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A B S T R A C T   

This paper reports on the controlled fabrication of a highly sensitive piezoresistive sensor by using Si nanorod 
(NR) arrays. An efficient, large-area, scalable strategy was adopted to fabricate the pressure sensors by incor-
porating chemically etched, high-aspect-ratio, vertical Si NR arrays between two thin Au layers. The piezor-
esistive properties corresponding to dimension- and position-controlled and randomly etched, closely packed, 
and thin Si NR arrays were exploited to fabricate the small, portable, and device-compatible pressure sensors. 
The Si-NR-based piezoresistive sensors exhibited a high sensitivity of 0.49 MPa− 1, thereby demonstrating its 
superiority over other unconventional piezoresistive nanomaterials such as Si with different configurations of 
nanostructures. Furthermore, the sensors exhibited a large variation (~45%) in the current at a constant bias 
voltage of 2 V under a weak applied pressure corresponding to an inert gas flow of 5 sccm. The excellent pressure 
sensing performance of the piezoresistive Si NRs enabled the efficient detection of changes corresponding to the 
human breathing pattern. In particular, the key advantages of such pressure sensors is the simple, inexpensive, 
and scalable fabrication process; high sensitivity with ultra-low-pressure detection; and excellent ambient sta-
bility (>several months) with a high durability pertaining to more than 1,000 cycles of pressure loading/ 
unloading. Furthermore, we demonstrated the ability of the pressure sensor to act as a portable human breath 
sensor to monitor respiratory parameters in a noninvasive and personalized manner. The results can provide 
direction for the realization of next-generation breath-sensing gadgets and other leading-edge applications in the 
domain of electronic and healthcare devices.   

1. Introduction 

Pressure sensors have attracted considerable interest owing to their 
potential for application in various areas including different industries, 
research domain, and environmental monitoring and human healthcare 
fields. Piezoresistivity plays a key role in the fabrication of high sensi-
tivity, facile, and simple pressure sensors through different inorganic 
and organic materials in an inexpensive yet efficient manner [1–8]. 
Among the various material architectures, one-dimensional nano-
structures, specifically, nanowires (NWs) and nanorods (NRs) are 
considered to be desirable for use in piezoresistive-based electronic 

devices [1,8]. Many researchers have investigated conventional pie-
zoresistive nanomaterials such as ZnO, GaN, and CdS are extensively 
studied for utilizing their piezoresistive properties to develop high 
sensitivity pressure sensors [1,8–11]. Nevertheless, despite the extensive 
research efforts and certain notable advancements in the last two de-
cades, to date, only a few pressure sensors have been practically 
implemented in healthcare devices. In general, most of the pressure 
sensors cannot be processed beyond the laboratory stage, as they cannot 
satisfy key requirements, such as a sufficient sensitivity and accuracy; 
low detection range; and high portability, reliability, and durability. 
Typically, portable and wearable pressure sensors are fabricated as 
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interlocked structures composed of composite polymers, such as poly-
dimethylsiloxane (PDMS), combined with conductive active nano-
materials, such as metals, carbon nanotubes, reduced graphene oxide 
(rGO), and graphene [2–8,12–14]. These elastomer-based pressure 
sensors exhibit a high sensitivity, low detection limit, and rapid 
response, and can thus be utilized in piezoresistive electronic devices. 
However, the sensing performance of these composite elastomer-based 
piezoresistive pressure sensors is not satisfactory in long-term use as 
they are easily degraded in the ambient atmosphere. Furthermore, the 
elastomer-based portable and wearable pressure sensors are not suitable 
for application in high-resolution electronic skin devices, compared to 
the ordered arrays of vertically aligned NW/NR-based pressure sensors. 
Parallel to the piezoresistive pressure sensors, piezoelectric pressure 
sensors are also studied extensively where the material has inherent 
property to generate a spontaneous electrical signal when it is strained 
[15–20]. Unlike piezoresistive pressure sensors, piezoelectric pressure 
sensors do not require any external voltage source. If a voltage is applied 
in piezoelectric pressure sensors, the current induces a strain in material 
geometry which can also countable beside the external pressure-induced 
strain. Thus, piezoresistive pressure sensors are more preferable to 
detect dynamic changes in physical parameters like force, mass, flow, 
vibration etc [15]. Therefore, significant research attention needs to be 
required to examine the use of pressure sensors based on device- 
compatible piezoresistive nanomaterials to address the corresponding 
challenges in this domain. In this context, arrays of vertically aligned Si 
NWs/NRs are being considered the most promising candidate materials 
for developing piezoresistive pressure sensors. At present, nano-
structured Si is the most widely used material in nanotechnology ap-
plications owing to its superior physical and chemical properties, eco- 
friendly nature, and high device compatibility [21–25]. Although the 
piezoresistive effect in Si NRs was observed almost a decade ago, only a 
few studies focused on examining the piezoresistivity of nanostructured 
Si have been reported [26–34]. According to the existing reports, the 
design of piezoresistive Si NR sensors is limited to the cantilever type, as 
it can efficiently detect the torque/force [26–29,34]. However, despite 
their superior mechanical and electrical properties, high-aspect-ratio Si 
NR arrays have not yet been applied in the design of pressure sensors 
that could be used in healthcare devices. In particular, to fabricate 
complementary metal–oxide–semiconductor (CMOS)-compatible air 
flow sensors, it is desirable to utilize the piezoresistive property of Si NRs 
to enable ultra-low-range pressure detection including that of air tur-
bulence, human breathing, and acoustic vibrations in air [30]. 

In the last two decades, significant research has been performed to 
fabricate smart and portable sensors to monitor human breath 
[2–4,35,36]. In the conventional techniques to monitor human breath, 
the sensors operate based on different parameters such as the temper-
ature, pressure, vibration, and chemical compounds sampled from the 
human breath (inhalation/exhalation). In addition, chemoresistive 
breath markers have been employed in novel medical diagnostic ap-
proaches, monitoring devices, and workout partner devices; however, 
their extensive utilization is restricted owing to the complexity of human 
breath, which may contain more than 800 compounds. In this regard, 
piezoresistive breath sensors composed of high-aspect Si NR arrays can 
be used to develop respiratory status monitoring devices to prevent 
breathing disorders such as sleep apnea in a simple, easy, and efficient 
manner. 

Therefore, in this work, we demonstrated the bio-compatible, large- 
area, simple, rapid, scalable, and controlled fabrication of pressure 
sensors by using Si NR arrays. To fabricate the small, portable and 
device-compatible pressure sensors, the piezoresistive properties of 
close-packed, vertical, high-aspect-ratio Si NR arrays were exploited 
through dimension- and position-controlled etching as well as random 
etching processes. The prototype pressure sensors, which exhibited a 
high sensitivity and could realize ultra-low-pressure detection, were 
used as portable and wearable breath sensor to monitor the human 
respiratory parameters in a noninvasive and personalized manner. 

2. Material and methods 

2.1. Fabrication of the sensor devices 

High-quality Si NR arrays were fabricated by a facile, scalable, and 
well-known metal-assisted chemical etching (MACE) method using Si 
wafers. Gold and silver were used as the noble metals and HF/H2O2 was 
used as the etchant to etch the n-type Si (100) wafers with a resistivity of 
0.001 Ω-cm. Dimension- and position-controlled Si NRs were obtained 
through the selective and controlled etching of Si, and the respective 
samples were labeled as “NRA”. Specifically, a 15 nm-thick Au film with 
uniform hole array patterns of a controlled diameter and spacing was 
created on the Si wafer through e-beam lithography, and the Au- 
patterned Si wafers were etched in HF/H2O2 (8 M HF and 3 M H2O2). 
In general, the lateral dimension and spacing of the Si NRs depend upon 
the size and spacing of the Au hole array on Si, respectively, whereas the 
length depends on the etching duration. Thus, the diameter of the Si NRs 
was ensured to be in the range of 110–500 nm after removing the re-
sidual Au. Furthermore, large-area, close-packed Si NR arrays with a 
comparatively low but variable diameter were prepared through the Ag 
nanoparticle-assisted random etching of Si in HF/H2O2. The corre-
sponding samples were labeled as “NRB”. Prior to etching, the Ag 
nanoparticles were coated on Si through a chemical process (in HF/ 
AgNO3 solution) [37]; the observed diameter of the Si NRs ranged from 
20 nm to 120 nm. To fabricate the sensor devices, Au metal electrodes 
were deposited on the top (100 nm) and bottom (100 nm) sides of the Si 
NRs. Prior to the electrode deposition, the Si NR samples were treated 
with a buffered oxide etchant for 10 s to remove the surface native 
oxides. 

2.2. Morphology and structural characterization 

The morphology of the Si NR arrays was investigated using a field 
emission scanning electron microscope (FESEM, TESCAN) operated at 
30 kV. Furthermore, this system was used to realize the e-beam lithog-
raphy for the metal hole array and the examination of its morphology. 
The surface porosity of the Si NRs and formation of the Si nano-islands 
and crystal lattice fringes were studied using a field emission trans-
mission electron microscope (analytical TEM, JEM-2100F, JEOL Ltd.). 
For this analysis, the Si NRs were scratched and dispersed in isopropanol 
and later drop-casted onto a lacey-carbon-coated Cu TEM grid. 

2.3. Measurement of pressure response 

2.3.1. Pressure application using a voice coil motor 
The pressure sensing characteristics, i.e., the piezoresistive proper-

ties of the Si NRs were investigated by examining the current response 
under the impulse of a constant mechanical pressure. Specifically, me-
chanical force was applied to the sensor device via a sapphire stamp 
attached on the axis of a voice coil motor (VCM) tool, which generated 
force when placed in a magnetic field and subjected to an electric cur-
rent. A controller was used to measure the applied force, with a precision 
of 0.001 N. A constant force, and thus, a constant pressure was applied 
throughout the experiment by using the force controller. The force was 
applied vertically to the surface of the sensor attached firmly on a flat 
surface. A smooth sapphire substrate (size: 9 mm2) was placed between 
the VCM force application tip and the sensor to avoid the formation of 
unnecessary electrical pathways. 

2.3.2. Pressure application using a constant flow of inert gas 
A constant flow of inert gas, monitored by a mass flow controller 

(MFC), was used to impart uniform and constant pressure to the sensor. 
Two different inert gases, namely, nitrogen and argon, were used. The 
pressure sensor device was placed on a solid substance at a distance of 2 
mm from the output of the MFC. 

A variable bias voltage of − 2–2 V was applied to the device in both 
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the VCM and MFC cases via a source meter (Keithley-2601). The sensing 
performances of the prototype sensors were characterized by measuring 
the current–voltage (I–V) and current-time (I–T) curves during the 
presence/absence of pressure on the sensor. 

3. Results and discussion 

The surface morphology and the structure of the Si NR arrays pre-
pared for the pressure sensors was investigated using the FESEM and 
TEM analyses as depicted in Fig. 1. Fig. 1(a) shows the 30◦ view of the 
dimension- and position-controlled Si NRs (NRA) with a diameter of 500 
nm, and Fig. 1(b) shows the cross-sectional FESEM images of the Si NRs 
prepared through Ag-assisted random etching of Si (NRB). A diameter of 
up to 110 nm was attained for the uniform Si NRs through the Au- 
assisted controlled etching of Si. Fig. S1(a–c) and (d–f) show the NRA 
samples of the Si NRs with a diameter of 110, 200, and 500 nm, etched 
for 5 and 10 min, respectively. When the diameter is 110 and 200 nm, 
the Si NRs appear to merge toward the top side and are elongated. 
Moreover, although Ag was used to fabricate the closely packed, thin Si 
NR arrays with a random size, the Si NRs prepared using the MACE 
technique are mesoporous, with the porosity depending on the etching 
parameters. Therefore, we tuned the porosity of the Si NRs by tuning the 
HF and H2O2 concentrations for the NRB samples. The top- and cross- 
sectional-view FESEM micrographs of the Si NR arrays etched for 10 
min under different HF and H2O2 concentrations are shown in Figs. S2 
(a–d) and (e–h), respectively. The average diameter of the Si NRs in each 
case was < 50 nm, and the samples exhibited a variable length 
depending on the etchant concentration and etching duration. To 
investigate the surface properties of individual Si NRs, we examined the 
TEM analysis results of the as-prepared Si NR samples. The morphol-
ogies of the individual Si NRs are shown in Fig. 1(c–f). Fig. 1(c) shows 

the Si NRs extracted from an NRA sample with a diameter of 500 nm, and 
Fig. 1(d) shows the Si NRs collected from the NRB samples. The Si NRs in 
the NRB samples exhibited a variable diameter ranging from 20 to 120 
nm, with an average diameter of < 50 nm. The TEM images of the 
various Si NRs collected from the NRB samples are shown in Figs. S3 
(a–g). In all the etching scenarios, the Si NRs exhibited a mesoporous 
characteristic on their surfaces, which is in agreement with the previ-
ously reported findings [21,23,39]. The mesoporous nature of the Si NRs 
led to the formation of quantum-sized nano-islands on the Si NR surface. 
In addition, a short-range disorder in the atomic orientation was 
observed in the regions of the Si nano-islands, as reported in the liter-
ature [21,22,40–43]. The high-resolution TEM (HRTEM) images per-
taining to the edge (Fig. 1(e)) and surface (Fig. 1(f)) confirmed the 
polycrystalline nature of Si in the region of the quantum-sized Si nano- 
islands. The size of the Si nano-islands was estimated considering the 
dotted lines (Fig. 1(f)), and the size was noted to be comparable or less 
than the excitonic Bohr diameter of Si (~9.8 nm). The selected area 
electron diffraction (SAED) pattern (inset of Fig. 1(e)) acquired from a 
single Si NR exhibited the polycrystalline nature of the Si nano-islands, 
even though the Si NRs were prepared from single-crystalline Si (100) 
wafer. Furthermore, the quantum-sized Si nano-islands corresponded to 
Si (111) planes, which is the orientation in which Si most effectively 
demonstrates piezoresistive properties [15,26,33]. The demonstration 
of piezoresistive properties is a key advantage of MACE-prepared Si NRs. 
In this configuration, the mechanically robust yet flexible, thin, and long 
Si NRs can exhibit sufficient potential to respond to a certain amount of 
applied pressure [29,30,38]. 

To fabricate the pressure sensor devices from the MACE-prepared Si 
NRs, a simple approach was adopted: a 100 nm-thick Au layer was 
deposited on each side of the Si NR samples. The fabrication steps of 
pressure sensors was schematically shown in Fig. 2 along with its FESEM 

Fig. 1. (a) FESEM image (30◦ tilted) of the Si NR (diameter: 500 nm) arrays, NRA. (b) FESEM image (cross-sectional) of the randomly etched Si NR (NRB) arrays. (c, 
d) TEM image of the Si NRs collected from the NRA and NRB samples, respectively. HRTEM images pertaining to the (e) edge and (f) surface of an Si NR indicating the 
crystal planes with the dd-spacing. The size of the nano-islands is marked by dotted lines. SAED-pattern on a single Si NR is shown as an inset of (e). 
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images. Fig. 2(a–c) are schematic illustration whereas, Fig. 2(d) and 2(e) 
are the morphology of the Si NR arrays (diameter: 500 nm), before and 
after the electrode deposition. The Au coating was not restricted to the 
top of the Si NRs, and it also covered the individual NRs, which enabled 
the sensor to obtain the response from all the parts of the Si NRs during 
the pressure application. 

Moreover, we investigated the pressure response of the Si NR-based 

pressure sensors when the pressure was applied through a mechanical 
approach via the VCM. A schematic illustration of the experimental 
setup is shown in Fig. 3(a). Fig. 3(b) shows the tilted image of the Si NR 
pressure sensor used to investigate the piezoresistive pressure response. 
The pressure sensing ability of the sensor manifested as a change in the 
conductivity during the pressure application. To clarify the sensitivity 
(S) and detection limit of the pressure range, we defined the response (R) 

Fig. 2. (a–c) Schematic of the fabrication procedure of an Si NR-based pressure sensor. (d–e) FESEM image (30◦ tilted) of the Si NR (diameter 500 nm) arrays before 
and after coating with 100 nm thick Au layer, respectively. 

Fig. 3. Detection of pressure applied via mechanical force. (a) Schematic of the VCM setup to detect the mechanical pressure. (b) FESEM image of the sensor 
composed of Si NR arrays in NRB. (c) Real-time pressure response of the Si NR sensor subjected to mechanical force by the VCM under fixed bias of 2 V. (d) Variation 
of the response of the sensor with the increase in the applied pressure. The solid line depicts the linear fit of the experimental data points. 
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and S of the sensor as follows: 

R(%) =
∆I
I0

(%) =
Ino pressure − Ipressure

Ino pressure
× 100 (%), (1)  

S =
∆R
∆P

, (2)  

Where Ino pressure and Ipressure denote the current of the sensor in the 
absence and presence of pressure, respectively, and ΔR and ΔP indicate 
the relative change in the response and pressure, respectively. The real- 
time current response of the sensor under different applied forces is 
shown in Fig. 3(c), and 3(d) shows the current response of the sensor as a 
function of the applied pressure. An approximately linear relationship 
between the response and applied pressure can be observed in the range 
of 0–3 kPa, corresponding to a sensitivity of S = 4.9 × 10− 4 kPa− 1. 
Beyond 3 kPa, the sensitivity decreases to S = 5 × 10− 5 kPa− 1. Inter-
estingly, the sensitivity is outperforming over that reported previously 
for an unconventional piezoresistive material Si having different struc-
tural configurations [26,29,33]. Note that in the existing studies, the Si 
NR-based sensors were cantilever type, with the electrodes installed at 
two different ends of an individual Si NR. In contrast, one electrode of 
the sensors in the present study was constructed by evaporating gold to 
the bundle of Si NR arrays from top, while the other one was common to 
the bottom. This configuration can improve the cumulative device 
performance by enhancing the load resistance and linearity in the 
response. Moreover, the sensor exhibited a high flexibility and did not 
break even after a pressure of 200 kPa was applied. In general, the 
current response of the pressure sensor corresponds to the pressure- 

induced change in the conductivity of the Si NRs via the piezoresistive 
effects. Although Si has a simple cubic structure, giant piezoresistive 
effects of Si NRs have been observed and it was explained by the change 
in the effective mass of the carriers [26]. Furthermore, various other 
approaches have been considered to explain the piezoresistive effects of 
Si NRs, among which, the quantum confinement (QC) effect and surface 
charge effect are the most popular and widely accepted [15,26–29,32]. 
Vinikman et al. reported that the piezoresistive response in Si NRs can be 
extended to Si by introducing pores on the Si NR surface, thereby 
interrupting the inherent symmetry [31]. According to the existing 
study results and our TEM analyses (Fig. 1(d–f)), we concluded that the 
chemically etched Si NRs in this study were highly porous, and the 
quantum-sized nano-size islands on the surface of the Si NRs were 
< 111 > -oriented [37,42]. The piezoresistive effect likely occurred 
owing to the QC of the e-h pairs in the quantum-sized Si nano-islands. 
Moreover, the symmetry of the Si atom ordering was disrupted in the 
Si nano-islands, as the bare Si wafer was < 100 > oriented. According to 
He et al., the strain-induced changes in the mobility and effective mass 
of the carriers notably influence the piezoresistive properties of Si NRs 
[26]. The variance between the two different effective masses and mo-
bilities is higher in the case of < 111 > orientation compared to that in 
the < 100 > orientation of Si, and hence, Si < 111 > is more sensitive to 
the stress application [15,26,29,44]. Therefore, the chemically etched Si 
NRs can effectively respond to the pressure applied by different types of 
tools. 

It was noted that the sensors exhibited a large response to the pres-
sure when subjected to a constant flow of air. Fig. 4(a) shows the 
schematic of the experimental setup to clarify the current dynamic 

Fig. 4. Detection of pressure applied through a continuous gas flow. (a) Schematic of the experimental setup to detect the inert gas pressure. (b) Comparison of the 
real-time pressure responses from the NRA (Si NR: diameter 200 nm, spacing 1 µm) and NRB samples at different Ar gas flow rates. The sample size was 4 mm2 in each 
case. The “flow on” mode is shaded in each case. The inset shows the corresponding FESEM image of the sensors. (c) Pressure response of the different Si NR samples 
prepared via 10 min etching under different etchant concentrations. The relative current change was measured at an Ar flow of 140 sccm with a sample size of 
4 mm2. (d) Comparison of pressure response of the NRB sample with a sensor size of 16 mm2, as a function of the gas flow rate for Ar and N2. (e) Comparison of the 
pressure responses of the sensor before and after it was coated with a thin layer of polyimide and PDMS. 
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response of the sensor by introducing systematic variations in the inert 
gas flow. The Si NRs prepared using the two approaches, i.e., both the 
NRA and NRB samples, exhibited an excellent response to the extremely 
small Ar gas flow controlled precisely. Fig. 4(b) presents a comparison of 
the real-time pressure responses from the NRA (diameter 200 nm, 
spacing 1 µm) and NRB samples at different Ar gas flow rates. The 
sample size was 4 mm2 in each case. The “flow on” mode is presented as 
the shaded region in each case. The inset shows the corresponding 
FESEM image of the sensors. In general, the gas flow on the Si NR surface 
can impart sufficient normal pressures that can deform the Si NR arrays 
and cause a relative change in the conductance due to the piezoresistive 
effect. Since the gas flow is turbulent inside the intermediate gaps of the 
Si NRs, it causes the Si NRs to vibrate, shake, and bend in multiple di-
rections, thereby subjecting the Si nano-islands to a considerable stress. 
Note that the response is nearly three-fold larger in the case of NRB 
samples, compared to that in the case of the 200 nm-diameter NRA 
samples at all the flow rates. This phenomenon occurs because of the 
large particle density of the porous sites (< 111 > sites) of the thin, 
close-packed Si NRs with the higher aspect ratio, that is, the NRB sam-
ples. In contrast, the NRA samples with a larger diameter do not bend 
easily in the case of the extremely small gas flow, compared to the NRB 
samples. This phenomenon was observed by fabricating the sensor de-
vices by using Si NRs with different diameters in the NRA samples (as 
shown in Fig. S4(d)). However, the porosity, instead of the Si nano- 
island density on the Si NRs, plays a vital role in defining the piezor-
esistive response of the Si NRs. Hence, we tuned the porosity of the Si 
NRs by adjusting the etchant concentration during the preparation of the 
Si NRs (as shown in Fig. S2). The current response of the Si NRs with 
different porosities is shown in Fig. 4(c), and it can be noted that the 
piezoresistive response decreases with the decrease in the porosity. The 
Si NR prepared with a 4:3 HF/H2O2 concentration corresponds to the 
maximum porosity; nevertheless, the response is smaller in this case 
because of the smaller aspect ratio compared to that in the case of the 
other considered etchant concentration. The highest aspect ratio and 
porosity of the Si NRs occurred when the HF/H2O2 concentration was 
8:3, and hence, these Si NRs were utilized for the practical application, 
as discussed in the subsequent sections. Moreover, the pressure response 
of the Si NRs depends on the effective sensor size. It was noted that the 
sensors having a size greater than or equal to 16 mm2 exhibited the 
maximum response to the gas flow. In such cases, the cumulative 
deformation of the Si NRs is sufficient to exhibit a significant change in 
the current even for a small flow of the inert gas. Fig. S5 shows the real- 
time response of the sensor with a sensor size of 16 mm2 under different 
Ar gas flow rates. The sensor exhibited a significant response (44.5%) 
even at the ultra-low flow of the Ar gas (5 sccm) and the response was 
nearly saturated at a flow rate of 100 sccm. The sensors were further 
tested to investigate the effect of different gases, and Fig. 4(d) shows the 
comparison of the response as a function of the gas flow rate for Ar and 
N2. In both the gas flow cases, the trend was similar i.e., the response 
increased rapidly with the increase in the flow rate and became satu-
rated after a certain value. In the case of the Ar gas flow, the response 
was ~95% at the flow rate of 100 sccm, beyond which it saturated. Since 
Ar has larger molar mass than N2, Ar imparts higher pressure in each 
SCCM as compared to N2. Hence, we obtained slightly higher pressure 
response from the sensor in Fig. 4(d) in case of Ar flow as compared to 
N2 flow. To avoid the effect of interfering components such as the hu-
midity and adsorption of gases within the porous sites of the Si NRs, we 
coated the sensor device with a thin layer of polymer (PDMS as well as 
polyimide (PI)). Fig. 4(e) shows a comparison of the current response of 
the bare sensor with different polymer-coated sensors. After the polymer 
coating, the response of the sensor decreased, as expected. Note that the 
decrease in the performance usually depends upon the thickness of the 
respective polymer as well as its hardness; however, the polymer coating 
extends the longevity of the devices. Peng et al. examined the sensing 
property of porous Si NRs, which is a result of the charge transfer effect 
from a foreign molecule to the host material through the surface 

functional groups [45]. In the present context, we used the inert gases to 
impart pressure, and hence, the occurrence of such a phenomena were 
unlikely. For further verification, we modified the Si NRs through 
reactive ion etching (RIE) at CF4 = 45 sccm and Ar = 5 sccm for 
different etching times. The pressure responses of the RIE-treated Si NR 
sensors were compared, as shown in Fig. S6. The RIE-treated samples 
exhibited a lower response, and the decrement in the pressure response 
further increased for the samples with prolonged RIE time. This phe-
nomenon likely occurred because of the partial decrease in the surface 
porosity of the Si NRs. Hence, it can be considered that the pressure 
response of the Si NRs is due to the atomic-disorder-induced piezor-
esistivity, which originates at the quantum size Si nano-islands on the Si 
NR surface. 

The MACE-prepared Si NRs could likely be used to detect the ultra- 
low pressure corresponding to the extremely small gas flow. More-
over, the sensors exhibited an excellent response to the gas flow even 
when operated at a considerably low power of 0.8 mW, as shown in 
Fig. S7(b). In addition, the sensor exhibited a considerably high response 
rate and excellent air stability (> 3 months and 1,000 cycles), as shown 
in Fig. S7(c) and (d), respectively. Almost no change was observed in the 
performance of the sensor after > 1,000 cycles. The reliable pressure 
response in an ambient atmosphere can ensure the high performance of 
the sensor in long-term use. Thus, these pressure sensor arrays can be 
applied in high-resolution electronic skin and other electronic devices. 

Owing to its significant response at an extremely small gas flow and 
high sensitivity, the developed sensor can help to investigate the human 
breathing and monitor the respiratory status through the prototype 
sensor devices. Monitoring the human breath pattern is a noninvasive 
and sustainable monitoring method that can help diagnose pulmonary 
diseases at an early stage. The prototype Si NR-based pressure sensors 
can detect airflows under 5 sccm, which generate pressures with mag-
nitudes less than 1 Pa. Therefore, the human breathing pattern was 
investigated through the sensors by attaching the sensor onto the phil-
trum of an individual, as shown in Fig. 5(a). Fig. 5(b) shows the pressure 
response in the periodic monitoring of the human breath. The sensor can 
efficiently detect the difference between the normal breathing (NB) and 
the states of hold breathing/stop breathing (SB) for some moments. Note 
that the continuous waveform during the NB can be assumed as a 
“normal” state of breathing, while its discontinuity corresponds to a 
potential “threat”. The significant difference between the “normal” and 
“threat” conditions in Fig. 5(b) indicates that the sensor can provide an 
alarm in the case of risky events for an individual with breathing dis-
orders such as sleep apnea. Fig. 5(c) shows the comparison of the effect 
of a physical workout on real-time breath patterns. Before and imme-
diately after the exercise, the respiration frequencies are 22 and 41 per 
minute, respectively. Moreover, the breathing depth decreases after the 
exercise because of the high breathing rate compared to the response 
time. These results indicate to obtain more oxygen while exercising, we 
must reduce the breath rate and increase the breathing depth. The 
sensing performance of the sensor gradually decreased when it was used 
for continuous breathing. Note that the human breath is highly complex, 
owing to the presence of more than 800 compounds, which can interfere 
with the breath detection abilities of the Si NR-based sensors. The 
interfering agents present in the human breath, such as moisture and 
ammonia, are primarily responsible for the deteriorated performance of 
the sensor when used for an extended time. We performed the breath 
detection experiment for multiple cycles and after each cycle, the sensor 
was dehydrated. Fig. S8 (a–e) compares the breath sensing performance 
of the prototype sensor for 5 different cycles. The sensing performance 
was retained after each cycle and even more consistent in some cases 
than the bare one. Polymer coating is one of the well-accepted strategy 
for protecting devices to absorb moisture as the practical devices work in 
ambient condition. We coated the sensor with PI and the sensor was 
tested again for detecting human breath pattern. The breath sensing 
performances of PI-coated sensors are shown in Fig. S8(f) for thin PI S8 
(g) for thick PI coating, respectively. The consistency in device 
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performance was increased after PI covering and further enhanced by 
increasing PI thickness. However, there was a considerable compromise 
in devices sensitivity. 

Owing to the excellent breath-sensing performance, bio- 
compatibility and air stability of the well-established CMOS-compat-
ible nanomaterial, the Si NR-based piezoresistive sensors were consid-
ered for use in next-generation breath monitoring devices. Fig. 6(a) 
shows the integration of the sensors with a Bluetooth/Wi-Fi-based 
module. In particular, the sensor was attached on a flexible PCB and 
placed on the philtrum, as shown in Fig. 6(b). Arduino ESP-32 was used 
to operate and accumulate the breathing waveform, which was further 
recorded by a smartphone/computer (Fig. 6(c)). The circuit diagram of 
the complete setup is shown in Fig. 6(d). The setup was designed to 
realize a portable and wearable platform for the sensor that can incon-
spicuously fit in our everyday life. The sensor can monitor the breath 
signal continuously and detect the abnormalities/disorders in the 
human respiratory system. In real life applications, a major concern is to 
identify whether babies are able to breath properly during sleep. Fig. 6 
(e) shows the real-time waveform of the breath signals recorded by the 
sensor with the conditions switched between NB and SB. The corre-
sponding movie is provided as “Supplementary video I”. The findings 
indicate that the sensor can be used as a sleep partner to ensure smooth 
breathing during the sleep time. In addition, by distinguishing the dif-
ference between the NB and breathing in harsh conditions, one can 
detect different types of diseases related to the human respiratory sys-
tem, such as tachypnea (abnormally rapid breathing), asthma, and 
chronic bronchitis (chronic obstructive pulmonary disease). 

Supplementary material related to this article can be found online at . 
doi:10.1016/j.nanoen.2020.105537. 

At present, many people are incorporating daily workouts in their 
lives, owing to its necessity in the modern lifestyle to maintain health 
and fitness. Consequently, it is desirable to frequently monitor such 
workouts. Fig. 6(f) shows the real-time waveform of the breath signals 
recorded by the sensor under normal and running conditions 

periodically. The corresponding movie is provided as “Supplementary 
video II”. It can be noted that the breathing rate is low and stable during 
rest and high and frequent during running, as expected. Thus, the Si NR- 
based sensor can be utilized as an exercise counter and motivator for a 
physical fitness enthusiast in parallel with the highly popular pedom-
eter. Furthermore, as humans age, the capability of the body in under-
taking strenuous exercises reduces. During workout/jogging, especially 
for an elderly person, the proposed sensor can provide alarms in the case 
of extra-fast, frequent and abnormal breathing to prevent any critical 
conditions. The prototype sensor works consistently in an ambient 
condition, indicating its potential to be implemented in next-generation 
breath sensors. 

Supplementary material related to this article can be found online at . 
doi:10.1016/j.nanoen.2020.105537. 

These findings highlight a novel opportunity to fabricate technology- 
compatible, dimension- and position-controlled pressure sensor arrays 
in an easy yet inexpensive way and its versatile cutting-edge applica-
tions interfacing with different electronic devices. 

4. Conclusions 

This study was aimed at demonstrating a bio-compatible, large-area, 
simple, easy, rapid, scalable and controlled fabrication of highly sensi-
tive pressure sensors by using chemically etched Si NR arrays. The 
introduction of quantum-sized Si nano-islands and disrupting the sym-
metry in the atomic ordering on the Si NR surface can help realize a 
superior piezoresistive response in chemically etched Si NR arrays. The 
piezoresistive property of Si NR arrays, incorporated from both the po-
sition and dimension-controlled etching as well as random etching, is 
exploited to develop a pressure sensor to detect different mechanical 
forces with considerable sensitivity. The high sensitivity at an extremely 
small air flow enables the pressure sensor to monitor the human respi-
ration by precisely tracking the rate and depth of breathing. Moreover, 
we successfully demonstrated the development of a portable and 

Fig. 5. Human breath detection. (a) Schematic of breath detection, indicating the sensor’s placement on the philtrum. (b) Pressure response for NB and intermittent 
breathing (threat) condition in a regular interval. (c) Comparison of breathing pattern before (upper panel) and after (lower panel) a physical workout. 
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wearable breath sensor to monitor the respiratory parameters in a 
noninvasive and personalized manner. Wireless integration of the sen-
sors, having the portable and smart platform, can enhance the utility of 
the breath sensor as a routine-life workout partner and can be consid-
ered to realize next-generation breath-sensing gadgets. We believe that 
this work provides guidance to develop next-generation breath-sensing 
gadgets and other leading-edge applications in electronic and healthcare 
devices. 
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