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Echo-location is a broad approach to imaging and sensing that includes both man-made RADAR,
LIDAR, SONAR and also animal navigation. However, full 3D information based on echo-location
requires some form of scanning of the scene in order to provide the spatial location of the echo origin-
points. Without this spatial information, imaging objects in 3D is a very challenging task as the
inverse retrieval problem is strongly ill-posed. Here, we show that the temporal information encoded
in the return echoes that are reflected multiple times within a scene is sufficient to faithfully render
an image in 3D. Numerical modelling and an information theoretic perspective prove the concept
and provide insight into the role of the multipath information. We experimentally demonstrate the
concept by using both radio-frequency and acoustic waves for imaging individuals moving in a closed
environment.

Introduction. In nature, detecting and locating ob-
jects from reflected echoes is generally possible only if two
or more detectors are used. Animals such as bats or dol-
phins [1] and even humans [2] can emit pulses of sound to
sense the environment they navigate through and iden-
tify objects. RADAR and LiDAR imaging systems op-
erate in a similar way, albeit with electromagnetic (EM)
radiation (radio waves and light, respectively): a series
of EM pulses are used to scan and probe the scene and,
by measuring the arrival time of the return echoes and
correlating this with the direction from which they are
detected, they can form a 3D estimate of the scene [3, 4].
This principle also holds for non-line-of-sight (NLOS) ap-
plications [5–9], where photon echoes of light, now scat-
tered from multiple surfaces along indirect paths, are
analysed with the goal of revealing the 3D shape and
visual appearance of objects outside the direct line of
sight. Although NLOS is typically deployed with optical
sources, it has also been demonstrated with acoustic [10]
and radio-frequency (RF) sources [11].
Locating objects in space and forming an image in 3D
from their wave echoes using a single point detector with-
out any form of scanning is, computationally-speaking,
a strongly ill-posed problem and therefore considerably
more challenging. However, recent work has shown that
echoes contain a very rich structure in the time dimen-
sion that can be used to extract meaningful information
about the scene [12–14]. In these cases, further assump-
tions of the scene are required in order eliminate ambi-
guities arising from the fact that the echo is single-path,
i.e. the outgoing signal reflects only once from the scene
objects. This leads to ambiguity in the form of an equal-
distribution-probability for the echo origin point that is
spread over a spherical dome centred on the detector and
with a radius determined by the echo arrival time. The
additional assumptions referred to above can be intro-
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duced, for example, in the form of additional information
by means of a machine learning algorithm that exploits
the knowledge of static objects in the scene background
and a statistical knowledge of the objects that we want
to image [12, 14].
The paradigm investigated here is the extension of echo
detection to multipath trajectories of the return signal.
The idea of using multipath reflections for sensing inside
buildings, through walls or out of view, especially with
RF waves, has been a topic of extensive study during
the last decade [15–22]. However, these simple geomet-
ric approaches are typically limited to locating the posi-
tion of objects (and not imaging), e.g. of humans inside
known environments. Multipath sensing has also been
combined with Bayesian inference [23] and convolutional
neural networks [24] to localise sonic sources. In the op-
tical domain, multipath interference, i.e. the contribu-
tion from light following multiple paths onto the same
pixel, is generally considered problematic and has to be
accounted for to acquire accurate depth maps [25–28].
However, recent works have explored multipath optical
sensing both theoretically [29] and experimentally [30] by
exploiting deterministic algorithms that provide mathe-
matical proof for the ability to reconstruct the geometry
of simple scenes from a single location.
In this work, we provide empirical evidence that 3D
scenes can be reconstructed from temporal echoes alone.
We make use of a data-driven approach that exploits mul-
tipath temporal echoes, i.e. echoes from waves that are
reflected multiple times from surfaces and objects within
a scene, to unambiguously reconstruct a meaningful 3D
image in a fixed scenario. We first present numerical
simulations that show how a simple artificial neural net-
work can be trained to reconstruct a 3D scene. We then
underline the importance of the multipath echoes, with
a dominant role played by the first few reflections and
a gradually decreasing importance of further bounces.
These findings are supported by an information theo-
retic analysis applied to the raw multipath data that is
independent of the image retrieval algorithm. We then
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demonstrate our approach experimentally. Although our
method could be in principle implemented with optical
pulses, light suffers from severe diffused reflection, which
would make it very hard to detect any optical signal af-
ter 2 reflections. We therefore concentrate on GHz EM
radio-frequency (RF) and kHz acoustic waves, as these
can be reflected multiple times by walls and objects. In
both cases, we are able to precisely retrieve 3D images of
a dynamic scene with a significant improvement beyond
what is achievable using single-path echoes.
3D imaging with multipath temporal echoes. Our
approach is conceptually sketched in Fig. 1. A source
emits waves in the form of pulses that diverge with a
wide angle so as to flash-illuminate the whole scene. The
emitted pulses are then reflected by the room walls and
the objects inside it and, finally, are detected by a single-
pixel sensor with time-resolving capabilities. The timing
of successive pulses is arranged so as to not temporally
overlap with any returning echoes, i.e. each outgoing
pulse and detection of return echoes are completely sep-
arate events from the emission of a successive pulse. The
sensor collects and records the received energy over a
wide angle and provides this information in the form of a
temporal histogram. The process of pulsed waves bounc-
ing multiple times inside the room is fully deterministic:
with a complete knowledge of the distribution of objects
within the room, the room dimensions, and their reflec-
tivity, it is straightforward to predict the recorded tem-
poral histogram. However, solving the inverse process,
namely the reconstruction of the scene (including room
and objects) in 3D dimensions from just the temporal
histogram, is ill-posed: echoes arriving to the detector
at time td are compatible with objects placed not just
at a single point (as would be desired), but rather with
the whole surface of a spherical dome represented by the
equation (ctd)2/2 = x2 + y2 + z2 (where c is the speed of
the pulse). This ambiguity has been previously solved,
although only in part, by utilising the fact that a moving
object will obscure static background objects, therefore
removing them from return echo patterns [14].
In contrast, in this work we highlight the strength of in-
cluding multipath reflections in the data-driven solution
to solve the ambiguity issue: using not only the first re-
flection but 2, 3, and more reflections breaks the degen-
eracy and helps the algorithm to reconstruct the position
and shape of the object in 3D with high accuracy, thus
making background objects not essential.
Numerical simulations. We first show numerical sim-
ulations based on Monte Carlo ray-tracing (see [31] for
full details). Our scene consists of a closed room with
walls, floor and ceiling that all have the same 100% reflec-
tivity [Fig. 1(a)]. Inside this room, a rectangular cuboid
is placed in different positions and the scene is imaged
in 3D with a ToF camera providing a 2D depth map,
see Fig. 1(c). We consider that an emitter emits probe
pulses in all directions within azimuth and elevation an-
gles θ and φ, both within [−67.5◦, 67.5◦]. The return echo
amplitudes, i.e. the number of returning rays per time
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FIG. 1. (a) 3D visualisation of our physical system: a rectan-
gular cuboid (yellow) moves within a room. Rays are emit-
ted within a pyramid-like volume and illuminate the scene.
Red arrows indicate examples of multipath reflections, which
eventually reach the detector (blue) that records their arrival
time. (b) An example of a recorded time histogram. (c)
Color-depth encoded 3D view of the scene. (d) Mean mean-
squared-error (MSE) with increasing multipath contributions,
calculated between the ground truth 3D scene and the neural
network reconstruction, averaged over 100 3D images. In-
sets show depth image reconstruction examples obtained for
1-path, 4-path, and 10-path events.

[Fig. 1(b)], are recorded in time at the detector that is
co-located with the emitter. Each scene is sampled with
10000 rays per object position, for 2000 objects positions.
This provides a data set of temporal trace-3D image pairs
that we use to train a convolutional deep neural network,
shaped such as to force information through a bottleneck
(see [31] for details) to extract features from data. We
then test the neural network with histograms that were
never used during training and render an estimate of the
scene in 3D. We repeat this analysis for an increasing
number of path events, starting from single-path until 10-
path events, and we analyse the quality of the reconstruc-
tions in terms of the mean-square error (MSE) between
the ground truth and the retrieved images (see [31–34]
for further details). To avoid specificity of the training
by the deep neural network architecture, we re-train the
network 10 times for each path event, such that for every
training round we leave the starting weights of the neural
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network random. This procedure guarantees a slightly
different image reconstruction every time the algorithm
is trained. Then, we average our reconstruction-quality
metrics over these 10 networks. Our results, summarised
in Fig. 1(d), show that the MSE decreases as the number
of multipath events is increased. In particular, we see
that the first 2-4 multipath echoes are the most impor-
tant and significantly improve scene reconstruction. This
can be seen clearly not only in the MSE but also in the
insets to Fig. 1(d) that show examples of a reconstruction
for 1, 4 and 10 path events. We clearly see that whilst for
single-path it is hard to distinguish the object position
due to blurring arising from the above mentioned am-
biguities, multipath information cures this problem and
allows to clearly resolve the 3D scene (see [31] for further
examples). We quantify the gain in information when
including an increasing number of paths using the con-
cepts of Shannon entropy, mutual information and joint
entropy as derived in Information Theory [35–37]. The
Shannon entropy gives the expectation value of uncer-
tainty reduction when observing a variable X at values
xi, which occur with probability p(xi):

H(X) = −
N∑
i=1

p(xi) log2 p(xi). (1)

More specifically, we take a set of 2000 examples of indi-
vidual temporal histograms from the numerical model de-
scribed above, within which we identify histogram shapes
xi that occur with probability p(xi). We can then calcu-
late the joint entropy H(X,Y ) for single-path histograms
X and 2-path histograms Y :

H(X,Y ) = −
M∑
j=1

N∑
i=1

p(xi, yj) log2 p(xi, yj). (2)

This can be extended to calculate the joint entropy for
data containing < n bounces and < (n + 1) bounces.
The mutual information, MI(X;Y ), then describes the
information shared by the two random variables due to
correlations within the data:

MI(X;Y ) = H(X) +H(Y )−H(X,Y ). (3)

We rearrange Eq. (3) to find the additional uncorre-
lated information, UI, in the multipath data Y , i.e.
the mutual information MI(X;Y ) subtracted from the
total information, H(Y ). In other words, the addi-
tional information that is gained by including photons
from a second or multiple reflections/paths is given by
UI(X;Y ) = H(X,Y )−H(X).
Figure 2(a) shows UI(X − 1;X) in log scale for increas-

ing number of reflections/paths. As can be seen, signifi-
cant additional (uncorrelated) information is gained from
the 2nd and 3rd reflections but becomes negligible after
4 reflections. Remarkably, in this configuration UI for
a 2-path signal is larger than the information contained
in the direct 1-path (standard LIDAR, single reflection)
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FIG. 2. (a) The gain in information when including photons
in the temporal data which have experienced an increasing
number of reflections within the scene. (b) A simulation of
a multipath scene as would be viewed by a camera. The
various reflections show different viewpoints of the mannequin
therefore intuitively explaining why multipath echoes contain
additional information but also why beyond the 4th bounce,
there is little or no gain of information (see text for details).

signal. An intuitive insight into understanding this gain
in information from multipath data is shown in Fig. 2(b):
the 3D dimensional rendering of a scene, as would be ob-
served by a camera placed at the detection point, appears
very similar to what would be observed in a room of mir-
rors. The first reflection (in black) provides only direct
line-of-sight information of the object; the first 4 reflec-
tions (in red) show different effective viewpoints (side-
view and back-view) that would otherwise be inaccessi-
ble and therefore increase the information; all successive
reflections (in light blue) are replicas of the first 4 reflec-
tions and do not contain additional useful information.
That said, we underline that in real life scenarios, the
noisy-channel coding theorem [35] indicates that adding
redundant replicas of information in the form of higher
order paths, could still lead to preservation of informa-
tion that is lost due e.g. to measurement noise.
Experiments. We show the validity of our approach

with experiments using two different sources of waves,
namely GHz radio-frequency (RF) and kHz-frequency
acoustic pulses. The experimental set-up in both cases
is identical to Fig. 1(a), where the emitter/detector is
an RF-antenna or a speaker and microphone, for the RF
and acoustic experiments, respectively.
For the experiments with RF waves, we use a transceiver
module (TI-AWR1642), which operates in the frequency
modulated continuous wave regime [38], with a range res-
olution and maximal unambiguous range of 4.4 cm and
9 m respectively. The transceiver probes the scene with
an angular aperture of 20◦ in the vertical plane and 180◦

in the horizontal plane (-3 dB FWHM). An analog-to-
digital converter samples the signal with 120 ns temporal
resolution and 133 Hz rate.
The experiments were conducted with a human individ-
ual walking around in a room with approximate dimen-
sions of 3× 4× 2.5 m3. The echo recordings from the RF
antenna are acquired in parallel to 3D (ground truth) im-
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FIG. 3. (a) RF and (b) acoustic results. The top rows of (a) and (b) show the time histograms that are truncated at increasing
times, therefore including an increasing number of multipath echoes. The last plot of first rows show the quality of the image
reconstructions in terms of mean-squared error (MSE) compared to the ground truth for a set of 100 scenes, for increasing
multipath events. The second row in (a) and (b) shows the corresponding images retrieved with the deep neural network, and
the ToF camera ground truth image.

ages via a ToF camera (Basler), which provides 80 × 60
pixel color-encoded depth images.
For the acoustic measurements, we replace the RF an-
tenna with a PC speaker (Logitech Z333 system, consist-
ing of 2 speakers + 1 subwoofer) and a PC microphone
(integrated in a Logitech C270 webcam). The speak-
ers emit a pulsed wave with centre frequency of 5 kHz
(λ ≈ 6.7 cm) and a bandwidth of 1 kHz, with duration of
50 ms and repetition rate ≈ 10 Hz. The microphone, co-
located with the speakers, records the returning echoes
for 100 ms at a sampling rate of 192 kHz. The data is
Fourier filtered so as to select only signals at (5±0.5) kHz.
The ToF 3D camera used to train the deep learning al-
gorithm was an Intel Realsense D435 capturing 64 × 64
color-encoded depth images. The room used for this ex-
periment had dimensions 7× 6× 2.5 m3). Note that the
recording time window in both cases, respectively of 80 ns
and 100 ms for the RF and acoustic experiments, is long
enough to ensure that the waves can reach the furthest
corner of the rooms and return to the detector.
For both the RF and acoustic measurements, we use the
pairs of ground truth ToF images and RF (or acoustic)
echo temporal traces to train a deep learning algorithm
based on convolutional layers followed by a Rectified Lin-
ear Unit activation function (see [31] for details). We use
9000 and 5000 pairs of data for training the neural net-
works for RF and acoustic data respectively, after which,

full 3D images can be retrieved from a single (previously
unseen) RF (or acoustic) temporal trace.
Figures 3(a) and (b) show the results for the RF and
acoustic cases, respectively (see also [31, 39] for videos).
To explore the role of multipath events, we trained and
tested our neural network with successively increased
temporal extension of the time histograms: truncation of
the data at short times corresponds to single path data,
calculated as the ToF to the farthest wall in the room.
We increase the truncation time (indicated in the figures)
by evaluating the longest ToF value for 2-path and 3-path
events in the room so as to include 2 and 3 bounces, thus
gradually increasing the information from higher order
path contributions. The retrieved 3D scenes [second row
in Figs. 3(a) and (b)] show that networks trained solely on
1-path events [first column of Figs. 3(a) and (b)] struggle
to provide a sharp 3D image as there are many possi-
ble scenes that correspond to the same single-path time
histogram. Increasing the number of multipath events
provides an increasingly improved reconstruction. This
improvement can be quantified by calculating the MSE
between the retrieved image and the ground truth, av-
eraged over 865 and 500 different measurements, for RF
and acoustics respectively. The MSE in Figs. 3(a) and
(b) (far-right graph), decreases monotonically with in-
creasing multipath contributions, in good agreement with
our modelling and experimentally shows the significant
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3D imaging capability achieved with multipath temporal
echoes. Note that our technique can exploit training on
a single individual to operate successfully on different in-
dividuals, recovering general shape and position, see [31].
In this work we focused only on imaging human individu-
als. Evidence from other work suggests that training with
additional objects and geometrical shapes should also be
possible [14] and generic imaging functionality has been
shown in a different but related multipath setting [40].

Conclusions. In summary, we have shown that mul-
tipath temporal echoes and deep learning can be used to
provide full 3D images of a scene. Applications of these
ideas might be found in imaging in closed environments
so as to enable efficient generation of multipath echoes,
for example with healthcare applications for homes and
hospitals of the future. Interesting developments might
include the generalisation to dynamic background sce-
narios, to open-air scenes, and to scenes incorporating

information from different viewpoints, thus opening ap-
plications in NLOS imaging and 3D mapping of com-
plex object geometries. More in general, multipath echo
imaging offers interesting opportunities, considering that
RF antennas can also be extremely compact (and are
currently present in cell phones) and that the acoustic
results were obtained with standard computer speakers
and microphones, thus effectively transforming everyday
household items into full 3D imaging systems.
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