasible
solution is trying to run a population ofMarkov chains in parallel,
each with possibly different, but related stationary distributions.
Information exchange between distinct chains enables the target
chains to learn from past samples, improving the convergence to
the target chain (Gupta et al., 2018).

Parallel tempering (PT) is a method that attempts periodic
swaps between several Markov chains running in parallel at
different temperatures, in order to accelerate sampling. Each
chain is equipped with an invariant distribution connected
to an auxiliary variable, the temperature β , which scales the
“shallowness” of the energy landscape, and hence defines the
probability of accepting an unsuitable move (Hansmann, 1997;
Gupta et al., 2018). Following Metropolis et al. (1953), the energy
of a parameter θ is defined as E[θ] = −logL[θ]− logp[θ], where
L and p are the likelihood and the prior probability, respectively.

The algorithm is derived from the idea that an increase in the
temperature smooths the energy landscape of the distribution,
easing the MH traversal of the sample space. In fact, high
temperature chains produce high density samples that accept
unfavorable moves with a higher probability, thus exploring
the sample space more broadly. As a result, switching to
higher temperature chains allows the current sampling chain to
circumvent local minima and to improve both convergence and
sampling efficiency (Chib and Greenberg, 1995).

The Parallel Tempering algorithm for a parameter vector θ

can be illustrated as follows:

• For s = 1, . . . , S swap attempts

1. For j = 1, . . . , J chains

I. For t = 1, . . . ,TMCMC iterations

i Propose a new parameter vector θ∗

ii Calculate the energy E[θ∗]
iii Set θt+1 = θ∗ with probabilitymin(1, e−βj1Ej ), where

1Ej = Ej[θ
∗]− Ej[θt−1]. Otherwise, set θt+1 = θt .

II. Record the value of the parameters and the energy on the
final iteration

2. For each consecutive pair of chains (in decreasing order
of temperature)

I. Accept swaps with probability min(1, e−1β1E), where
1E = Ej − Ej−1 and 1β = βj − βj−1.

The algorithm is similar to the standard Metropolis-Hastings
algorithm, aside from the scaling of the acceptance ratio by
the temperature parameter βc and the additional swapping
steps at regular intervals. If βc = 1, then the exact posterior
distribution of interest is being sampled; for values of βc < 1,
a higher temperature posterior is sampled, allowing acceptance
of parameter moves further away from the current parameter
value and facilitating moves outside of local modes. Ultimately,
samples of the chain where βc = 1 are retained and summary
statistics calculated, with other chains used for improving
convergence and subsequently discarded.

2.5. Data
The data relate to the harbor porpoise (Phocoena phocoena)
dives presented in Leos Barajas et al. (2017). So as to build
the hierarchical structure for the Hidden Markov Model, dive
patterns were inferred at a crude scale K-state Markov process
that identifies the general behavioral mode, and at a fine
scale for state transitions at a dive-by-dive resolution, given
the general behavior. Hence, a behavior occurring at a crude
time scale can be connected to one of the K internal states,
such that each internal state generates a distinct HMM, with
the corresponding N production states generating the actual
observation at a specific point in time (Leos Barajas et al.,
2017). The production states are thus used to identify and
categorize behavioral states, whilst internal states analyse patterns
of changes in such behavioral states.

The crude time scale, hereafter also referred to as lower level,
was built based on the notion that a dive pattern is typically
adopted for several hours before switching to another one. For
this purpose, observations recorded per second were grouped
into hourly intervals, allowing each segment to be connected to
one of the K = 2 HMMs with N = 3 (dive-by-dive upper level)
states each.

Across the two dive-level HMMs, the same state-dependent
distributions but different t.p.m.s were employed. This implied
that any of the three types of dive (originating each from one
of the three different production states) could occur in both
lower level behavioral modes, but should not manifest equally
often, on average, due to the different Markov chains active
at the upper level. Moreover, supposing M time frames per
individual, differences observed across ym, for m = 1, . . . ,M,
were explained by considering the way in which a porpoise
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switches among the K internal states, while still modeling the
transitions among production states at the time scale at which
the data were collected (Leos Barajas et al., 2017).

The initial state distributions, for both the internal and the
production state processes, were assumed to be the stationary
distributions of the respective Markov chains.

The raw data was processed using the R package DIVEMOVE

(Luque, 2007) and transformed into measures of dive duration,
maximum depth, and dive wiggliness to characterize these
Cetaceans’ vertical movements at a dive-by-dive resolution,
where dive wiggliness refers to the absolute vertical distance
covered at the bottom of each dive (Leos Barajas et al., 2017). Such
measures were considered to be the variables characterizing the
model at the upper level, consisting of the observable fine-scale
sequences ym = (y1,m, y2,m, . . . , yT,m) form = 1, . . . ,M.

Furthermore, in order to construct a relatively simple
yet biologically informative model, gamma distributions, and
contemporaneous conditional independence were assumed for
the three variables. Hence, for any given dive, the observed
variables were considered conditionally independent, given the
production state active at the time of the dive (Leos Barajas et al.,
2017).

2.6. Parameters
The parameters to be estimated through Bayesian inference are
the ones defining the gamma distributions of the variables for all
production states, with an additional point mass on zero for the
dive wiggliness to account for null observations.

In principle, variables could be included both in the state-
dependent processes, where they determine the parameters of
the state-dependent distributions, and in the state processes,
where they affect the transition probabilities (Langrock et al.,
2012). However, in ecology the focus is usually on the latter,
as the interest lies in modeling the effect of variables on state
occupancy. Therefore, it is of interest to estimate also the
transition probabilities matrices Ŵ (see section 2.1), and the
corresponding initial distributions, for all the production states.
The probabilities γij at time t can be expressed as a function of
some predictor ηij(xt) that in turn depends on a Q-dimensional
vector containing the variables at time t xt = (x1,t , . . . , xQ,t)
(Langrock et al., 2012), where Q = 3.

In order to ensure identifiability when estimating the entries of
Ŵ, the “natural” parameters γij were transformed into “working”
ones, ηij (Leos Barajas et al., 2017). The γij values were mapped
by row onto the real line with the use of the multinomial logit
link, to guarantee that 0 < γij(xt) < 1 and

∑N
j=1 γij(xt) = 1

for ∀i, and the diagonal entries of the matrix were taken as the
reference categories:

γij =
exp(ηij)

∑N
k=1 exp(ηij)

, where ηij =

{

βij if i 6= j;

0 otherwise.

For the sake of interpretability, the working parameters were
eventually translated to their corresponding natural values.

Since HMMs lie within the class of mixture models, the lack of
identifiability due to label switching i.e., a reordering of indices
that can lead to same joint distribution, should be taken into

account during the implementation of the algorithm and the
interpretation of the corresponding results (Leos Barajas and
Michelot, 2018).

As defined in section 2.1, the production state space is
assumed to comprise N possible values, modeled as a categorical
distribution. This implies that for each of the N possible states
that a latent variable at time t can take, there is a transition
probability from this state to each of the N states at time t + 1,
for a total of N2 transition probabilities. Since any one transition
probability can be determined once the others are known, there
are a total of N(N − 1) transition parameters to be identified
(Zhongzhi, 2011). The same reasoning applies to the internal
state space (see section 2.2), where for K possible states, once
any one transition probability has been estimated, there are only
K(K − 1) transition probabilities to determine.

Since each row of a t.p.m. has to add up to 1, the individual
parameters of each row are connected and therefore there is fewer
distinct parameters than there would appear. The first K − 1
elements were sampled independently of any constraint, whereas
the last element of each set was estimated as the difference of 1
and the sum of the other estimates in the same set, according to
section 2.6.

2.7. Prior Distributions
In ecological applications, prior distributions are a convenient
means of incorporating expert opinion or information from
previous or related studies that would otherwise be ignored
(King et al., 2010). However, in the absence of any expert prior
information, an uninformative prior Unif (0, 1) was specified
for the proportion of observed zeros for the variable dive
wiggliness. Constraining the means of the variables to be strictly
positive, Log-Normal(log(100),1) distributions were taken as
priors for their estimation, whereas Inv-Gamma(10−3, 10−3)
were considered for their standard deviations.

Different prior distributions were specified for the transition
matrix parameters. The first K − 1 or N − 1 entries of each row
of the transition probability matrices were assumed to have a
Beta(0.5, 0.5) prior, with the final element constrained by the sum
of the other elements.

2.8. Implementation
The initial values for the estimation of parameters by the
MH algorithm were obtained rounding to one decimal place
the maximum log-likelihood estimates computed via direct
numerical likelihood maximization (using the R function NLM,
as in Leos Barajas et al., 2017). The transition probability matrices
and the corresponding stationary distributions were kept fixed to
their approximated values.

In this paper, proposal variances throughout the analyses
were tuned adaptively to give an acceptance fraction between 25
and 40%, where the acceptance fraction is the simplest heuristic
proxy statistic for tuning, defined as the ratio between the
accepted proposed moves over the total number of iterations.
Such range was considered throughout the implementation of all
the different versions of the MH algorithm. The procedure was
automated in order to perform an adjustment on the standard
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FIGURE 2 | Fitted state-dependent distributions for dive duration, maximum depth, and dive wiggliness.

FIGURE 3 | Single-update MH algorithm: trace plot and ACF plot of the standard deviation of the variable maximum depth for production state 2 (10,000 iterations).

deviations δ of the RW every 100 iterations during burn-in and
were then fixed for the RW updates of all the following iterations.

To further avoid correlations between parameters, two
different approaches to block updating were devised for the
MH algorithm. In the first case, the blocks were built bringing
together the parameters of each variable across the three
production states in order to update them simultaneously state-
wise. For each variable, the means were updated first, followed by
the corresponding standard deviations. Conversely, in the second
scheme, parameters were still updated simultaneously state-wise,
but the way blocks were arranged changed. The means for all
the variables were updated first, and then the standard deviations
were considered in the same order. In both cases, the proportions
of null values observed for the variable maximum depth were
studied separately, by simultaneous update.

For the parallel tempering algorithm, a Markov chain with a
temperature value β = 1 was used to sample the true energy
landscape, while three higher temperature chains with values
of β equal to 0.75, 0.50, and 0.25 were employed to sample
shallower landscapes. The acceptance probability was based on
the difference in energy between consecutive iterations, scaled
by the chain temperature, i.e., min(1, e−βc1Ec ), for c = 1, . . . , 4.
Every T = 100 iterations a swap to the higher temperature

chains was attempted, for a total of S = 160 swaps. Pilot
tuning was performed on the first 6,000 iterations. The FOREACH

and DOPARALLEL packages in R were used to parallelize such
algorithm by allocating it to different cores (Weston andCalaway,
2019). As many clusters as the number of desired temperatures,
and thus chains, were created and each allocated to a core,
bearing inmind that it is recommended not to use all the available
cores on the computer.

3. RESULTS

3.1. Metropolis-Hastings and Variants
Employing the single-update MH algorithm, the fitted (dive-
level) state-dependent distributions displayed in Figure 2 suggest
three distinct dive types (see Figure 3 for the associated MCMC
convergence diagnostics). Thresholds for the interpretation of
variables in the three production states were identified as the 2nd
and the 98th percentiles of the corresponding distribution.

1. Production state 1 captures the shortest (lasting <20.6 s),
shallowest (between 1.2 and 7.9 m deep) and smoothest
(<5.7 m absolute vertical distance covered) dives with
small variance;
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FIGURE 4 | Block-update MH algorithm: trace plot and ACF plot of the standard deviation of the variable maximum depth for production state 2 (10,000 iterations)

with blocks arranged by variable.

FIGURE 5 | Block-update MH algorithm: trace plot and ACF plot of the standard deviation of the variable maximum depth for production state 2 (10,000 iterations)

with blocks arranged by parameter.

2. Production state 2 captures moderately long (7.6–77.5 s),
moderately deep (4.1–28.5 m), and moderately wiggly (1–36.3
m) dives with moderate variance;

3. Production state 3 captures the longest (38–215.7 s), deepest
(9.7–93.4 m), and wiggliest (8.2–120.7 m) dives with
high variance.

From visual inspection of the trace plots of both the block-update
MH algorithms, the first approach appeared to have slightly less
autocorrelated chains with better mixing properties, allowing a
broader traverse of the parameter space (see Figures 4, 5 for
a specimen).

The fact that a change in the autocorrelation values happened
when altering the order of the blocks might suggest that it
could have been worth it to reconsider the original single-
update algorithm, varying the order in which parameters were
updated. As a consequence, both algorithms were modified
accordingly, relaxing the constraint of simultaneous update
for the three production states. However, such strategy did
not seem to perform much differently from the original MH
algorithm nor from the respective block-wise update ones (see
Supplementary Material for corresponding plots). In particular,
multi-parameter algorithms performed slightly worse than the

corresponding single-update versions. This could be due to the
fact that, by updating multiple parameter at the same time during
block-wise sampling, a move might have been rejected through
being “poor” for some parameters, whilst it might have been
“good” for the others (King et al., 2010).

It should also be noticed that for multiple parameter moves,
the proposed changes are relatively small compared with the
current values, as the proposal variance δ is smaller than for
single-parameter updates, leading to a narrower exploration of
the support of h (King et al., 2010).

3.2. Parallel Tempering
Looking at the trace plots and the ACF plots for the implemented
MH algorithm, this strategy performs in a similar way to the
single-updateMH algorithm, with a goodmixing in the chain and
a slowly decreasing autocorrelation in the values. Figure 6 shows
the behavior of the standard deviation of the variable maximum
depth for production state 2, when performing parallel tempering
with four temperature chains.

Due to the high computational effort required by such an
alternative, a different strategy was adopted to implement theMH
algorithm with parallel tempering.
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FIGURE 6 | Trace plot and ACF plot of the standard deviation of the variable maximum depth for production state 2, obtained running four chains for parallel

tempering on the MH algorithm (10,000 iterations).

FIGURE 7 | Trace plot and ACF plot of the standard deviation of the variable maximum depth for production state 2, obtained running seven chains for parallel

tempering on the MH algorithm (10,000 iterations).

Considering again the standard deviation of the variable
maximum depth for production state 2 (see Figure 7), it can be
observed that employing a larger number of temperature chains
for parallel tempering generates a better mixing and a roughly
smaller autocorrelation between consecutive values.

The main benefit of parallel tempering is its ability to explore
multimodal distributions. This is can be seen in Figures 6, 7
as the range of parameter values visited by the algorithm is
wider than any of the single MH algorithms. This suggests that
there may be a multimodal nature to the parameter marginal
distributions that the MH algorithm alone is not able to explore.

3.3. Prior Sensitivity Analysis
Prior sensitivity analysis was performed on the hyperparameters
of the Beta distributions for the proportion of observed null
values for the variable dive wiggliness. The MH algorithm with
parallel tempering was rerun with Beta priors having both shape
parameters either higher (α = β = 2) or lower (α = β = 0.5)
than those specified in section 2.7. There was no evidence of
significant changes in parameter estimates under varying priors,
nor in the performance of the algorithm itself, as reflected in the
almost unaffected acceptance rate of proposed moves.

3.4. Estimation of Transition Probabilities
In order to proceed with the estimation of the complete
collection of parameters, one of the MH algorithms previously
implemented was extended to estimate the transition probability
matrices and the corresponding stationary distributions. The
original single-update MH algorithm was selected, since it was
the one that appeared to perform best. Figure 8 illustrates the
behavior of the standard deviation of the variable maximum
depth. It shows good mixing speed and the gradient of the
autocorrelation function is not excessively shallow. A similar
behavior can be observed for most of the other parameters (see
Supplementary Material). It should be also mentioned that the
acceptance fraction for the transition probabilities appeared to
be quite high, ranging from nearly 36% to roughly 90% (see
Supplementary Material).

4. DISCUSSION

4.1. Interpretation of Results
According to the ACF plots for all the variables of the
implemented MH algorithm, the means and the standard
deviations present relatively high autocorrelation, even for larger
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FIGURE 8 | Single-update MH algorithm for the complete parameter set: trace plot and ACF plot of the standard deviation of the variable maximum depth for

production state 2 (10,000 iterations).

TABLE 1 | Values obtained for the standard deviations δ of the Random Walk for

each parameter after pilot tuning on 6,000 iterations.

Parameter Production Production Production

state 1 state 2 state 3

DIVE DURATION

Mean 0.218 (36.36%) 0.878 (32.99%) 2.200 (33.87%)

Variance 0.258 (32.26%) 0.779 (31.40%) 1.949 (31.37%)

MAXIMUM DEPTH

Mean 0.110 (32.82%) 0.286 (36.09%) 0.972 (32.57%)

Variance 0.102 (32.60%) 0.278 (32.52%) 0.857 (30.48%)

DIVE WIGGLINESS

Mean 0.081 (32.05%) 0.330 (36.93%) 1.210 (34.22%)

Variance 0.073 (36.63%) 0.320 (36.32%) 1.187 (31.65%)

Zero count 0.052 (28.58%) 0.008 (29.92%) 0.001 (32.30%)

The acceptance ratio is reported between parentheses.

values of l. In principle, such an issue was partially handled
during the pilot tuning, by adjusting the standard deviation δ of
the RW for the parameters of interest (see Table 1). However,
pilot tuning alone proved itself inadequate to reduce the
autocorrelation sufficiently. In order to improve the performance
of the algorithm, different strategies were considered, such as
block updates and parallel tempering.

Initially, the focus was on estimating the parameters of the
gamma distributions of the variables for all production states,
with an additional point mass on zero for the dive wiggliness to
account for null observations.

For some parameters, the acceptance fraction fell outside
the chosen thresholds, causing a fairly slow decrease in their
autocorrelation functions and a non-optimal mixing speed for
the corresponding chains. Thus, pilot tuning was conducted
on the standard deviations of the random walk used for the
proposal distributions, resulting in an overall improvement of the
performance, yet insufficient to yield a significant reduction in
the autocorrelation.

Conjecturing the presence of correlation between parameters,
block-wise sampling was employed for simultaneous updates

across the three production states. In the first case, the means
for the three production states of all the variables were updated
first, each followed by the corresponding standard deviations.
In the second, all the means were updated first, followed by
all the standard deviations, according to the same order in the
variables. Although the first approach appeared to have less
autocorrelated chains with better mixing properties than the
second, the global performance turned out not to be better
than the single-update one. In fact, the simultaneous update of
multiple parameters might have caused the rejection of some
moves through being inadequate for some parameters, whilst it
might have been suitable for the others. Moreover, having a closer
look at the trace plots and the ACF plots, a modest difference in
their autocorrelation values was visible, hinting that the order in
which parameters were updated might have had some influence
on the performance.

Turek et al. (2016) considered block updating for MCMC
algorithms to HMM and found improved performance
compared to general algorithms within the NIMBLE software
environment. However, the examples used were of a simpler
nature to the one fitted here, which may explain why our results
suggested careful adaptive tuning of proposals offered better
results than block updating. In many cases it was necessary to
make relatively small moves for the parameters to be accepted,
leading to a narrower exploration of the support of the target
distribution. For other parameters, instead, the acceptance
rate turned out to be especially high. Indeed, the selection of
non-ideal values for the standard deviations δ was mirrored
in sub-optimal behavior of the chains, underlining a strong
dependence on the choice of the proposal standard deviations.
In fact, even if the chains exhibited good mixing speed, the
autocorrelation values were still quite high even for large lags,
especially for the production state 1. This suggested that an
appropriate implementation of pilot tuning might have been
instrumental in ameliorating the overall performance.

Therefore, a new MH algorithm involving parallel tempering
was implemented. Different chains were run in parallel, each
linked to an auxiliary temperature value that enabled to sample
from a distinct energy landscape. At regular intervals, the
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behavior of the different chains was analyzed and a swap
between temperature chains allowed, according to an acceptance
probability that depended on the difference in both temperature
and energy between different temperature chains. This facilitated
the traverse of the sample space, exploiting the concept that
higher temperature chains explore the sample space more
broadly and are able to circumvent local minima. In the light
of the fact that distributions on neighboring temperature levels
need to have a considerable overlap, the number of temperatures
was increased from four to seven. Running several chains from
distinct points, as in parallel tempering, ensures the exploration
of multimodal distributions. In fact, the posterior density plots
for parallel tempering were globally unimodal, whereas for most
of the other algorithms, many distributions showed some gentle
spikes (see Supplementary Material). However, this strategy
seemed to perform in a similar way to the single-update MH
algorithm, with good mixing in the chain and a fairly high
autocorrelation even for quite large lags. In particular, the
performance of the MH algorithm with more temperature chains
improved only to a limited extent with respect to the one with
fewer chains. In practice, to have a reasonable acceptance rate, the
temperatures need to be chosen carefully, and checked through
preliminary runs. Moreover, the distributions on neighboring
temperature levels need to have a considerable overlap (Hogg and
Foreman-Mackey, 2018), suggesting that it would be appropriate
to consider temperature values which are relatively close and
possibly evenly spaced. For this purpose, the energy landscape
was subsequently explored with a larger number C of chains, with
temperatures β taking values equal to 1, 0.857, 0.714, 0.571, 0.429,
0.286, 0.143.

4.2. Comparison of Frequentist and
Bayesian Results
The estimates found through Bayesian inference did not differ
considerably from the ones obtained in Leos Barajas et al.
(2017) using maximum likelihood estimation. This does not
alter significantly the understanding of the ecological process,
suggesting that the two methods might be equally effective in
terms of interpreting the behavior of a harbor porpoise.

The first HMM might be indicative of a foraging behavior,
particularly due to the extensive wiggliness characterizing the
dives, which often indicates prey-chasing (van Beest et al., 2018).
Conversely, the second HMM could represent a resting and/or
a traveling behavior, due to the prevalence of relatively short,
shallow and smooth dives.

Furthermore, it could be worthwhile to look at the estimates
returned by the single-update MH algorithm, both when the
t.p.m.s and their invariant distributions were kept constant (see
Supplementary Material) and when instead they were included
in the estimation process (see Table 2). Although one might
expect the estimates for the first algorithm to be closer to the
MLEs, as the hierarchical structure is more stable, the ones
from the second algorithm are actually more similar to the
frequentist results. In fact, while in the first case the transition
probabilities and the stationary distributions are kept fixed to a
very loose approximation of the classical estimates, in the second

TABLE 2 | Parameter estimates for the three production states, found through

Maximum Likelihood Estimation and Bayesian Inference (on the complete

collection of parameters).

MLE Bayesian estimate

Parameter Prod. Prod. Prod. Prod. Prod. Prod.

state 1 state 2 state 3 state 1 state 2 state 3

DIVE DURATION

Mean 5.633 32.167 106.817 5.711 32.321 106.891

Variance 4.368 15.138 38.417 4.440 15.159 38.391

MAXIMUM DEPTH

Mean 3.738 13.188 39.613 3.766 13.241 39.658

Variance 1.425 5.288 18.111 1.449 5.293 18.135

DIVE WIGGLINESS

Mean 1.455 11.292 45.822 1.482 11.362 45.893

Variance 1.203 7.681 24.374 1.233 7.701 24.402

Zero count 0.309 0.008 0.0002 0.307 0.008 0.0006

TABLE 3 | Parameter estimates for the hyperparameters obtained through the

MH algorithm with parallel tempering using seven chains.

Parameter Production Production Production

state 1 state 2 state 3

DIVE DURATION

Mean 5.494 (0.020) 30.940 (0.055) 105.139 (0.067)

Variance 4.246 (0.019) 14.419 (0.025) 38.892 (0.038)

MAXIMUM DEPTH

Mean 3.691 (0.006) 12.790 (0.016) 38.997 (0.029)

Variance 1.386 (0.005) 5.077 (0.008) 18.065 (0.024)

DIVE WIGGLINESS

Mean 1.424 (0.007) 10.772 (0.027) 45.069 (0.039)

Variance 1.176 (0.009) 7.342 (0.014) 24.444 (0.033)

Zero count 0.315 (0.001) 0.010 (0.0001) 0.001 (0.0001)

Monte Carlo standard errors are reported between parentheses.

they will gradually converge to their actual estimates, easing the
convergence of the whole set.

The estimates of the single-update algorithm for the partial set
of parameters could be also be compared to the ones obtained
when employing parallel tempering (see Table 3). Even if they
are roughly the same, the second algorithm is slightly closer
to the values for the complete collection of parameters, using
both classical and Bayesian inference. This is linked to the fact
that employing parallel tempering enhances the sampler, by
handling multimodality and conducting a wider exploration of
the sample space.

5. CONCLUSIONS

The implemented algorithms appear to perform satisfactorily and
to provide a sensible insight on behavioral modes connected to
the analyzed movement data.
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In such a way, a more robust structure might be constructed
for block sampling, by specifying a suitable multi-dimensional
proposal distribution, as recommended by King et al. (2010).
Doing so,a more efficient strategy for pilot tuning could be
devised as well. For instance, following the suggestions provided
by Andrieu and Thoms (2008), the adjustment of the standard
deviations δ of the RWupdates could be performed automatically
also for the transition probabilities. If possible, it would also
be advisable to perform parallel tempering on the complete
collection of parameters, or at least run multiple chains starting
from overdispersed points in order to study the convergence of
the chains.

Another important issue that may arise in the context of
movement modeling is that the computational effort required
to calculate the likelihood might be noticeably large compared
to that of the simulation for the model of interest. In fact,
for complex models, such as hierarchical HMMs—deriving
an analytical formula for the likelihood function might be
elusive or computationally expensive. Approximate Bayesian
Computation methods are simulation-based techniques useful
to infer parameters and choose between models, bypassing the
evaluation of the likelihood function (Beaumont, 2010; Sunnåker
et al., 2013). Following the results of Ruiz-Suarez et al. (2020),
for this particular stochastic problem it could be worthwhile
to employ a likelihood-free method based on the measure
of similarity between simulated and actual observations. In
fact, while the likelihood function is quite intractable due to
the complicated relationship between parameters, simulating
the movement of an harbor porpoise appears to be more
straightforward. Therefore, through the simulation of dives from
the HMM, relying on independent draws combined with data
observed at regular time intervals, it would be possible to estimate
the posterior distributions of model parameters (Sunnåker et al.,
2013).

In animal movement modeling, estimation of the latent
state sequence is not the primary focus, but rather a
convenient byproduct of the HMM paradigm (Leos Barajas and
Michelot, 2018). Estimated state-dependent distributions should
be connected to biologically meaningful processes, though state
estimation can help one visualize the results of the fitted models.
The Viterbi algorithm (Viterbi, 1967) can be used for global state
decoding, i.e., finding the sequence of the most likely internal and
production states, respectively, given the observations.

Bayesian inference has proven to be a valid statistical
instrument for modeling animal movement data according to
a hierarchical HMM, providing an effective framework to infer
drivers of variation in movement patterns, and thus describe
distinct behaviors. Estimates of uncertainty in parameters and
other summary statistics are also readily available as a direct
outcome of the inference. The results highlight that parallel
tempering, in particular, is beneficial in terms of building more
realistic credible regions.

Although the computational times related to Bayesian
inference tend to be larger than for the frequentist context,

working in such a framework provides tools to circumvent issues
common in statistical ecology and widens the opportunities for
further analysis. For example, while there is no guarantee that a
maximum likelihood procedure is really finding all the modes in
a distribution, some Bayesian techniques enable the identification
of multimodality, which is a frequent problem in mixture
models and hidden Markov models. Indeed, different Bayesian
algorithms return very similar point estimates, but some, such
as a basic Metropolis Hastings sampler—fail to explore areas
of the posterior space that are still consistent with the data,
hinting to multimodality. The tuned MH algorithm will tend
to focus in on local modes to optimize acceptance rates, rather
than learning about additional modes away from the current
area of high probability. Conversely, parallel tempering allows the
sampling of the full parameter space more readily, improving the
overall estimation of uncertainty and credible regions. Another
prerogative of the Bayesian framework is incorporating in the
MCMC algorithm biological a priori knowledge, which might
provide a considerable benefit in terms of the estimation,
particularly in data sparse examples. HMMs can be used tomodel
many other types of ecological data, including mark-recapture
data (Turek et al., 2016), and similar approaches could also be
developed for these models.

Keeping in mind that different algorithms and computational
methods are usually complementary—not competitive, the tools
available to the Bayesian paradigm provide a powerful and
flexible framework for the analysis of complex high-dimensional
stochastic processes.
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