Anaphylatoxin signaling in human neutrophils - A key role for sphingosine kinase

Ibrahim, F.B.M., Melendez Romero, A.J. and Pang, S.J. (2004) Anaphylatoxin signaling in human neutrophils - A key role for sphingosine kinase. Journal of Biological Chemistry, 279(43), pp. 44802-44811. (doi: 10.1074/jbc.M403977200)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1074/jbc.M403977200

Abstract

Anaphylatoxins activate immune cells to trigger the release of proinflammatory mediators that can lead to the pathology of several immune-inflammatory diseases. However, the intracellular signaling pathways triggered by anaphylatoxins are not well understood. Here we report for the first time that sphingosine kinase (SPHK) plays a key role in C5a-triggered signaling, leading to physiological responses of human neutrophils. We demonstrate that C5a rapidly stimulates SPHK activity in neutrophils and differentiated HL-60 cells. Using the SPHK inhibitor N,N-dimethylsphingosine (DMS), we show that inhibition of SPHK abolishes the Ca2+ release from internal stores without inhibiting phospholipase C or protein kinase C activation triggered by C5a but has no effect on calcium signals triggered by other stimuli (FcgammaRII). We also show that DMS inhibits degranulation, activation of the NADPH oxidase, and chemotaxis triggered by C5a. Moreover, an antisense oligonucleotide against SPHK1, in neutrophil-differentiated HL-60 cells, had similar inhibitory properties as DMS, suggesting that the SPHK utilized by C5a is SPHK1. Our data indicate that C5a stimulation decreases cellular sphingosine levels and increases the formation of sphingosine-1-phosphate. Exogenously added sphingosine has a dual effect on C5a-stimulated oxidative burst: it has a priming effect at lower concentrations but a dose-dependent inhibitory effect at higher concentrations; however, C5a-triggered protein kinase C activity was only reduced at high concentration of sphingosine. In contrast, C5a-triggered Ca2+ signals, chemotaxis, and degranulation were not affected by sphingosine at all. Exogenous sphingosine-1-phosphate, by itself, did not induce degranulation or chemotaxis, but it did marginally induce Ca2+ signals and oxidative burst and had a priming effect, enhancing all the C5a-triggered responses. Taken together, these results suggest that SPHK plays an important role in the immune-inflammatory pathologies triggered by anaphylatoxins in human neutrophils and point out SPHK as a potential therapeutic target for the treatment of diseases associated with neutrophil hyperactivation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Melendez Romero, Dr Alirio
Authors: Ibrahim, F.B.M., Melendez Romero, A.J., and Pang, S.J.
College/School:College of Medical Veterinary and Life Sciences
Journal Name:Journal of Biological Chemistry
Journal Abbr.:J Biol Chem.
Publisher:American Society for Biochemistry and Molecular Biology, Inc.
ISSN:0021-9258
ISSN (Online):1083-351X

University Staff: Request a correction | Enlighten Editors: Update this record