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Abstract
In polygynous ungulates, males may achieve fertilization through the use of alterna-
tive reproductive tactics (ARTs), discrete phenotypic variations evolved to maximize 
fitness. ARTs are often associated with different male spatial strategies during the 
rut, from territoriality to female-following. Although variation in space use patterns 
of rutting male ungulates is known to be largely affected by the spatial distribution 
of females, information on the year-round habitat selection of alternative reproduc-
tive types is scant. Here, we investigate the seasonal variation in habitat choice of a 
large mammal with ARTs (territoriality and nonterritoriality), the Northern chamois 
Rupicapra rupicapra. Global Positioning System (GPS) data on 28 adult males were 
collected between February 2010 and December 2013 in the Gran Paradiso National 
Park (Italy) and used to fit resource selection functions to explore the ART-specific 
use of key topographic features, such as elevation, aspect, and slope, and vegeta-
tion phenology expressed as NDVI values. Territorial and nonterritorial chamois 
profoundly differed in their habitat selection not only during the rutting season. 
Compared to nonterritorial males, territorial males used lower elevations in summer 
and autumn, preferred southern slopes in spring and summer, and used steeper areas 
in summer but not in winter. We found no difference in seasonal selection of NDVI 
values between males adopting ARTs. Our results suggest that territorial males tend 
to occupy warmer, lower-food-quality habitats in late spring and summer, whereas 
nonterritorial males are free to follow and exploit vegetation phenology and more 
favorable temperatures. Different patterns of habitat selection may reflect different 
trade-offs between the optimization of energy balances throughout the year and the 
increase of mating opportunities during the rut in males adopting alternative repro-
ductive tactics.
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1  | INTRODUC TION

Habitat use, the way animals use resources for foraging, resting, 
nesting, denning, or escaping (Krausman,  1999), reflects the need 
to optimize energy demand, nutrient balance, and individual repro-
ductive success (MacArthur, 1972). Habitat selection occurs when 
habitat features are used disproportionately to their availability 
(Hall et  al.,  1997; Johnson,  1980), and reproductive success and 
survival may be seen as the main selective pressures that contrib-
ute to the evolution of habitat selection mechanisms (Hilden, 1965; 
Krausman, 1999).

In mammals, habitat use depends on a number of variables. 
These include biotic factors such as quality, quantity, and dispersion 
of food resources (Anderson et al., 2005; Nielsen et al., 2010) and 
abiotic factors such as ambient temperature (Pigeon et  al.,  2016), 
snow presence (Dussault et al., 2005; Rivrud et al., 2010), topogra-
phy (Kie et al., 2005), and presence of shelters (Lucherini et al., 1995). 
Additionally, individual factors such as sex (Villaret et  al.,  1997), 
physiology (e.g., estrus period: Dahle & Swenson,  2003; José & 
Lovari, 1998), body mass (du Toit & Owen-Smith, 1989), and presence 
of offspring (Dahle & Swenson, 2003; Dussault et al., 2005) may also 
influence habitat use. Habitat selection may be further impacted by 
intra- and interspecific competition (Kjellander et al., 2004) and sea-
sonality (Bjørneraas et al., 2011; Lott, 1991).

In mammals, males and females typically employ different 
strategies to maximize their fitness (Clutton-Brock,  1989; Emlen 
& Oring, 1977). Males, for example, prioritize the maximization of 
energy gain (Main, 2008) and the increase in mating opportunities 
(Clutton-Brock, 1989; Emlen & Oring, 1977), while females prioritize 
survival and successful rearing of offspring (Clutton-Brock,  1989). 
This, in turn, may lead to different strategies of spatial behavior 
between sexes (Bonenfant et  al.,  2004) and potentially to sexual 
segregation, that is, differential space, habitat, or forage use by 
the two sexes outside the mating season (see Bowyer,  2004 for 
a review). Hypotheses explaining habitat segregation, especially 
in ungulates, include differences in reproductive strategies and in 
risk of predation between sexes (the “reproductive strategy” or 
“predation-risk” hypothesis), differences in body size and selection 
of forage (the “sexual dimorphism-body size” or “forage-selection” 
hypothesis), differences in body size and activity budget (“activity 
budget” hypothesis), and differences in social preferences (the “so-
cial factor” hypothesis) (Bowyer, 2004; Main et al., 1996; Ruckstuhl 
& Neuhaus, 2000, 2002).

Space use pattern in males, especially during the mating sea-
son, is largely affected by the spatial distribution of females during 
the rut (Ostfeld et al., 1985), which in turn influences male mating 
system and success (Emlen & Oring,  1977; Maher & Lott,  2000). 
Habitat choice by males therefore results from an optimal trade-off 
between opportunity for survival and opportunity for reproduc-
tion, and its understanding may be further complicated by varia-
tion within mating systems, that is, by the presence of alternative 
reproductive tactics (ARTs, alternative ways to obtain fertilization 
and maximize reproductive success: Taborsky et al., 2008). ARTs are 

common in polygynous ungulates (Isvaran,  2005) and include, for 
example, resource-based territoriality, lekking behavior, tending or 
coursing behavior (Bowyer et al., 2020; Isvaran, 2005; Wolff, 2008). 
Reproductive costs and benefits may vary among tactics (Corlatti 
et  al.,  2012; Saunders et  al.,  2005) and different trade-offs may 
lead to the exploitation of different reproductive niches (Taborsky 
et al., 2008). In some species, ARTs can thus be associated with tro-
phic niche divergence, different foraging strategies, or spatial segre-
gation (e.g., Chao et al., 2013; Corlatti, Bassano, et al., 2013; Lattanzio 
& Miles,  2016). Habitat selection, for example, may be influenced 
by mating tactic in roe deer Capreolus capreolus (Mysterud, 1999). 
Different space use associated with different mating behavior 
during the mating season has been reported in different taxa (e.g., 
insects: Opaev & Panov,  2016; fish: Afonso et  al.,  2008; amphibi-
ans: Forester & Thompson, 1998; reptiles: Shine et al., 2005; birds: 
Andersson,  1980 and Nelli et  al.,  2016; mammals: Sandell,  1989; 
among ungulates: Lovari et  al.,  2008 for female roe deer, Corlatti 
et al., 2020 for Northern chamois Rupicapra rupicapra). To our knowl-
edge, however, no information is available on year-round space use 
variation in individuals adopting ARTs.

In male Northern chamois, two ARTs occur: territoriality and 
nonterritoriality (Corlatti et  al.,  2012; Krämer,  1969). During the 
November rut, territorial males actively defend an exclusive area 
at relatively low elevations (Corlatti et al., 2012; Krämer, 1969; von 
Hardenberg et al., 2000), while nonterritorial males display following 
behavior and territory intrusions (Corlatti et al., 2012; Krämer, 1969; 
von Hardenberg et  al.,  2000). ARTs profoundly differ in several 
ecological and physiological aspects during the rut (Corlatti & 
Bassano, 2014; Corlatti, Bassano, et al., 2013; Corlatti et al., 2012, 
2019). In the rest of the year, on the other hand, such differences 
are milder (cf. Corlatti et al., 2019). Information on space use in ter-
ritorial and nonterritorial male chamois is limited: Lovari et al. (2006) 
investigated alternative strategies of space use, supporting the oc-
currence of resident and migrant males, which may partly associate 
with ARTs. The hypothesis that in ruts with early abundant snow-
falls, females would move to low elevations, thereby favoring mat-
ing opportunities in territorial males, while in years with scarce or 
delayed snowfalls, females would stay at high elevations, thus favor-
ing mating opportunities in nonterritorial males (Lovari et al., 2006) 
was recently supported by GPS data (Corlatti et al., 2020). Although 
seasonal habitat selection was studied in Northern chamois (Lovari 
et  al.,  2006; Nesti et  al.,  2010; Unterthiner et  al.,  2012), no infor-
mation on ART-specific spatial behavior outside the rut is available.

The onset of chamois territorial behavior is in late spring (von 
Hardenberg et al., 2000) and previous studies suggested that territo-
rial males tend to occupy lower elevations than nonterritorial males 
throughout the year (Corlatti, Bassano, et  al.,  2013). In this study, 
we evaluate whether there are differences in seasonal patterns of 
habitat selection between ARTs, in terms of altitude, slope, and as-
pect, which are important determinants of temperature (Apaydin 
et  al.,  2011), precipitation (Basist et  al.,  1994), and snow accumu-
lation (Jost et al., 2007), thus indirectly influencing foraging oppor-
tunities in herbivores. We also investigated differences in seasonal 
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selection of vegetation productivity, expressed as Normalized 
Difference Vegetation Index (NDVI) values (Rouse et  al.,  1974; 
Tucker et  al., 1985). Previous studies correlated NDVI values with 
grass biomass (Schino et al., 2003) and fecal crude protein content 
or nitrogen fecal content, considered indicators of vegetation qual-
ity (Hamel et al., 2009). We anticipated that territorial males should 
positively select lower elevations, steeper and south-facing slopes 
since springtime, when they start defending their territories, as 
those areas will be snow-free during the rut, therefore more attrac-
tive to females. Nonterritorial males, on the other hand, would move 
to higher elevations in spring–summer, following the vegetation 
green-up. Thus, NDVI values of areas occupied by territorial males, 
especially in spring and summer, should be lower than those of areas 
used by nonterritorial males. At the end of the mating season, when 
foraging opportunities are constrained by snow cover, we expect no 
differences in habitat selection between male tactics.

2  | MATERIAL S AND METHODS

2.1 | Study area and population

The study was conducted in the upper part of the Orco Valley and 
of the Valsavarenche Valley, within the Gran Paradiso National Park 
(hereafter GPNP, Western Italian Alps, 45°26′30″N, 7°08′30″E) 
(Figure  1). The area extends over 66.3  km2, with an average alti-
tude of 2,346 m a.s.l. (min 1,344 m, max 3,393 m). During the study 
period 2010–2013, the area was characterized by daily mean pre-
cipitation between 2.7  mm in winter and 4.5  mm in autumn and 
by daily minimum average temperature between −7.8°C in winter 
and +7.3°C in summer (own data; for the definition of season, see 
paragraph Statistical analysis below). Within the study site, veg-
etation on south-facing slopes is quite homogeneous, consisting of 

graminoids, forbs, and shrubs. At the lowest elevations of the south-
facing slopes, there are mixed woods of larch Larix decidua; however, 
most of the area is characterized by xero-thermophilous grasslands, 
dominated by meadows of colored fescue Festuca varia, associated 
with sedges Carex sp. and rush Juncus sp. The north-facing slopes 
are characterized by alpine and subalpine meadows of Alpine sedge 
Carex curvula at higher elevations and woods of larch and patches 
of alder shrubs Alnus viridis at lower elevations. The male chamois 
population in the GPNP has been protected since 1922, and it shows 
summer densities of approximately 10  ind./km2 (Corlatti, Fattorini, 
et al., 2015).

Between 2010 and 2012, 28 adult (3.5–12  years old) male 
chamois were ground-darted by the Park personnel with a com-
bination of xylazine and ketamine. Captures were always per-
formed with the presence of a veterinarian, in accordance with 
the Italian law. During captures, each animal was equipped with 
an individually recognizable Global Positioning System (GPS) collar 
(Vectronic Aerospace GmbH). Animals were classified into “terri-
torial” (“T,” n = 12) or “nonterritorial” (“NT,” n = 16). The distinction 
between male types was based on the cluster analysis of behav-
ioral patterns and space use during the mating season, assuming 
that territorial males would have higher site fidelity and win more 
intrasexual interactions than nonterritorial males. Specifically, 
for each individual, the home range (90% fixed kernel) was calcu-
lated using high-quality GPS locations, that is, with at least four 
satellites and dilution of precision values lower than 10 (Lewis 
et al., 2007), and individual tracks were kernel-smoothed with the 
plug-in bandwidth selector (“hpi”) of Wand and Jones (1994). The 
proportion of intrasexual interactions won was calculated using 
behavioral data recorded throughout the mating season, during 
hourly sessions of observations ad libitum (Altmann,  1974) on 
each individual. A male was considered as winner if the opponent 
was chased away or displayed submissive behaviors. These two 

F I G U R E  1   (a) Location of the Gran 
Paradiso National Park (red area, Western 
Italian Alps); (b) location of the study 
site (red area) in the southwestern part 
of the Gran Paradiso National Park; (c) 
topographic features of the study area
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parameters were combined in a matrix, and multivariate hierarchi-
cal clustering (Everitt et al., 2011) using the Mahalanobis distance 
(Mahalanobis, 1936) was conducted. Males were classified as ter-
ritorial if they had small home ranges and high values of intrasex-
ual interactions won.

Details of the statistical procedure for the distinction between 
ARTs are reported in Corlatti et al. (2012), while full data and codes 
are available from Corlatti et al. (2019). It is important to stress that, 
although this dichotomic classification is unlikely to fully capture in-
terindividual variability (e.g., owing to variation in home-range size 
and behavioral patterns displayed by males, cf. Corlatti et al., 2012; 
Corlatti et al., 2019), the occurrence of territorial and nonterritorial 
behavior has been long recognized in chamois (cf. Krämer, 1969) and 
in several other ungulates (Maher & Lott, 1995; Owen-Smith, 1977). 
Furthermore, our classification proved effective at capturing major 
variations in several chamois traits; for example, T and NT showed 
significant differences in altitudinal range (Corlatti et  al.,  2020; 
Corlatti, Bassano, et  al.,  2013), stress physiology (Corlatti,  2018; 
Corlatti et al., 2012, 2014), testosterone levels (Corlatti et al., 2012, 
2019), parasite burden (Corlatti et al., 2012, 2019), foraging behav-
ior (Corlatti & Bassano,  2014; Corlatti, Bassano, et  al.,  2013), rut-
ting behavior (Corlatti, Caroli, et al., 2013), mating success (Corlatti 
et  al.,  2012), and reproductive success (Corlatti, Bassano, et  al., 
2015).

2.2 | Data collection

Between February 2010 and December 2013, we collected 1 lo-
cation (fix)/7 hr for each animal. Only high-quality GPS locations 
were used. Overall, we collected 33,367 GPS fixes on 12 territorial 
and 16 nonterritorial males. Not all individuals were sampled over 
the entire period: Each chamois was monitored for a median of 
26 months (min. 3, max. 37 months), for a median of 1,308 fixes/
individual (interquartile range [IR]: 758, 1531) and a median fre-
quency of 52 fixes/month/individual (IR: 32, 61) and 2 fix/day/
individual (IR: 1, 2).

The QGIS software (QGIS Development Team, 2020) was used 
to extract the geomorphological variables from a 10 × 10 m digital 
elevation model (Tarquini et  al.,  2007, 2012) covering the entire 
study area. Specifically, we extracted information about altitude 
(in m), slope (in °), and aspect (southness). Southness was calcu-
lated as -cos(α), where α is the aspect in radians of the 10 × 10 m 
square cell and varies from −1 (complete exposure to north) to 
+1 (complete exposure to south). We acknowledge that part of 
the variance in habitat selection may be explained by among-
year variations in climatic conditions. Indeed, climatic conditions 
alone would likely not suffice, and a spatially explicit account of 
different conditions experienced by animals in terms of, for ex-
ample, pasture quality, local temperature conditions, and snow 
accumulation would be desirable. For this reason, in addition to 
the orographic variables, we included NDVI values as a proxy of 
vegetation productivity and quality (e.g., Pettorelli et  al.,  2007). 

NDVI data were obtained using the package MODIStsp (Busetto & 
Ranghetti, 2016) for R v. 4.0.4 (R Development Core Team, 2020) 
in RStudio v. 1.3.1056 (RStudio Team, 2020).

2.3 | Statistical analysis

GPS coordinates of all chamois locations were imported in QGIS, 
and the corresponding value of the environmental variables was 
assigned to each fix. To define habitat availability (see paragraph 
2.3), for each GPS fix, we generated a set of 10× points, randomly 
located within an area defined by a 95% kernel density estimation 
(Silverman,  1986) encompassing all GPS fixes, and we assigned 
the same set of variable values as we did for the real locations. 
GPS locations and random points were handled using the R pack-
ages sp (Pebesma & Bivand, 2005), rgdal (Bivand et al., 2019), rgeos 
(Bivand & Rundel,  2019), raster (Hijmans,  2019), and adehabitatHR 
(Calenge, 2006).

Habitat selection was analyzed by generating resource se-
lection probability functions following a “use versus availability” 
approach (Boyce et  al.,  2002). In particular, to test the effect of 
the orographic variables and NDVI on the probability of a positive 
classification, we compared the variables measured at real chamois 
locations (1) with those measured at random locations (0) fitting 
generalized linear mixed models assuming a binomial conditional 
distribution, using the package lme4 (Bates et al., 2015). To inves-
tigate differences in patterns of resource selection between ter-
ritorial and nonterritorial males, we included as predictors in our 
models the two-way interactions between each explanatory vari-
able (altitude, slope, southness, and NDVI) and a factor variable 
with two levels describing the mating behavior (T  =  “territorial”; 
NT = “nonterritorial”). As animals would seldom select extreme val-
ues of altitude, slope, and southness, to capture potential curvilin-
ear relationships with chamois occurrence, quadratic terms for the 
orographic variables (and their interaction with mating behavior) 
were included in the linear predictor, and quadratic models were 
compared with simpler linear models based on their AIC values 
(Burnham & Anderson, 2002). Individual ID was set as a random in-
tercept in all models to account for correlation that stemmed from 
repeated sampling of the same individuals.

As opposed to highly dimorphic mountain ungulates (e.g., big-
horn sheep Ovis canadensis or Alpine ibex Capra ibex), where the 
adoption of ARTs largely depends on age, body mass, and horn size 
(Pelletier & Festa-Bianchet,  2006; Willisch et  al.,  2012), territorial 
and nonterritorial males do not show significant differences in terms 
of age or morphological features (cf. Corlatti et al., 2012; Corlatti, 
et al., 2019). Lack of major morphological differences is further sup-
ported by the occurrence of compensatory growth in body mass and 
horn size in chamois (Corlatti, Gugiatti, et al., 2015; Rughetti & Festa-
Bianchet, 2010), which tends to reduce individual differences among 
adult male chamois. Biometric information was thus not included in 
the models. Individuals consistently adopted the same mating tac-
tic over several years and had similar home-range size in different 
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years (Cotza et al., own data); thus, we assumed consistency in the 
individual ART.

We fitted one model for each of the four seasons, defined ac-
cording to the period of the year and the biology of the species: 
spring (April–June, beginning of territorial behavior and birth sea-
son, beginning of snow melting), summer (July–September, warmest 
period), autumn (October–December, mating season, first snowfall), 
and winter (January–March, coldest period) (cf. Viana et al., 2018, 
for another mountain ungulate, the Iberian ibex Capra pyrenaica). To 
validate the final models, we calculated Tjur's R2 (Tjur,  2009) and 
tested the performance of each model by the percentage of correct 
classifications of original cases and receiver operating characteristic 

(ROC) curve analysis, using the R packages performance (Lüdecke 
et al., 2019) and pROC (Robin et al., 2011).

3  | RESULTS

Table 1 reports the estimates of the coefficients of the four fitted mod-
els. Figure 2 shows the effects of the interaction between environmental 
variables and mating behavior. All models returned high values for the 
ROC curve, had high percentages of correct classification, and explained 
much of the variation in the response variables, with weak individual 
effect (Table  1). For all response variables, models without quadratic 

F I G U R E  2   Marginal effects of the models fitting the two-way interaction between mating behavior (T = “territorial,” in blue; 
NT = “nonterritorial,” in orange) and altitude (in m a.s.l.), slope (in °), southness (−1/+1), and normalized difference vegetation index (NDVI; 
0/+1) to explore seasonal habitat selection in male chamois in Gran Paradiso National Park between 2010 and 2013
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effects in the linear predictor were always less competitive (i.e., they had 
lower AIC values) than models with quadratic effects (Table 1).

3.1 | Altitude

The interaction between mating behavior and altitude (quadratic ef-
fect) was always significant, suggesting different use of elevation be-
tween the two alternative reproductive tactics throughout the year. 
In particular, territorial males generally selected lower altitudes than 
nonterritorial ones (Table 1). The models showed that in spring, both 
territorial and nonterritorial males were more likely to be found at 
altitudes between 1,800 and 2,000 m, but territorial males showed a 
narrower preference for the areas around 1,900 m whereas nonter-
ritorial males selected a wider altitudinal range (Figure 2). In sum-
mer, both male types moved upward but the model suggested a 
lower overlap than in spring, with territorial males selecting altitudes 
around 2,200 m and nonterritorial males altitudes around 2,500 m 
(Figure 2). In autumn, the difference between alternative tactics was 
slightly less evident than in summer, with territorial males finding 
an optimum between 1,800 and 1,900 m, while nonterritorials se-
lected the same elevations observed in spring, between 2,000 and 
2,200 m (Figure 2). In winter, both tactics tended to select lower alti-
tudes, although nonterritorials showed an optimum of preference at 
2,000 m while territorial males tended to select even lower altitudes 
(Figure 2).

3.2 | Slope

In general, both territorial and nonterritorial males showed prefer-
ence for slopes between 30 and 50° in spring and in summer and 
for steeper slopes between 40 and 60° in autumn and winter. 
Significant differences in the effect of slope on a positive classifica-
tion of points between the two reproductive tactics were evident 
throughout the year (Table 1). In spring, although the use of slope 
in two alternative tactics showed a large overlap, the gentler slopes 
were relatively more selected by territorial males (Figure 2). In sum-
mer, territorial male chamois selected steeper slopes, with an opti-
mum at about 45°, while nonterritorial males showed a preference 
for areas at approximately 30° (Figure 2). In autumn, the two tactics 
showed large overlap in the selected slopes, but nonterritorial males 
increased their preference for steeper areas (between 40 and 60°), 
as compared to summer (Figure 2). Similarly, in winter, we observed 
a significant difference between territorial and nonterritorial cham-
ois: the former selected areas around 35° and the latter positively 
selected areas between 40 and 60° (Figure 2).

3.3 | Aspect

The southern exposures were generally always preferred by both 
male types in all seasons (Table 1). The coefficients of the models 

show greater selection of southern slopes by territorial males in 
spring and in summer, indicating that in these periods territorial 
males are (relatively) more likely to be found on southern-exposed 
aspects than nonterritorial ones (Figure  2). In autumn and in win-
ter, differences between the two male types were milder (Figure 2). 
However, while in winter no significant difference was detected 
(Table 1) and both ARTs tended to avoid the north-facing exposures, 
in autumn this avoidance was greater in territorial males (Figure 2), 
leading to significant differences between ARTs (Table 1).

3.4 | NDVI

In general, NDVI values were positively associated with chamois 
presence in spring, autumn, and winter, indicating a preference 
for “greener” areas in those seasons. This effect was particularly 
evident in winter, as suggested by a greater effect size (Table 1). 
Notably, however, we did not observe any significant difference 
between territorials and nonterritorial males in NDVI selection in 
any season.

4  | DISCUSSION

Males adopting alternative reproductive tactics in chamois pro-
foundly differed in their habitat selection not only during the rutting 
season, but throughout the year. Compared to nonterritorial males, 
territorial males used lower elevations especially in summer and au-
tumn, used steeper areas in summer and preferred southern slopes 
in spring and summer. ARTs did not show difference in the selection 
of NDVI throughout the year.

In spring, the strong preference of territorial males toward low-
elevation, southern-exposed slopes may reflect early occupation of 
territories (von Hardenberg et al., 2000), possibly suggesting a strong 
influence of the need to increase mating opportunities on their habi-
tat choice, as these areas may be occupied by females during the rut 
(Corlatti et al., 2020; Lovari et al., 2006). Conversely, habitat prefer-
ences in nonterritorial males in spring appeared looser, especially in 
terms of elevation, and may reflect the need to exploit foraging op-
portunities; for example, nonterritorial males may tend to follow the 
upward shift in vegetation green-up. This suggestion is supported by 
available data on females, which show that females and nonterrito-
rial males increase their home-range size and move to higher eleva-
tions from late spring, suggesting a more similar movement pattern 
between these two categories than between females and territorial 
males (cf. Nesti et al., 2010 for comparison among females, migrant, 
and resident males, and Corlatti et al., 2020). These results are in line 
with previous studies on other species of mountain ungulates, which 
undertake seasonal migrations as adaptation to exploit temporal dif-
ferences in vegetation phenology (Albon & Langvatn, 1992; Bischof 
et al., 2012; Festa-Bianchet, 1988; Mysterud et al., 2001) and in re-
sponse to changes in snow cover, temperature, and solar radiation 
(Aublet et al., 2009; Richard et al., 2014).
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Similarly, also over the summer, territorial males tended to se-
lect areas at lower elevation, with steeper and southern-exposed 
slopes, compared to nonterritorial ones, which may have exploited 
the upward shift in vegetation phenology (Albon & Langvatn, 1992; 
Bischof et al., 2012; Mysterud et al., 2001). We may hypothesize that 
these areas were positively selected by territorials because they will 
be snow-free territories during the rutting season, thus attractive 
to females (Corlatti et  al.,  2020; Lovari et  al.,  2006). Indeed, mat-
ing opportunities are expected to still play a major role in habitat 
selection of territorial chamois in this time of the year, as dominant 
males should defend their territories until autumn (von Hardenberg 
et al., 2000), whereas habitat choice in nonterritorial males should 
be mainly driven by foraging opportunities. This hypothesis is sup-
ported by the fact that chamois female spatial behavior, which is 
less constrained than male spatial behavior by reproductive needs, 
is closer to the nonterritorial than to the territorial spatial behavior. 
If so, territorial behavior may hamper energy acquisition, because 
crude protein content in vegetation typically increases with altitude 
in summer (Albon & Langvatn, 1992; Van Soest, 1994). Therefore, 
habitat choice in territorial males likely reflects a complex combina-
tion of mating and foraging opportunities and costs. Furthermore, 
these trade-offs may change depending on individual heterogene-
ity. Some territorial males, for example, may stay at lower elevations 
throughout the summer, in order not to lose their territory, while a 
few others may afford to temporarily abandon their territory and re-
turn to it before the rut (own data), thus exploiting the higher forage 
quality found at higher elevations.

In autumn, mating opportunities are expected to play a greater 
role in habitat selection than foraging opportunities in both male 
types: In the November rut, males tend to lower their food intake 
in favor of mating effort (Willisch & Ingold, 2007), although the oc-
currence of hypophagia is more evident in territorial than in nonter-
ritorial males (Corlatti & Bassano, 2014). All in all, we may expect a 
relatively high degree of overlap in the home ranges of males, thus 
nonsignificant differences in habitat selection, owing to the frequent 
male–male interactions (Corlatti et al., 2012). However, while both 
male types positively selected southern-exposed steep areas, there 
was a stronger selection for low elevations in territorial than in non-
territorial males. A possible explanation for this pattern is that the 
dominance expressed by territorial males may have forced nonter-
ritorial males to occupy areas outside the territories (e.g., above the 
territories). Nonetheless, we should also point out that the differ-
ence in elevation between male types could also reflect variation in 
mating opportunities over different years, irrespective of male–male 
contests. In years with little snow cover, nonterritorial males may 
remain at higher elevations, where the majority of females are, while 
territorial males would be forced to remain at lower elevations, in 
their territories (Corlatti et al., 2020; Lovari et al., 2006).

Mating opportunities are unlikely to play a major role in habitat 
selection during winter, as territoriality is not expressed in this pe-
riod. Rather, winter climate may force both male types to occupy sites 
with greater foraging opportunities, that is, steep, southern-exposed 
slopes at low elevations, likely snow-free. Such areas would further 

favor thermoregulation; Brivio et al. (2016), for example, found that 
chamois activity was positively related to radiation during the winter 
months and suggested that chamois could benefit from the absorp-
tion of solar radiation in winter. A similar behavior was observed for 
another mountain ungulate sharing the habitat with chamois, the 
Alpine ibex (Signer et  al.,  2011). Nonetheless, nonterritorial males 
positively selected for steeper slopes at seemingly higher elevations, 
compared to territorial males. We may hypothesize that after the 
great energy expenditures that occur during the rutting period, ter-
ritorial males may temporarily lose their dominance over nonterrito-
rial ones, which may take over the best wintering sites, that is, those 
that granted little snow accumulation. Alternatively, we may also 
hypothesize that some territorial males, after the rut, may move to 
even lower elevations, where they do not need to select for steeper 
slopes, as those areas will be already snow-free.

Notably, our results suggest that all males, irrespective of the 
mating tactic, selected “greener” areas (i.e., with higher values of 
NDVI) in spring, autumn, and especially in winter. The lack of dif-
ference between territorial and nonterritorial males in the selection 
of vegetation productivity seemingly contradicts the hypothesized 
differences in terms of foraging opportunities between ARTs, espe-
cially in spring and summer. The use of NDVI as an index of veg-
etation productivity associated with ARTs, however, needs to be 
treated cautiously, as the direct use of NDVI values as a proxy of 
bromatological variables (e.g., crude protein, neutral and acid de-
tergent fiber, and aboveground biomass, indicators of plant qual-
ity and nutrient contents) is weakly supported in our study area 
(Ranghetti et al., 2016). Similar values of “greenness” may thus en-
tail different quality of pastures, and data on the forage energetic 
value associated with the areas used by the two male tactics are 
needed to further investigate ART-specific foraging opportunities. 
A previous study suggested no major differences in crude protein 
content in the diet of territorial and nonterritorial males through-
out the year (Corlatti, Bassano, et al., 2013). In late spring and sum-
mer, this lack of difference in ART-specific dietary quality may owe 
to greater amount of time spent foraging by territorial males (cf. 
Corlatti, Bassano, et al., 2013). Namely, territorial males may inhabit 
lower-food-quality habitats in spring and summer, compared to non-
territorial males (cf. Albon & Langvatn, 1992, Van Soest, 1994), but 
still increase their dietary quality by spending more time being more 
selective in their food choice (cf. Corlatti & Bassano, 2014). Whether 
this hypothesized selective behavior may entail greater energetic 
costs for territorial males still needs to be clarified: In summer, for 
example, warmer temperatures at low elevations could increase heat 
stress (Parker,  1988, for black-tailed deer Odocoileus hemionus co-
lumbianus; Grignolio et al., 2004, for Alpine ibex; van Beest et al., 
2011, for moose Alces alces) and possibly limit the energy gain by 
constraining foraging time (Aublet et al., 2009; Mason et al., 2014).

Information on habitat selection of alternative reproductive tac-
tics is limited (cf. Taborsky et al., 2008). To our knowledge, this study 
represents the first attempt to investigate the year-round variation 
in habitat choice of a large mammal displaying ARTs. Different pat-
terns of habitat selection may reflect different trade-offs between 
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opportunity for survival and reproduction in ARTs. Our results sug-
gest that territorial behavior may possibly force males into warmer, 
lower-food-quality habitats, during late spring and summer, whereas 
nonterritorial males may have the opportunity to follow and exploit 
vegetation phenology and more favorable temperatures: Trade-offs 
may thus develop between the optimization of energy balances be-
fore the rut and the increase of mating opportunities during the rut 
in ARTs (cf. Corlatti, Caroli, et al., 2013). Finally, while our study sug-
gests that individual year-round variation in habitat selection may 
be dictated by the occurrence of ARTs, the origin of alternative male 
mating behaviors itself may largely depend on the spatial distribu-
tion of females (Corlatti et al., 2020; Lovari et al., 2006). In turn, this 
suggests that linking alternative male reproductive tactics and male 
habitat selection is a complex issue that entails the indirect effect of 
female spatial behavior (cf. Emlen & Oring, 1977).
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