
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

© The Authors 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of Mindtrek '21, 2-3 Jun 2021, pp. 154-164. ISBN 9781450385145.

http://eprints.gla.ac.uk/240507/

Deposited on: 30 April 2021
Observing Virtual Avatars: The Impact of Avatars’ Fidelity on Identifying Interactions

Florian Mathis
florian.mathis@glasgow.ac.uk
University of Glasgow
Glasgow, United Kingdom

Kami Vaniea
kvaniea@inf.ed.ac.uk
University of Edinburgh
Edinburgh, United Kingdom

Mohamed Khamis
mohamed.khamis@glasgow.ac.uk
University of Glasgow
Glasgow, United Kingdom

Figure 1: We investigate the impact of an avatar’s fidelity on a bystander’s performance when identifying the avatar’s touch, mid-air, and eye gaze gestures. We had an abstract avatar (➊) and two more realistic avatars (➋, ➌), which are provided by Microsoft Research [24] and modified based on our investigation. We use touch, mid-air, and eye gaze gestures performed by a human in the real world (➊) as our baseline.

ABSTRACT
There are many cases where observing the interactions of a virtual avatar can be useful. However, it is unclear to what extent the avatar fidelity affects bystanders’ performance when observing gestures performed by avatars. We, therefore, conducted an online study (N=28) with different avatars performing (1) touch; (2) mid-air; and (3) eye gaze gestures. Our avatars range from abstract avatars to a more realistic one. Our study shows that abstract avatars provide bystanders with the same interaction information as more realistic avatars. This implies that it is sufficient to use abstract avatar designs when observing interaction behaviour in virtual environments and researchers do not necessarily need to go through time-consuming and expensive implementations of highly realistic avatars to answer their research questions, making Virtual Reality (VR) studies more accessible to the broader research community. Finally, we discuss studying VR security systems as a potential research application for which abstract avatars can be leveraged.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation methods; Mixed / augmented reality.

KEYWORDS
Virtual Reality, Virtual Environments, Avatars, Input Methods

ACM Reference Format:

1 INTRODUCTION
Virtual avatars are used extensively in different research fields such as gaming [9, 37], education [11, 54, 81], or social virtual environments (VE) [15, 16, 29, 36, 88]. There is a large body of work that investigated the perception of virtual avatars (e.g., [62]) or studied people’s body ownership of a virtual avatar (e.g., [25]). At the same time, surprisingly little is known about bystanders’ performance and perception when observing virtual avatars providing input with touch, mid-air, and eye gaze. For example, are bystanders able to distinguish between different mid-air gestures performed by an abstract avatar? Or do we need highly realistic avatars that better match with the interactions performed by a human in the real world? Finding answers to these questions can be particularly important. The recent restrictions in conducting face-to-face user studies due the COVID-19 pandemic [52] forced many researchers

1Note that in contrast to other works (e.g., [27]) that used the term bystander for Non-HMD users, we use the term bystander when we refer to other users in the same environment. This can be a person next to a human (in the real world, our baseline) or a user next to an avatar (in a virtual environment).
to find alternative ways to conduct human-centred research. There is already work that looked into using VR as a test-bed to, for example, evaluate user behaviour in front of public displays [39]. However, it remains unclear how avatar designs impact bystanders’ performance and perception when observing corresponding human gestural movements. If abstract avatars can provide the same information to other co-located users as highly realistic avatars or even humans in the real world, then the additional effort required to set up more realistic avatars can be eliminated; making human-centred studies in virtual environments (also called “VR studies” [39, 41, 46, 63]) more accessible to the broader HCI community. VR studies can also be particularly helpful in times where face-to-face user studies are challenging to conduct (e.g., not having access to specific equipment and/or physical locations) [39] or even prohibited (e.g., due to COVID-19 restrictions) [44].

Our work contributes the results of an online study (N=28) where participants (in the role of bystanders) watched gestures performed by a human in the real world (baseline) and by different avatars in a virtual environment (Figure 1). We expected gestures performed by more realistic avatars to be easier to identify than those performed by an abstract avatar; however the difference was found to be negligible. Our work suggests that easier to create/less resource-based avatars can already provide researchers with sufficiently accurate findings and, depending on the research context, lead to similar research findings as more realistic avatars, thereby reducing the required effort to leverage VR for human-centred research.

1.1 Contribution Statement
The contribution of our work is threefold:

(1) We explore the impact of avatar fidelity2 on bystanders’ interaction identification performance when performing touch, mid-air, and eye gaze gestures.

(2) We show through a user study that an abstract avatar design can already provide bystanders with the same amount of information as observing a human in the real world (baseline).

(3) We discuss the implications of our findings in the context of social VR and propose and discuss studying VR security systems as a potential application area for which abstract avatars can be leveraged (see Section 5.2).

2 RELATED WORK
To guide readers of this work from more general VR research to more specific avatar-focused research, we first discuss recent works which leveraged VR studies for human-centred research. We then revisit works which studied avatar designs in virtual environments and users’ perception of different avatars. Finally, we discuss prior works which investigated the visual identification of human gestural movements.

2.1 Virtual Reality Studies (“VR studies”)
Prior works on virtual reality research, including the works about avatar design that we discuss in Section 2.2, and also, for example, the different locomotion techniques (see [22] for an overview) or novel VR interaction techniques (e.g., [3, 7, 74]), provided the ground work to apply VR studies for more general human-centred research. For example, there is already research that applied VR to evaluate user behaviour in front of public displays [39] or studied a real-world authentication system’s usability and security through replication studies in VR [41]. In the work by Saffo et al. [63] the researchers even proposed remote VR experiments using social VR platforms to produce practically and ethically valid research results. Similar to the transition of lab to online studies through surveys or online platforms, VR studies can further inspire and support human-centred research in times where face-to-face user studies are not applicable or challenging to conduct (e.g., having access to specific physical locations [39]). There is a significant larger body of research that used VR as a platform for human-centred evaluations (e.g., [64, 86, 87]) and discussed the strengths and potential pitfalls of such (remote) VR studies (e.g., [44, 60]).

2.2 Research on Virtual Avatars
2.2.1 Avatars in Virtual Environments. There is a large body of work on avatars that aimed to understand body ownership and further effects on psychological theories. Work by Slater et al. [70] examined the role of the virtual body in immersive virtual environments and it became clear that, similar to our body in reality, the virtual body plays a primary role in virtual environments. Particularly, the virtual body is the representation of self and lays the foundation of an interaction model for body-centred interactions. Follow up work by Slater et al. [68] showed that there seems to be a relationship between body movement and presence, highlighting the importance of semantically appropriate body gestures (e.g., head movements) that are considered to be “natural” and can likely increase users’ presence. In a similar vein, more recent works by, for example, Piumsomboon et al. [56] showed that the presence of an adaptive avatar significantly improved social presence and the overall experience of collaborations in virtual environments.

Merola et al. [45] even argued that “using an avatar is in many ways like donning a halloween costume” and that avatars can change users’ behaviour. Saffo et al. [63] also emphasised the importance of the avatar selection in their guidelines for social VR studies. The findings by Heidicker et al. [29] even suggested that more abstract avatars (e.g., head and hands only) already produce an increased feeling of co-presence and behavioural interdependence, which implies that complete avatar bodies are not necessarily required in social VR [29] (e.g., see also Mozilla Hubs [47]). That being said, Gonzalez-Franco et al. [23] have recently argued that rigged avatars will be key to the future of VR and its wide adoption. They also open-sourced an avatar library for research and academic purposes that can further help researchers to adopt VR for their research [24]. All the previous works emphasise the importance of avatars in virtual environments.

2.2.2 Perception of Others’ Avatars in Virtual Environments. Work by Slater et al. [69] explored computer generated audiences of avatars and how they are perceived when training individuals to give speeches. The proposed audience avatars were capable of moving their heads and came with different facial expressions. Slater et al. [69] concluded that human subjects respond appropriately to a negative or positive virtual audience. It has also been argued that avatars are more effective when perceived as humans. Ströfer et al.

2Note that with the term “fidelity” we refer to the extent to which the different avatars convey the look of a human in the real world (similar to [83]).
VR related research (e.g., to study human behaviour in front of a public display with high accuracy by observers. There are some additional works that we use a Leap Motion Controller for the finger tracking and the OptiTrack systems for finger tracking [34]) or Microsoft Kinects for body tracking [73]). Furthermore, there are many ways to represent users in VR (e.g., [24, 29, 53]), and it is often not clear which one best imitates users. It is common to embody avatars of various appearances ranging from abstract to realistic [50]. Although there are human-centred works that studied visual identification of human gestural movements (e.g., [79]), the impact of an avatar’s fidelity on users’ gesture identification performance seems to be relatively unexplored.

We, therefore, explore in this work the impact of different avatar fidelities on bystanders’ interaction identification performance. In other words, we compare how well different avatars can be observed when performing touch, mid-air, and eye gaze gestures.

3 PREAMBLE

To find answers to bystanders’ interaction identification performance, we covered three different avatars (ranging from an abstract avatar to a highly realistic avatar by Microsoft Research [24]) and used a human in the real world as our baseline. We evaluated the different avatars in front of a public display that allows input with three input methods: touch, mid-air, and eye gaze. All input methods and corresponding gestures are summarised in Table 1. We cover a wide range of different input methods and gestures, many of which are frequently used in virtual environments (e.g., touch: [42, 76], mid-air: [72, 77], eye gaze: [42, 53]). We decided to pre-record the interactions of both the human in the real world and the avatars in a virtual environment. We borrowed this approach from researchers who used video recordings to assess a system’s resistance against observations (e.g., [4, 10]) or studied human action perception (e.g., [35]). Recording the interactions (vs live observations) also enabled us to conduct the entire study online and provide all participants with the exact same set of material (i.e., in live observations the experimenter’s gestures likely vary between participants).

3.1 Apparatus and Implementation

We used Unity 3D (C# as programming language) to set up a virtual room and the different avatars. The experimenter performed all interactions outlined in Table 1 in (a) the real world and (b) in the virtual world. To support the experimenter performing the interactions, we replicated the interface of [32]’s public display to indicate the gesture direction for touch and mid-air (see also Figure 2). For eye gaze, moving targets were used as stimulus that move along the trajectories as outlined in Table 1. This approach is equivalent to prior work that used moving targets to enable gaze-based interaction (e.g., [32, 82]). All avatars used in our study are tracked through the VR headset’s position and rotation in the space. Furthermore, we use a Leap Motion Controller for the finger tracking and the integrated Tobii eyetracker (together with the Tobii XR SDK [80]) for the eye gaze movement of the avatars. For the more realistic avatars, we used an avatar provided by Microsoft Research [24] that we slightly modified based on the purpose of our research. We calculated the joint angles of the arms using Unity’s Animation Rigging package and Inverse Kinematics (IK) [30] to increase realism and link the avatar’s hands to the avatar’s body. While this means
we still do not rely on any additional high-end tracking systems (except two additional HTC VIVE trackers), implementing the highly realistic VR avatar requires significantly more expertise and effort compared to the implementation of the abstract avatar that does not require any inverse kinematics calculations nor additional HTC VIVE trackers and is based on simple 3D shapes (i.e., a cube for the head and three cuboids that are merged together for the body). We used the same hand asset (i.e., low polygon hands) for all avatars. We aimed to compare how additional body elements (e.g., arms) impact identifying users’ interaction, rather than investigating the impact of different hand assets (and their mesh) on observations. Furthermore, at the point where we introduce different hand assets, we also introduce an additional confounding variable. It is also worth to note that the required implementation expertise and hardware for the finger tracking remains the same for all avatar designs, independent of the used hand asset.

For the VR headset and to record the interactions in the virtual environment, we used the Tobii HTC VIVE [78] which we connected to a VR-ready laptop (Razer Blade 15, NVIDIA GeForce RTX 2080) and OBS [71]. The interactions in the real world were recorded with a NIKON D5300 single-lens reflex camera.

4 USER STUDY

4.1 Methodology and Study Design

We used Qualtrics [59], an online survey tool that can be accessed via web browsers, and Prolific [57] to deploy the study online and evaluate the impact of the avatar representation on bystanders’ interaction identification performance. Prolific is an established platform for online subject recruitment for scientific purposes and regularly used for HCI research (e.g., [2, 40]).

Our study was a within-subject experiment with two factors. The first was the input method, which had three levels: touch, mid-air, and eye gaze. The second was the avatar that represents the user, which had four levels: (1) human in the real world (baseline); (2) an avatar that shows eyes and hands only, similar to avatars used in social virtual rooms (e.g., Mozilla Hub [47]); (3) an avatar which included a realistic virtual body and head because previous work found that gaze is closely associated to head movements under natural conditions [5, 6, 67] and could thus affect bystanders when observing interactions; and (4) a full-body avatar where virtual eyes and hands are attached to a highly realistic avatar.

4.2 Procedure and Task

After obtaining informed consent, we collected demographics (e.g., age, gender, prior experience with virtual environments) and followed with explainer videos of all three input methods and all 18 gestures to introduce participants to the different input methods and their task. Figure 2 shows excerpts of the explainer videos for all three conditions. We used the same camera position and angle throughout the study. We added attention check questions to make sure all participants understood (1) the input methods and (2) their task. We then showed participants pre-recorded interactions performed by a human in the real world or one of the three avatars in the virtual environment. Conditions were counterbalanced using a Latin Square. Participants watched the gestures (e.g., left/right/up/down/tap in touch) once each before providing a guess. For each observation, we asked participants which gesture they observed. After each avatar, participants had to fill in the NASA-TLX questionnaire [28] to indicate their perceived mental workload when observing the interactions. The same was repeated for the other input methods. We concluded the study with 5-point Likert scales and a ranking of the avatars in terms of participants’ preference when observing them. We also asked participants to justify their ranking and participants had the chance to provide additional feedback. Each participant received £7.5 for their participation. The study has been approved by the University of Glasgow College of Science & Engineering Ethics Committee.

4.3 Results

We recruited 28 participants of which all passed the attention check questions. We had to remove the data of eight participants due to several reasons. Some of them explicitly mentioned that they faced some issues with the video playback; while others provided low-quality feedback throughout the study; indicating that they did not meaningfully participate. The importance of cleaning data and removing low-quality responses to increase the ecological validity has already been discussed in previous work (e.g., [14, 46, 61]). Our analysis is therefore based on 20 participants (11 male, 9 female, self-reported) aged between 18 and 54 (M=31.79, SD=10.51). Out of the 20 participants, 19 (95%) mentioned that they have heard about

<table>
<thead>
<tr>
<th>Input method</th>
<th>Gesture</th>
<th>Number of different Gestures</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>touch</td>
<td>left/right</td>
<td>2</td>
<td>Touch gesture to the left/right side.</td>
</tr>
<tr>
<td></td>
<td>up/down</td>
<td>2</td>
<td>Up- and downwards touch gesture.</td>
</tr>
<tr>
<td></td>
<td>tap</td>
<td>1</td>
<td>Single tap gesture on the screen surface.</td>
</tr>
<tr>
<td>mid-air</td>
<td>left/right</td>
<td>2</td>
<td>Mid-air gesture to the left/right.</td>
</tr>
<tr>
<td></td>
<td>up/down</td>
<td>2</td>
<td>Up- and downwards mid-air gesture.</td>
</tr>
<tr>
<td></td>
<td>front</td>
<td>1</td>
<td>Mid-air gesture to the front.</td>
</tr>
<tr>
<td>eye gaze</td>
<td>linear diagonal</td>
<td>4</td>
<td>Diagonal eye movements (all four directions).</td>
</tr>
<tr>
<td></td>
<td>circular CW/CCW</td>
<td>2</td>
<td>Clockwise and counter-clockwise circular eye movements.</td>
</tr>
<tr>
<td></td>
<td>zigzag</td>
<td>2</td>
<td>Vertical/horizontal zigzag eye movements.</td>
</tr>
</tbody>
</table>

Table 1: Our set of gestures is based on the work by Khamis et al. [32]. We cover different touch and mid-air gestures and eye gaze movements (overall 18 unique gestures). We studied 5 gestures for touch and mid-air, and 8 variants for eye gaze gestures.
Figure 2: Participants watched pre-recorded videos where a human in the real world or avatars in a virtual environment performed (a) mid-air gestures, (b) eye gaze movements, and (c) touch gestures. In all interaction identification tasks participants had access to the same view as depicted in the figures above.

the term “Virtual Reality” before and 9 participants (45.0%) voiced that they had hands-on experience with VR. In the following, we report on the results of participants’ (a) interaction identification performance, the number of correctly identified gestures for touch, mid-air, and eye gaze; (b) perceived mental workload when observing the interactions (NASA-TLX questionnaire [28]); (c) preference of the avatars; and (d) perceived realism of the avatars. Our analysis is based on (5 touch gestures + 5 mid-air gestures + 8 eye gaze gestures) × 20 participants = 360 observations.

4.3.1 Successful Interaction Identifications. A two-way repeated-measures ANOVA was conducted to examine the effect of avatar and input method on participants’ number of successful interaction identifications. In other words, the number of gestures participants could successfully guess. Mauchly’s test indicated that the assumption for sphericity had been violated for avatar × input method, $\chi^2(20) = 51.244, p<0.05$, and input method, $\chi^2(2) = 23.529, p<0.05$. Degrees of freedom were corrected using Greenhouse-Geisser correction. There was no statistically significant two-way interaction between avatar and input method on the number of successful interaction identifications, $F(3,57)=2.068, p=0.103$, and no main effect of avatar, $F(3,57)=0.285, p=0.836$, and input method, $F(1,156,21,973)=1.255, p=0.297$, on the number of successful interaction identifications. The values are $M=14.5$ (SD=2.56) for observations on the real-world user, $M=14.6$ (SD=2.80) for the abstract avatar, and $M=14.25$ (SD=2.65) for the two more realistic avatars. There is no evidence that observations on one avatar were more accurate than on the others and that observations on a human in the real-world were easier/more challenging than on the avatars. Figure 3 summarises the number of successful interaction identifications for each avatar and input method.

4.3.2 Perceived Workload. We were particularly interested in participants’ perceived mental workload (NASA-TLX [28]) when observing the different avatars and the human in the real world. We ran a one-way repeated-measures ANOVA on participants’ mean perceived mental workload when observing the different avatars and the human in the real world. Mauchly’s test indicated that the assumption of sphericity had been violated, $\chi^2(5) = 11.712, p<0.05$, therefore degrees of freedom were corrected using Greenhouse-Geisser correction. There was no statistically significant effect of avatar on participants’ perceived mental workload,
Successful Interaction Identification (in %)

<table>
<thead>
<tr>
<th>Input Methods</th>
<th>Touch</th>
<th>Mid-air</th>
<th>Eye Gaze</th>
</tr>
</thead>
<tbody>
<tr>
<td>avatar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real-world</td>
<td>100</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>abstract</td>
<td>85</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>realistic (w/o arms)</td>
<td>75</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>highly realistic</td>
<td>70</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 3: We measured participants’ interaction identification performance and their perceived workload (using NASA-TLX [28]) when observing virtual avatars performing input with touch, mid-air, and eye gaze. Our analysis does not indicate that interactions performed by an abstract avatar are easier or more difficult to observe than more realistic avatars and a human in the real world (baseline). The same was found for users’ perceived workload when observing the different avatars.

$F_{(2,138), 40.626} = 2.922$, $p=0.062$. The mean raw NASA-TLX values were low for all four conditions: $M=18.74$ (SD=8.97) for observing the human in the real world, $M=21.75$ (SD=13.73) for the abstract avatar, and $M=23.06$ (SD=14.64) and $M=24.39$ (SD=14.12) for the more realistic avatars. There is no evidence that observations on one avatar were more demanding than on the others; however, participants’ perceived mental workload is slightly lower in the real-world condition. Figure 3 shows the mean values of each NASA-TLX dimension and avatar.

4.3.3 Perceived Avatar Realism. We aimed to understand how the different avatars are perceived in terms of realism. We did this through a 5-point Likert scale (i.e., “The avatar’s behavior matched real-world human movements.”). We ran a Friedman test on the 5-point Likert scale data to investigate participants’ perceived avatar realism compared to the human in the real world. The analysis is performed on the level of each input method. For eye gaze, there was a statistically significant difference in perceived avatar realism depending on the type of the user representation, $\chi^2(2) = 9.435$, $p<0.05$. Post hoc analysis with Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied. Both the more realistic avatars were perceived as more realistic than the abstract avatar ($p<0.05$). The median values are 2.5 for the abstract avatar and 4.0 for both the more realistic avatars. For mid-air, there was no statistically significant difference in perceived avatar realism depending on the type of the user representation, $\chi^2(2) = 1.660$, $p=0.436$. The median values are 4.0 for all three avatars. The same was found for touch, $\chi^2(2) = 1.714$, $p=0.424$, with median values of 4.0 for all three avatars. This suggests that the eyes in the more realistic avatars were perceived as more realistic compared to the abstract avatar, but there is no evidence of a significant difference between the avatars when providing input with mid-air and touch.

4.3.4 Avatar Preference. We asked participants to rank the avatars based on their preference of observing them (i.e., “Which user representation made it easier to observe the different interactions (1=best;4=worst)?”). Raw scores were multiplied by their weight factor: $\times 4$ for rank 1, $\times 3$ for rank 2, $\times 2$ for rank 3, $\times 1$ for rank 4, and summed up to compute weighted scores. We then calculated the average ranking score for each avatar (i.e., real-world user, abstract avatar, and the two more realistic avatars). The results suggest that the real-world user achieved the highest score (avg ranking score=68.33) next to the highly realistic full-body avatar with an average ranking score of 52. The other more realistic avatar (w/o arms) and the abstract avatar were ranked similarly with an average ranking score of 40.67 and 43.33. Participants’ avatar preference is also reflected in the qualitative feedback that we present below.

4.3.5 Qualitative Feedback. We applied a high-level qualitative analysis to spot the main themes in users’ qualitative feedback. The data set was fairly simplistic and small (1-2 sentences for each question), so one author did all the qualitative data analysis. We use participant numbers (P1 to P20) to ensure anonymity while presenting rich raw data from our participants.

When observing the mid-air interactions, there was a general consensus that the human in the real world was easiest to observe. Some participants mentioned that they needed arms for clarity (e.g., “the real-world was easiest for me followed by the [most realistic one] which is closest to real-world, I think this is because of the fully developed arm extension”, P20). Interestingly, the need for arms was mentioned in combination with the more realistic avatar, but
not with the abstract avatar. This suggests that participants did not necessarily expect to see arms in the abstract avatar condition, but in the more realistic avatar designs. The same was mentioned in touch. Some participants mentioned that all avatars were perceived as easy to observe (e.g., “they were all easy to identify so any would be fine”), P1), while one participant, P3, mentioned that “the lack of arms in the mid-fidelity avatar was off putting.” Contrary to P3’s comment, one participant, P6, voiced that the “low-fidelity avatar was more obvious and less distracting as it’s so basic”. However, the general consensus was that the attached arms helped our participants identifying the different gestures. One participant mentioned that the movements in the real world were smoother and that the virtual hands of the avatars did not come with visual physical feedback: “the physical feedback of the human hand touching the screen helped me see exactly what was happening, if the 3D finger bent back a little as it touched the screen (even if it was in an unrealistic uncanny way) then maybe that would help”, P9. In eye gaze, participants mentioned that the human in the real world slightly moved her head when performing the eye gaze gestures, whereas this seemed to be less present in the avatars. Other participants mentioned that observing the user’s real world eye movements was easier compared to the avatars. One participant explained this around the fact that he is used to seeing eye movements from real humans rather than from avatars: “the real world was the clearest to me. I think because I am most used to seeing [eye] movements from real humans.”, P20. Another participant, P15, mentioned that the real-world user blinked, which made it harder for him to observe eye movements in the real-world condition.

From the overall qualitative feedback we notice that the comparisons mostly happened between the real-world user and the avatars. Surprisingly little differences between the different avatars were mentioned. However, one point many participants addressed was the lack of arms in one of the more realistic avatars.

5 DISCUSSION

Our user study suggests that even an abstract avatar’s interactions are distinguishable by bystanders to the same extent as interactions performed by a highly realistic avatar and a human in the real world (Section 4.3.1 and Figure 3). There is also no evidence that observing one of the avatars leads to higher perceived workload as indicated by the NASA-TLX questionnaire [28] (Section 4.3.2 and Figure 3). However, it has to be noted that participants’ perceived avatar realism, their avatar preference when observing the interactions, and the qualitative feedback suggest that the more realistic avatars were preferred over the abstract avatar. Below, we discuss our findings’ implications in more detail.

5.1 So What? Which Avatar to Use?

The answer is: it depends. It has always been argued that there is no “swiss-knife” evaluation and that the research questions should inform the choice of the research method [26, 66]. In a similar vein, we argue that it is important to consider the research questions and the aim of the research when making a decision about the avatar design. For example, prior research showed that the avatar realism plays an important role in social settings. There is a large body of work that showed that the avatar fidelity can have a significant impact on social interactions (e.g., [16]) and that more realistic avatars evoke stronger acceptance in terms of virtual body ownership [36]. It is important to note that the gained benefits of using abstract avatars might not outweigh the advantages of more realistic avatars in settings where social interactions and virtual body ownership play an important role (e.g., in social VR [63, 88]). However, as showed in our work, abstract avatars can already provide researchers with valid research findings when it comes to bystanders’ interaction identification performance. This finding can be particularly beneficial for situations where, for example, researchers evaluate their systems against observations in virtual environments. VR comes with many advantages and ground-breaking opportunities (e.g., using VR for education purposes [65], for socialising [47], or for the health sector [20]), but there is also a need to secure users’ interactions from a security and privacy perspective. For example, what we know from the real world when another human is looking over someone’s shoulder, also defined as “shoulder-surfing” [12], could happen in a similar way in virtual environments. Researchers recently looked into adapting established real-world authentication schemes for VR [19, 51] or proposed novel VR authentication schemes [18, 43]. Being able to use abstract avatars instead of more realistic avatars can be particularly helpful for such “shoulder-surfing” investigations in VR: they likely reduce the required effort, expertise, and amount of additional hardware that is required.

Our key message here is that there is great potential for abstract avatar designs in research where social factors play only a minor role (or can even be ignored). For example, when investigating users’ identification performance when observing gestures performed by a virtual avatar, or when pointing or other gestures are fundamental components of an investigation (e.g., in the context of collaborative assembly tasks on shared surfaces [38]).

In such research contexts, more abstract avatars can already be sufficient for researchers’ investigation. Below, we discuss studying VR security systems as one potential application area for which abstract avatar designs can be particularly helpful.

5.2 Application: Studying VR Security Systems

There is a large body of work that studied VR security systems such as PIN/pattern authentication systems [19, 51] or 3D authentication systems [18, 43]. The aim of these systems is to protect VR users from observations by non-VR users with whom they often share the same physical space (e.g., see also [27]). In many of these systems, the resistance to observations, where a bystander attempts to identify the user’s secret input through observations, is key to understanding the system’s security. However, there is surprisingly little research that focused on observations that happen in the virtual environment rather than in the real world. With the works mentioned above that focus mainly on observations from a non-VR user, it remains unclear whether the proposed systems are secure in a shared virtual environment with co-located VR users. Protecting users’ privacy and security against observations within virtual environments seems to be an important next step as the surge of VR applications and the availability of high-end untethered VR headsets (e.g., the Oculus Quest 2) have lead to a notable increase of users’ interest in collaborative and social virtual environments (e.g., to participate in workshops and conferences [47, 88]). While the virtual environment could freeze (or even hide) the user’s VR

Observing Virtual Avatars: The Impact of Avatars’ Fidelity on Identifying Interactions

Mindtrek ’21, June 02–03, 2021, Tampere, Finland
avatar for the duration of sensitive input in such social virtual environments (e.g., when entering a PIN), doing this will likely affect other VR users’ experience and co-presence. Although shedding light on this requires additional investigations, we argue that it is important to protect (rather than temporarily freeze/ remove) users in virtual environments. Abstract avatars as used in our work could already enable security and privacy researchers to quickly evaluate their VR system’s resistance against in-VR observations without spending significant time and effort on the avatar design, which in return makes leveraging VR for human-centred studies more attractive and more accessible to the broader research community.

5.3 Main Takeaways
There are three main takeaways from this work that we would like to emphasise.

(1) It is inevitable to guide the avatar design by the research questions and the overall aims of the planned research.
(2) Depending on the research questions, one or the other avatar design (i.e. abstract or realistic) is to be preferred and there is no “all-in-one” avatar that fits the purpose of all investigations.
(3) In situations where the research focus is on, for example, identifying different gestures performed by an avatar (e.g., left/right/up/down/front mid-air gestures), an abstract avatar design can already support researchers in answering their research questions without requiring them to rely on investigations with more realistic avatars.

6 LIMITATIONS AND FUTURE WORK
There were some decisions we made that are worth discussing. The covered input methods (touch, mid-air, eye gaze) and our studied gesture set of overall 18 gestures clearly do not cover the entire spectrum of different input methods and gestures. Although we selected those that are frequently used in VR, we cannot claim that our findings will generalise to input methods or gestures beyond the ones studied in our work. Future work could extend over our findings by studying other gestures (e.g., user-defined touch gestures) or other input methods (e.g., head-based interaction [58]). We also used pre-defined observation angles throughout the study and did not introduce any potential distractions (e.g., additional bystanders, or in general more vivid environments), see Figure 2. While such pre-defined observation angles and simulating a so-called “best-case” scenario for observers are commonly used when studying observations on user inputs (e.g., [4, 10]), different perspectives or even providing users with the opportunity to define their own observation angle might impact our findings. We encourage future work to investigate a) how a scenario where observers can change their position (i.e., distance and angle) impacts identifying interactions performed by avatars and b) to what extent more vivid contexts (e.g., multiple avatars) impact bystanders’ observation performance. For example, at the point where some avatar body parts are hidden from direct eye gaze (e.g., the avatar’s body covers their hands), corresponding arm movements could support observers in identifying gestures. Furthermore, although Thornton et al. [79] argued that the ability to process human action remains functional over a large range of distances, their reported human action identification accuracy indeed decreased when actors were positioned at a larger distance. As a result, it could be interesting to also incorporate such extreme distances as studied by Thornton et al. [79] in a follow-up work and shed further light on the impact of distance and avatar fidelity on an observers interaction identification performance. However, it is important to keep in mind that such extreme distances as studied by Thornton et al. [79] (up to 1000 m) are rather unlikely to be experienced in virtual environments. Finally, although we used a highly realistic avatar by Microsoft Research [24], we did not consider blinking eyes and/or facial expressions in this work. Future work could investigate to what extent such additional factors (e.g., facial expressions captured through VIVE’s Facial Tracker [85]) affect bystanders’ interaction identification performance and perceived workload when observing different avatar designs.

7 CONCLUSION
Through an online user study (N=28), we explored the impact of different avatars (one abstract avatar and two more realistic avatars) on bystanders’ interaction identification performance when observing touch, mid-air, and eye gaze gestures. The difference of participants’ performance and perceived workload when observing a user in the real world, an abstract avatar, and two more realistic avatars was found to be negligible. However, it is important to note that more realistic avatars are required in situations where, for example, realism and other social factors play an essential role. That being said, if the research focus is solely on the interaction, abstract avatars can already represent users in virtual environments; therefore, researchers do not necessarily need to rely on resource-heavy and expensive avatar implementations that often require additional hardware (e.g., motion tracking systems).

ACKNOWLEDGEMENTS
We thank all participants for taking part in our research. We also thank all reviewers whose comments significantly improved the paper. This publication was supported by the University of Edinburgh and the University of Glasgow jointly funded PhD studentships. This work was also partially supported by the Royal Society of Edinburgh (award number #65040) and an EPSRC New Investigator Award (EP/V008870/1).

REFERENCES

