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FEUILLES SYMPLECTIQUES POUR LES TRANCHES DANS LES GRASSMANNIENNES AFFINES
GÉNÉRALISÉES

SYMPLECTIC LEAVES FOR GENERALIZED AFFINE GRASSMANNIAN SLICES

DINAKAR MUTHIAH AND ALEX WEEKES

Résumé. Les tranches dans les grassmanniennes affines généralisées W
λ

µ sont des variétés affines
introduites par Braverman, Finkelberg et Nakajima au cours de leur étude des branches de Coulomb
pour les théories de jauge 3d N “ 4 de type carquois. Nous prouvons une de leurs conjectures, en
montrant que l’ouvert affineWλ

µ ĎW
λ

µ est lisse. Une décomposition précise en feuilles symplectiques
en découle. Notre preuve est valable sur un anneau arbitraire et, en particulier, nous montrons
que l’ensemble des points complexes Wλ

µpCq forme une variété complexe. Un aspect subtil de notre
méthode est l’emploi essentiel des ind-schémas qui sont formellement lisses mais qui ne sont pas
lisses.

Abstract. The generalized affine Grassmannian slices W
λ

µ are algebraic varieties introduced by
Braverman, Finkelberg, and Nakajima in their study of Coulomb branches of 3d N “ 4 quiver
gauge theories. We prove a conjecture of theirs by showing that the dense open subset Wλ

µ Ď W
λ

µ

is smooth. An explicit decomposition of W
λ

µ into symplectic leaves follows as a corollary. Our
argument works over an arbitrary ring and in particular implies that the complex points Wλ

µpCq
form a smooth holomorphic symplectic manifold. A subtle aspect of the method is our essential
use of ind-schemes that are formally smooth but not smooth.

1. Introduction

Affine Grassmannian slices for a reductive group G are objects of considerable interest. As
transversal slices to spherical Schubert varieties, they capture information about singularities in
the affine Grassmannian. By the geometric Satake correspondence, these singularities are known
to carry representation-theoretic information about the Langlands dual group of G. Additionally,
they have a Poisson structure that quantizes to the truncated shifted Yangians [KWWY14]. Fur-
thermore, they form a large class of conical symplectic singularities that do not admit symplectic
resolutions in general. As such, they form an important test ground for ideas in symplectic algebraic
geometry and representation theory.

Recently, Braverman, Finkelberg, and Nakajima [BFN19] showed that affine Grassmannian slices
arise as Coulomb branches of 3d N “ 4 quiver gauge theories. Their construction of affine Grass-
mannian slices is particularly satisfying because: (1) the quantization comes essentially for free in
their construction, (2) their construction works for arbitrary symmetric Kac-Moody type. Because
of point (2), the Coulomb branch perspective seems to be a fruitful path toward understanding the
geometric Satake correspondence in affine type and beyond (see e.g. [Fin18, Nak]).

However, their construction produces more than just affine Grassmannian slices: usual affine
Grassmannian slices are indexed by a pair of dominant coweights λ and µ, but their construction
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2 DINAKAR MUTHIAH AND ALEX WEEKES

does not constrain µ to be dominant. Rather, they construct generalized affine Grassmannian slices
denoted W

λ
µ for λ constrained to be dominant but for arbitrary µ ď λ.

The geometry of the generalized affine Grassmannian slices for µ non-dominant is less understood
than the case of µ dominant. For example, there is a disjoint decomposition

W
λ
µ “

ğ

ν dominant,
µďνďλ

Wν
µ (1.1)

that Braverman, Finkelberg and Nakajima conjecture ([BFN19, Remark 3.19]) to be a decompo-
sition of W

λ
µ into symplectic leaves. They show that this would follow if one could show that the

subvarieties Wλ
µ are smooth for all λ and µ. In this note, we show the following, which proves their

conjecture.

Theorem 1.2 (Corollary 3.17). For any λ ě µ with λ dominant, the variety Wλ
µ is smooth.

In particular, it follows that the set of C–points Wλ
µpCq is a smooth holomorphic symplectic

manifold. This verifies part of an expectation that it is also hyper-Kähler, since Wλ
µpCq should be

identified with a moduli space of singular instantons on R3, see [BFN19], [BDG17].

1.1. Previously known cases. Theorem 1.2 is known when µ is dominant because in this case W
λ
µ is

a usual affine Grassmannian slice. It is also known for µ ď w0pλq where w0 is the longest element
of the Weyl group [BFN19, Remark 3.19]. In type A, all cases are known by work of Nakajima and
Takayama on Cherkis bow varieties [NT17, Theorem 7.13]. In [KP19], Krylov and Perunov prove
Theorem 1.2 in general type for λ minuscule and µ lying in the orbit of λ under the Weyl group.
In fact, they prove more: they show that W

λ
µ “Wλ

µ is an affine space in this case.
We note that our main theorem has been expected by physicists, since Wλ

µ should be a space
of singular instantons as mentioned above, and that the decomposition (1.1) is an instance of
monopole bubbling. We refer the reader again to [BDG17], and to the references in the physics
literature given in the introduction of [BFN19], as well as in [Nak16].

Finally, generalized affine Grassmannian slices of the form W0
µ had been previously considered

in a different guise: these are the so called “open Zastava spaces” whose smoothness is deduced by
a certain cohomology vanishing computation [FM99]. Our approach gives a direct group-theoretic
proof of this smoothness. It would be interesting to understand how these two approaches are
precisely related. We elaborate on this briefly in §3.3.3.

1.2. Our approach. There is a group theoretic construction of generalized affine Grassmannian slices
W
λ
µ and their open subschemes Wλ

µ given in [BFN19, Section 2(xi)], inspired by the scattering
matrix description of singular monopoles from [BDG17, Section 6.4.1]. We slightly modify this
group-theoretic construction to produce spaces that we call X

λ
µ and Xλµ. We show these spaces are

products of the correspondingW-versions and an infinite dimensional affine space (Proposition 3.8).
We then show that the spaces Xλµ are formally smooth (Theorem 3.14), from which we conclude

that the spaces Wλ
µ are formally smooth. Because the W

λ
µ (and hence Wλ

µ) are known to be finitely
presented (see Proposition 2.10 for a direct group-theoretic proof), we conclude that Wλ

µ is in
fact smooth. A subtle point in our approach is that we make use of the formal smoothness of an
ind-scheme Xλ that is not smooth, so the use of infinite-dimensional spaces and formal smoothness
appears essential in our approach (see Remark 3.10).
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We note that our approach to smoothness is analogous to a standard approach to the smoothness
of usual affine Grassmannian slices (and in fact general Schubert slices for partial flag varieties, see
e.g.[KL80, §1.4])). Our space Xλµ is constructed using an auxiliary space Xµ that plays the role of
an open chart in the affine Grassmannian. We explain this briefly in §3.3.2.

1.3. Acknowledgements. We thank Michael Finkelberg, Hiraku Nakajima, and Oded Yacobi for help-
ful comments. D.M. was supported by JSPS KAKENHI Grant Number JP19K14495. A.W. is
grateful to Kavli IPMU for hosting him during the workshop “Representation theory, gauge theory,
and integrable systems”, where this project was started. This research was supported in part by
Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the
Government of Canada through the Department of Innovation, Science and Economic Develop-
ment Canada and by the Province of Ontario through the Ministry of Economic Development, Job
Creation and Trade.

2. Preliminaries

2.1. Schemes and functors. Let k be a commutative ring. Let Algk be the category of commutative k-
algebras, and let Schk be the category of k-schemes. We define the category Funck of k-functors to be
the category of functors Algk Ñ Set. Recall that there is a fully-faithful embedding Schk ãÑ Funck
coming from the Yoneda Lemma and the fact that morphisms of schemes are local for the Zariski
topology. Following the usual terminology, we will call this inclusion the map sending a scheme to
the functor it represents. All the functors we consider will be ind-schemes (of possibly ind-infinite
type), so it is not strictly necessary to consider them as functors. However, we will be focused on
questions of formal smoothness, so the functorial viewpoint will be essential.

There are notions of open and closed subfunctors in Funck, see [EH00, VI.1.1]. We note that
they behave well with respect to base change, and agree with the usual notions of open and closed
subscheme in the case of a functor represented by a scheme.

2.2. Formal smoothness. Let ϕ : rAÑ A be a morphism in Algk. Recall that we say ϕ is a square-zero
extension if ϕ is surjective and the ideal I “ kerpϕq satisfies I2 “ 0.

Let X P Funck. We say that X is formally smooth if for every square zero extension rA Ñ A, the
map XprAq Ñ XpAq is surjective. The relevance of formal smoothness is the following theorem of
Grothendieck (see e.g. [Sta19, Lemma 02H6]).

Proposition 2.1. Let X be a locally finitely presented k-scheme. Then X is smooth if and only if
it is formally smooth.

We record the following lemma for use later.

Lemma 2.2. Let X, Y P Funck. Suppose X ˆ Y is formally smooth and Xpkq ‰ ∅. Then Y is
formally smooth.

Proof. Let ϕ : rA Ñ A be a square-zero extension, and let y P YpAq. By assumption there exists
x P Xpkq, which we may view as an A-point. Then px,yq P pXˆYqpAq. By formal smoothness, this
point has a lift prx, ryq P pXˆ YqprAq. But then ry P YprAq is a lift of y, as desired. �

https://stacks.math.columbia.edu/tag/02H6
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2.3. Group theoretic data. Let G be a connected split reductive group (see e.g. [Jan03, Section II.1]
for an overview). In particular, G is defined over Z. Let T be a maximal torus, and let U` and
U´ be opposite unipotent subgroups (i.e. U´T and U`T are opposite Borel subgroups). Let P be
the coweight lattice of T , and let Q be the coroot lattice. We write P`` for the dominant cone and
write Q` for the positive coroot cone. Recall the dominance order where for λ,µ P P, we write
µ ď λ if λ´ µ P Q`.

Let P_ be the weight lattice of T , and P_`` its cone of dominant weights. For each Λ P P_``, let
Vp´Λq be the Weyl module of G with lowest weight ´Λ. This is a free k-module, and the lowest
weight space Vp´Λq´Λ is a rank-one free k-module. Let v´Λ be a generator of this free module,
and let v˚´Λ be the linear functional on Vp´Λq that is equal to one on v´Λ and is zero on all other
weight spaces. Let ∆Λ be the regular function on G defined by ∆Λpgq “ xv˚´Λ,gv´Λy.

Recall that the big cell of G is the open subscheme U`TU´ Ă G. It is isomorphic to the product
U` ˆ T ˆU´, via the multiplication map.

Lemma 2.3. Let Λ,Λ 1 P P_``. For t P T and g P U`TU´, we have:

(a) ∆Λptgq “ ∆Λpgtq “ ∆Λptq∆Λpgq,
(b) ∆Λ`Λ 1pgq “ ∆Λpgq∆Λ 1pgq.

The coordinate ring of T is the group algebra of P_, and thus for any A P Algk there is a natural
bijection TpAq ÐÑ HomgroupspP

_,Aˆq where Aˆ Ă A are the units. Since the Grothendieck group
of the semigroup P_`` is canonically isomorphic to P_, we have:

Lemma 2.4. For any A P Algk there is a natural bijection

TpAq ÐÑ HomsemigroupspP
_
``,A

ˆq,

such that t P TpAq corresponds to the homomorphism Λ ÞÑ ∆Λptq.

2.4. Arcs and loops. Let z be a formal variable. Let Grzs be the group object in Funck defined by
GrzspAq “ GpArzsq for each A P Algk. Similarly we define Gppz´1qq and Grrz´1ss. We have closed
embeddings Grzs ãÑ Gppz´1qq and Grrz´1ss ãÑ Gppz´1qq. Observe that Grrz´1ss is a scheme of
infinite type, Grzs is an ind-scheme of ind-finite type, and Gppz´1qq is an ind-scheme of ind-infinite
type.

Let Grthick
G be the thick affine Grassmannian, which is a scheme of infinite type. It can be defined

as the moduli of G-torsors on P1 with a trivialization on the formal neighbourhood of 8 P P1, see
[Zhu17, Remark 2.3.6]. There is a unit point 1 P Grthick

G corresponding to the trivial bundle, and a
Gppz´1qq-action on Grthick

G changing trivializations. The stabilizer of the point 1 P Grthick
G is Grzs,

and the map

Gppz´1qq Ñ Grthick
G (2.5)

obtained by acting on 1 P Grthick
G is a Zariski locally trivial principal bundle for the group Grzs. For

this reason, one often writes Grthick
G “ Gppz´1qq{Grzs. However, one needs to be careful with this

notation because the naïve functor indicated by Gppz´1qq{Grzs is not the functor that represents
Grthick
G : one needs to appropriately sheafify it.

2.5. Generalized affine Grassmannian slices. For λ P P, we can consider the point zλ P Gppz´1qq and
the corresponding point zλ P Grthick

G . We will restrict our attention to λ P P``. Then we write
Grλ for the orbit inside of Grthick

G of the point zλ under the group Grzs. Let Grλ be the closure of
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this orbit (with its reduced scheme structure). It is well known that both Grλ and Grλ are finite
type schemes, and that Grλ is a smooth scheme.

We define the closed subfunctor Xλ of Gppz´1qq to be the preimage of Grλ under the surjective
map Gppz´1qq Ñ Grthick

G . We define Xλ to be the open subfunctor of Xλ that is the preimage of
Grλ. Suggestively, we will write Xλ “ GrzszλGrzs and Xλ “ GrzszλGrzs. Observe that both Xλ

and Xλ have Grzs ˆGrzs actions given by left and right multiplications.
Let G1rrz

´1ss be the closed subscheme of Grrz´1ss consisting of elements that evaluate to 1 P G
modulo z´1. Then we have the Gauss decomposition (in k-functors):

G1rrz
´1ss “ U`1 rrz

´1ss ¨ T1rrz
´1ss ¨U´1 rrz

´1ss (2.6)

where the factors on the right hand side are defined exactly as for G. For each µ P P, we will
consider

Wµ “ U
`
1 rrz

´1ss ¨ zµT1rrz
´1ss ¨U´1 rrz

´1ss (2.7)

which is a closed sub-scheme of Gppz´1qq. Note that this is also a product of k–functors. We will
restrict attention to µ with µ ď λ.

Following Braverman, Finkelberg, and Nakajima [BFN19, Section 2(xi)], we define:

W
λ
µ “ Xλ XWµ (2.8)

and

Wλ
µ “ Xλ XWµ. (2.9)

As they explain,W
λ
µ is a finite-type affine scheme with a Poisson structure. When µ is also dominant

they show that W
λ
µ is isomorphic to a transversal slice in the thick affine Grassmannian, under the

map Gppz´1qq Ñ Grthick
G . (In fact it is isomorphic to a slice in the thin affine Grassmannian, see

loc. cit.). For this reason, W
λ
µ is called a generalized affine Grassmannian slice. Note that Wλ

µ ĂW
λ
µ

is open, as Xλ Ă Xλ is open.
The following is [BFN19, Lemma 2.5]; we record the following elementary proof for the benefit

of the reader.

Proposition 2.10. For any λ ě µ with λ dominant, W
λ
µ is a finitely presented affine k-scheme.

Proof. Observe that W
λ
µ is defined over Z, so it suffices to show that W

λ
µ is a finite type affine

scheme over Z [Sta19, Lemma 01TX].
Embed G as a closed subgroup of GLn such that T and U˘ are compatible with the standard torus

and unipotents in GLn. We see that W
λ
µ is a closed subfunctor of a generalized affine Grassmannian

slice for GLn. Therefore, we are reduced to considering the case of G “ GLn.
Let Xλ be the closed subfunctor of Gppz´1qq consisting of elements g such that for any Λ P P_``,

the matrix entries of g acting on Vp´Λq have poles in z of order no worse than ´xλ,Λy. The
functor Xλ is the preimage of the “moduli version” of Grλ under the map Gppz´1qq Ñ Grthick

G (see
[KMW18] for a detailed discussion about the “moduli version” of Grλ). In particular, Xλ is a closed
subfunctor of Xλ. Therefore W

λ
µ “Wµ X Xλ ĂWµ X Xλ is a closed subfunctor, so we are further

reduced to proving that Wµ X Xλ is of finite type.

https://stacks.math.columbia.edu/tag/01TX
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Let g “ xzµty PWµ, i.e. x P U`1 rrz
´1ss, t P T1rrz´1ss, and y P U´1 rrz

´1ss. Suppose further that
xzµty P Xλ. As we are considering GLn, t is a diagonal matrix with diagonal entries t1, . . . , tn,
each of which is a series in z´1 with constant term 1,

For each i, let ai “ ti ¨ ¨ ¨ tn. Computing ∆Λpgq for Λ the fundamental weights and the deter-
minant character, we see that each ai is in fact a polynomial in z´1 with an explicit bound on the
degree coming from λ. Furthermore, the coefficients of each ti are polynomials in the finitely many
coefficients of a1, . . . ,an.

For integers i, j with 1 ď i ă j ď n, consider xij, the pi, jq-th entry of the unipotent upper
triangular matrix x. Each xij is a power series in z´1 with constant term 0. If we act by g on the
lowest weight vector of the pn´ j` 1q-th fundamental representation, we see that ajxij appears as
a matrix coefficient. Therefore, bij “ ajxij is a polynomial in z´1 with an explicit bound on the
degree, and the coefficients of xij are polynomials in the finitely many coefficients of aj and bij.
A similar consideration applies to the matrix coefficients of y, and therefore Wµ X Xλ is a closed
subscheme of a finite-dimensional affine space, so is of finite type. �

3. Main Result

3.1. The space Xλµ. Let λ and µ be as above. We define the following variant of the space Wµ:

Xµ “ U
`ppz´1qq ¨ zµT1rrz

´1ss ¨U´ppz´1qq. (3.1)

Lemma 3.2. For any A P Algk, we have:

XµpAq “
!

g P G
`

Appz´1qq
˘

ˇ

ˇ

ˇ
∆Λpgq P z

´xµ,Λy ¨
`

1` z´1Arrz´1ss
˘

, @Λ P P_``

)

. (3.3)

Proof. It is easy to see that any g P XµpAq satisfies the conditions on ∆Λpgq above. Conversely, if
g P GpAppz´1qqq satisfies these conditions, then in particular all ∆Λpgq are units in Appz´1qq. This
implies that g is an Appz´1qq–point of the big cell U`TU´ Ă G, so we can write g “ u`tu´ with
u˘ P U˘pAppz´1qqq and t P TpAppz´1qqq. In order to conclude that g P Xµ, it remains to show that
its factor t has the correct form. But since ∆Λpgq “ ∆Λptq, this follows from Lemma 2.4. �

Consider the quotient U`ppz´1qq{U`1 rrz
´1ss. Unlike the case of G, this quotient can be naïvely

interpreted because the natural map

U`rzs
„
Ñ U`ppz´1qq{U`1 rrz

´1ss (3.4)

is an isomorphism. In particular, U`rzs gives us a section of the quotient map U`ppz´1qq Ñ

U`ppz´1qq{U`1 rrz
´1ss. Similarly, there is an isomorphism U´rzs

„
Ñ U´1 rrz

´1sszU´ppz´1qq.
We therefore obtain a map

πµ : Xµ Ñ U`rzs ˆU´rzs (3.5)

given by sending a point xzµty P Xµ to px,yq P U`ppz´1qq{U`1 rrz
´1ss ˆ U´1 rrz

´1sszU´ppz´1qq –

U`rzs ˆU´rzs.

Definition 3.6. Let λ P P`` and µ P P. Define:

Xλµ “ Xλ X Xµ. (3.7)

Proposition 3.8. The ind-scheme Xλµ is isomorphic to the product U`rzs ˆWλ
µ ˆU

´rzs.
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Proof. The map (3.5) is our required map Xλµ Ñ U`rzs ˆ U´rzs. We need to construct a map
Xλµ Ñ Wλ

µ. Observe that Xλµ has a U`rzs ˆ U´rzs-action where the U`rzs-factor acts by left
multiplication, and the U´rzs-factor acts by right multiplication. Furthermore, the map πµ is
equivariant for this action. Given g P Xλµ, consider px,yq “ πµpgq. Then x´1πµpgqy

´1 PWλ
µ. This

defines our map Xλµ ÑWλ
µ, and it is clear that this and πµ realize Xλµ as the above product. �

3.2. Formal smoothness of Xλµ.

Proposition 3.9. The ind-scheme Xλ is formally smooth.

Proof. By definition, we have a Zariski-locally-trivial principal bundle Xλ Ñ Grλ for the group
Grzs over the smooth base Grλ. So we are reduced to showing that the ind-scheme Grzs is formally
smooth.

We need to show that for any square-zero extension rA � A, the map GrzsprAq Ñ GrzspAq is
surjective. This follows because rArzs� Arzs is also a square-zero extension and G is smooth (and
hence formally smooth). �

Remark 3.10. Although the ind-scheme is Xλ is formally smooth, it is not smooth, i.e. it cannot
be written as a an increasing union of smooth varieties (not even locally in the analytic topology).
Fishel, Grojnowski, and Teleman show that thin affine Grassmannians are not smooth in this sense
(even though they are formally smooth) [FGT08, Theorem 5.4]. Locally in the Zariski topology,
Xλ is isomorphic to a smooth variety times the big cell in the thin affine Grassmannian: it is
locally the product of a smooth scheme times Grzs as explained in the proof above, while Grzs is
the product of G times the big cell. Adapting the argument in loc. cit., we can conclude that Xλ

is not smooth.
Nonetheless, we will use the formal smoothness of Xλ to deduce the smoothness of the finitely

presented schemeWλ
µ below. Because Xλ is not smooth, we cannot naïvely truncate the argument to

a finite-dimensional situation. This is a subtle point of our approach: the use of infinite dimensional
ind-schemes and formal smoothness seems to be essential.

The following lemma is a slight variation of the classical Weierstraß Preparation Theorem (see
e.g. [Bou06, Ch. VII, §3.8]).

Lemma 3.11. Let rA Ñ A be a square-zero extension with kernel I. Let Irzs denote the set of
polynomials in rArzs having all coefficients lie in I. Let D P Irzs ` 1` z´1

rArrz´1ss. Then there
exists a unique polynomial γ P 1` Irzs such that

γD P 1` z´1
rArrz´1ss. (3.12)

Proof. For a series s P rAppz´1qq, denote by regpsq P rArzs its polynomial part. Write D “ x` 1`a
with x P Irzs and a P z´1

rArrz´1ss, and consider a general element γ “ 1 ` y P 1 ` Irzs. Then
xy “ 0 since Irzs2 “ 0, and we have

γD “ x` 1` y` ya` a. (3.13)

Therefore regpγDq “ x ` 1 ` y ` regpyaq. Since a P z´1
rArrz´1ss, the coefficients of y ` regpyaq

have an upper-triangularity property with respect to the coefficients of y: for n ě 0 the coefficient
of zn in y` regpyaq equals yn`

ř

ką0 a´kyn`k, where y`,a` denote the coefficients of z` in y and
a, respectively. Thus, by starting with the leading degree coefficient of y and working downwards
inductively, we can solve uniquely for y such that regpγDq “ 1 (observe in particular that the
degree of y must be equal to the degree of x). This proves the claim. �
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Theorem 3.14. The ind-scheme Xλµ is formally smooth.

Proof. Let rA� A be a square-zero extension with kernel I, and let g P XλµpAq “ XλpAq XXµpAq.
Because Xλ is formally smooth, we can find g 1 P XλprAq lifting g. Let Λ P P_``. It may not

be the case that ∆Λpg 1q lies in z´xµ,Λy ¨
´

1` z´1
rArrz´1ss

¯

, but we know at least that ∆Λpg 1q P

z´xµ,Λy ¨
´

Irzs ` 1` z´1
rArrz´1ss

¯

. Using Lemma 3.11, we can find a unique γΛ P 1` Irzs so that

γΛ∆Λpg
1q P z´xµ,Λy ¨

´

1` z´1
rArrz´1ss

¯

. (3.15)

Since ∆Λpgq∆Λ 1pgq “ ∆Λ`Λ 1pgq by Lemma 2.3(b), we must have γΛ`Λ 1 “ γΛγΛ 1 by uniqueness.
Also note that 1` Irzs Ă rArzsˆ since Irzs2 “ 0. Therefore the map Λ ÞÑ γΛ defines an element of
HomsemigroupspP

_
``, rArzsˆq, and thus a point t P TprArzsq by Lemma 2.4. Note that t is a lift of the

identity element in TpArzsq.
Define rg “ t ¨ g 1. Because t P TprArzsq and Xλ is invariant under Grzs-multiplication, rg P XλprAq.

By Lemma 2.3(a) and Lemma 2.4, for each Λ P P_``, we have:

∆Λprgq “ ∆Λptq∆Λpg
1q “ γΛ∆Λpg

1q P z´xµ,Λy ¨
´

1` z´1
rArrz´1ss

¯

. (3.16)

Therefore rg P XλµprAq by Lemma 3.2. Since rg is a lift of g, this shows that Xλµ is formally smooth. �

Using Proposition 3.8, Lemma 2.2, and observing that U`rzsˆU´rzs has a k-point, we conclude
that Wλ

µ is formally smooth. As Wλ
µ ĂW

λ
µ is an open subscheme and W

λ
µ is finitely-presented (by

Lemma 2.10), Wλ
µ is locally of finite presentation [Sta19, Lemma 01TQ]. Applying Proposition 2.1,

we conclude the following:

Corollary 3.17. The scheme Wλ
µ is smooth.

3.3. Concluding remarks.

3.3.1. Generalization. In this section we will describe a more general framework in which our
arguments above apply. Let Z be a scheme equipped with a Grzs–action, along with a Grzs–
equivariant map Z Ñ Grthick

G . Consider the following diagram, where the top row is defined via
fiber products:

WZ
µ XZµ XZ Z

Wµ Xµ Gppz´1qq Grthick
G

(3.18)

In particular, taking Z “ Grλ ãÑ Grthick
G the spaces in the top row are simply Wλ

µ, Xλµ, and Xλ.
Assuming that Z is formally smooth, the same arguments given above show that WZ

µ is formally
smooth. We can apply this discussion to two important variations on the varieties Wλ

µ. They both
depend on a choice of tuple of dominant coweights λ “ pλ1, . . . , λNq such that λ “ λ1 ` . . .` λN.

(a) For the first, we pick a point z “ pz1, . . . , zNq P kN. Define Z to be the Grzs–orbit through
the point

śN
s“1pz ´ zsq

λs P Grthick
G . Then WZ

µ is an open subscheme of the slice W
λ,z
µ from

[BFN19, §2(xi)], which is a fiber of a Beilinson-Drinfeld deformation of W
λ
µ. Note that W

λ,z
µ

itself is obtained from (3.18) by taking the closure Z Ă Grthick
G in place of Z.

https://stacks.math.columbia.edu/tag/01TQ
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(b) For the second, we take the (open) convolution variety Z “ Grλ1
rˆ . . . rˆGrλN (for example, as

defined as in the paragraph preceding [Zhu17, Equation (2.1.17)]). Then WZ
µ is an open sub-

scheme of the space rW
λ
µ from [BFN18, §5(i)], which is a partial resolution of W

λ
µ. Note that rW

λ
µ

itself is obtained from (3.18) by taking the (closed) convolution variety Z “ Grλ1
rˆ . . . rˆGrλN

in place of Z. Also note that Z Ă Z is a smooth open dense subvariety.

By similar arguments to Proposition 2.10, one can see that W
λ,z
µ and rW

λ
µ are finitely presented

k–schemes. (Alternatively this follows from [BFN19, §2(xi)] and [BFN18, §5], respectively.) Thus
in either case, smoothness and formal smoothness coincide for their open subschemes WZ

µ . Since
Z is smooth in both cases, we conclude that WZ

µ is also smooth.

3.3.2. Comparison to smoothness for open affine Grassmannian slices. Our proof is inspired
by the usual approach to showing smoothness of open affine Grassmannian slices. We will quickly
review this. Let λ and µ be dominant weights with µ ď λ. In this case, W

λ
µ is a closed subscheme

of the affine Grassmannian with open subscheme Wλ
µ. Let A0 denote the “big cell” of the affine

Grassmannian. Left multiplying A0 by zµ, we get an open subset Aµ of the affine Grassmannian
that contains the point zµ.

Consider the intersection AµXGrλ, which is a smooth variety because it is an open subset of the
smooth variety Grλ. Furthermore, there is a map Aµ XGrλ Ñ V, where V is the stabilizer inside
of U`1 rz

´1s of the point zµ. Observe that V is isomorphic to a finite dimensional affine space. This
map realizes Aµ XGrλ as V ˆWλ

µ. Therefore, we conclude that Wλ
µ is smooth. We mention that

this is a general calculation that works for arbitrary Schubert slices (see e.g.[KL80, §1.4])).
For us, the space Xµ plays the role of Aµ, and Xλ plays the role of Grλ. However, because Xλ is

infinite-dimensional, smoothness is more subtle: hence our approach through formal smoothness.

3.3.3. Open Zastava. In the case λ “ 0, we have W
0
µ “W0

µ, and the spaceW0
µ has been considered

previously: it is precisely the “open Zastava” space consisting of degree ´µ based maps from P1 to
the flag variety B of G. In this case, smoothness was previously known by work of Finkelberg and
Mirković [FM99]. Let ϕ : P1 Ñ B be a degree ´µ based map. They argue that ϕ is a smooth point
of the open Zastava if and only if we have H1pP1,ϕ˚TBq “ 0, where TB is the tangent sheaf of B.
Because TB is globally generated, and all globally generated vector bundles on P1 have vanishing
higher cohomology, they deduce the necessary vanishing.

Our work gives another proof of the smoothness of the open Zastava space. It would be very
interesting to understand precisely how the two calculations correspond.
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