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ABSTRACT 

This study investigates the mode transition phenomenon in a standing-wave thermoacoustic engine 

(TAE) by means of computational fluid dynamics (CFD). Firstly, the steady-state responses of the 

TAE at selected temperature ratios are examined via continuous wavelet transform. The bifurcation 

diagram and spectral map indicate that, as the temperature ratio increases, the TAE experiences a 

series of bifurcations, through which first-mode periodic oscillations, quasiperiodic oscillations and 

second-mode periodic oscillations occur. Secondly, the TAE performances in the initial decay/build-

up, nonlinear saturation and steady states are studied. The onset of the first and/or second acoustic 

mode is identified via dynamic mode decomposition. The oscillation frequencies and 

growth/attenuation rates from CFD agree well with those from the reduced-order network model. 

Nonlinear mode competition takes place during saturation in which the growth of one acoustic mode 

is affected or even totally inhibited by the growth of the other. At steady state, periodic oscillations 

exhibit a closed loop in the phase space whilst quasiperiodic oscillations generate a torus. The time-

averaged acoustic energy density, acoustic intensity and efficiency increase with increasing 

temperature ratio. Finally, parametric studies are conducted to investigate the effects of the gap 

between stack plates and stack position on mode transition. It is found that the TAE will exhibit 

second-mode oscillations if the stack is near the closed end or the gap is small. Results in this study 

indicate that mode transition could become a novel approach to match the TAE with external loads for 

higher electric power outputs. 

Keywords: Thermoacoustic engine; Mode transition; Computational fluid dynamics; Continuous 

wavelet transform; Dynamic mode decomposition; 
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Nomenclature   

A cross-section area (m2) Greek symbols 

a sound speed (m/s) γ ratio of isobaric to isochoric specific heats 

c compliance per unit length (m3s2/kg) δ penetration depth (m) 

cp isobaric specific heat (J/kgK) ε dissipation rate 

D diameter of resonator (m) ζ time delay (s) 

dS gaps between stack plates (m) θ phase difference 

e specific internal energy (J/kg) κ thermal conductivity of fluid (W/mK) 

etot total energy per unit mass (J/kg) λ acoustic wavelength (m) 

f oscillation frequency (Hz) μ dynamic viscosity (kg/sm) 

fv,k thermo-viscous functions ρ density (kg/m3) 

g thermoacoustic source term σ Prandtl number 

I acoustic intensity (kg/s3) τij viscous stress tensor 

j 1−  ω angular frequency (rad/s) 

k turbulence kinetic energy   

L length (m) Subscripts 

l inertance per unit length (kg/m5) 0 mean values 

p pressure (Pa) 1 complex quantity 

Q heat flow (W) k thermal effects 

q heat flux (W/m2) v viscous effects 

rh hydraulic radius (m)   

rv,k thermo-viscous resistance (kg/m5s) Abbreviations 

T temperature (K) CFD computational fluid dynamics 

tS stack plate thickness (m) CWT continuous wavelet transform 

u velocity (m/s) DM

D 

dynamic mode decomposition 

U volume velocity (m3/s) FFT Fast Fourier Transform 

w acoustic energy density (kg/ms2) HPC high-performance computing 

Z impedance per unit mass (kg/m3s) TAE thermoacoustic engine 

 

1. Introduction 

Thermoacoustic engines (TAEs) or prime movers are reciprocating natural heat engines capable of 

producing substantial acoustic work (up to kW) from low-grade heat sources (as low as 29 °C) such 

as geothermal energy, industrial waste heat, solar thermal energy and exhaust heat of internal 

combustion engines [1]. They offer an attractive alternative to exploit low-grade heat by using no or 
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fewer moving components and environmentally friendly working fluids (e.g., noble and inert gases) 

[2-4]. The foundation of TAEs is the thermoacoustic effect that arises from the interaction between a 

compressible fluid and a solid material. Spontaneous oscillations of the compressible fluid (i.e., 

acoustic waves) will be induced if a threshold temperature gradient is imposed along the solid 

material [5-7]. Based on the acoustic field, TAEs can be classified into standing-wave and travelling-

wave types [8-10]. Standing-wave TAEs rely on imperfect heat conduction to realize Brayton-like 

thermodynamic cycles within the boundary layers [11-13] whereas travelling-wave TAEs require 

perfect heat conduction to execute Stirling-like cycles [14-16]. Although standing-wave TAEs are less 

efficient from a thermodynamic perspective, they are simple in structure, compact in size and, most 

importantly, cheap to fabricate, therefore remaining competitive with their travelling-wave 

counterparts regarding cost-effectiveness. 

TAEs are essentially acoustic equivalents of traditional gas-cycle heat engines [17]. The working fluid 

in TAEs undergoes acoustic compression and expansion while simultaneously releasing heat to and 

absorbing heat from the nearby solid porous material (e.g., stack or regenerator). Unlike traditional 

heat engines, the period of thermodynamic cycles in TAEs is decided by the natural frequency of the 

system itself. From an acoustic perspective, TAEs can be viewed as continuous systems that possess 

multiple acoustic modes. In most cases, the TAE operates at the fundamental mode and that behaviour 

has been investigated extensively [18-20]. However, under certain circumstances, acoustic oscillations 

at the fundamental mode may transit to the second or higher modes as the control parameter changes. 

Such a phenomenon is called mode transition in the literature [21]. Mode transition in standing-wave 

TAEs was first observed in an experimental study by Yazaki et al. [22, 23], where second and higher 

harmonics were excited together with the fundamental mode in a linear tube with steep temperature 

gradients, leading to complex quasiperiodic and chaotic oscillations. Similar phenomena were also 

reported by Atchley [24] and Unni [25], who observed the transition from first-mode oscillations to 

quasiperiodic and second-harmonic oscillations by controlling the mean pressure and heat input. 

Mode transition in travelling-wave TAEs was investigated by Biwa [26] and Yu [21]. In their studies, 

transition between the acoustic mode determined by the looped tube and that decided by the acoustic 

resonator took place when the heat input or mean pressure was adjusted. Despite being reported in a 

few studies, mode transition in TAEs has received little attention due to its infrequent appearance in 

experiments. The underlying mechanism of mode transition and its impact on the performance of the 

TAE are still not clear at present. Thus, more research on mode transition should be conducted to 

address the issues stated above.  

Previous research on mode transition in TAEs mainly focused on the existence of such phenomena by 

measuring the steady-state pressure waveforms at different conditions. Although qualitative 

explanations were made, it is difficult to achieve an in-depth understanding of the mode transition 

mechanism with limited data obtained from experiments. To address this problem, Chen et al. [27] 
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performed a system-level theoretical analysis on the stability curves of the acoustic modes inside a 

standing-wave TAE integrated with an external load. The underlying physics of quasiperiodicity and 

beating at different external loads was explored from both acoustic and thermodynamic perspectives. 

Although the stability analysis based on the linear theory enables the prediction of onset temperatures 

at which the acoustic modes become unstable, it fails to estimate the nonlinear dynamic characteristics 

of the TAE after onset [28-30]. Computation fluid dynamics (CFD) offers a viable solution to study 

the nonlinear saturation that occurs before reaching the steady state after onset. The CFD 

methodology has been successfully implemented to simulate the excitation of the fundamental mode 

and subsequent evolution to limit-cycle oscillations [31-33]. Nevertheless, there are few reports on the 

simulation of multiple-mode excitation and competition in TAEs. Therefore, in this study, CFD 

simulations of unstable thermoacoustic oscillations in the presence of multiple modes are conducted. 

By means of both frequency- and time-domain analyses, an in-depth understanding of the mode 

transition process is presented. 

This work aims at studying the mode transition phenomenon reported in experiments by performing 

CFD simulations on a full-scale standing-wave TAE. The simulation results are further interpreted by 

linear thermoacoustic theory and other signal processing techniques. This rest of paper is organized as 

follows. Section 2 introduces the computational model and CFD method adopted in this study. 

Section 3 describes and discusses the mode transition. Section 4 elaborates on the effect of key 

geometrical parameters on the mode transition. Finally, concluding remarks are made in Section 5. 

2. Numerical methods 

2.1 Model description 

Figure 1(a) illustrates the schematic of the standing-wave thermoacoustic engine (TAE) investigated 

in the present study. The TAE consists of a hot buffer, a parallel-plate stack that is sandwiched 

between a pair of hot and ambient heat exchangers (not shown) and an acoustic resonator. Also shown 

in the figure is the enlarged view of two adjacent solid stack plates. The TAE is closed at the left end 

(x = 0) and open at the right end (x = L, L = LH + LS + LR), where LH, LS and LR are the lengths of the 

hot buffer, stack and acoustic resonator, respectively. Geometrical parameters of the baseline TAE 

model are listed in Table 1.  

Figure 1(b) shows the computational domain of the TAE. A full-scale two-dimensional (2-D) model is 

adopted herein and high-quality structured meshes are generated for the fluid domain. Close-up views 

of the grid in one stack channel and the near-wall grid in the resonator are presented. Note that 

exponential bunching laws were employed for mesh generation to ensure that the near-wall grid sizes 

are smaller than the viscous/thermal boundary layer thicknesses so that the thermoacoustic effect 

could be captured properly. 
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Figure 1(c) depicts the mode shapes of acoustic oscillations at the fundamental and second modes. 

Higher acoustic modes are of no interest in this study and therefore not displayed. Note that, for 

simplicity, the effects of viscosity and heat conduction on the mode shapes are ignored. For the 

fundamental mode, the antinodes of acoustic pressure p1st and volume velocity U1st (U = uA, where u 

is the velocity and A is the cross-sectional area) are at x = 0 and x = L, respectively. In this case, the 

acoustic wavelength λ = 4L approximately. For the second mode, the antinodes of acoustic pressure 

p2nd and volume velocity U2nd are at x = 0, 2L/3 and x = L/3, L, respectively. In this case, λ = 4L/3 

approximately. 

 

Figure 1. (a) Schematic diagram of the standing-wave TAE. (b) Computational domain (in black) and 

close-up views of structured grids around the stack end and resonator wall. (c) Mode shapes of 

acoustic pressure and volume velocity of the fundamental and second modes. The effects of viscosity 

and heat conduction on the mode shapes are neglected. 

Table 1. Geometrical parameters of the baseline TAE model. 

Parameters Values 

Diameter D 0.02 m 

Hot buffer length LH 0.1 m 

Stack length LS 0.03 m 

Resonator length LR 0.37 m 

Stack plate thickness tS 1.176×10-3 m 

Gap between plates dS 1.176×10-3 m 

Solid

Solid

Fluid

D

Hot buffer Stack Resonator

HL SL RL

Sd

St

Sd
60

D

1stp
1stU2ndU

0
x0

(a)

(b)

(c)

2ndp
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2.2 Governing equations 

Computational fluid dynamics (CFD) simulations are performed on the TAE model. Compressible air 

is chosen as the working fluid and is assumed to be an ideal gas that satisfies the equation of state p = 

ρRgT, where p, ρ, T and Rg are pressure, density, temperature and specific gas constant, respectively. 

In the study of the thermoacoustic oscillations, not only the velocity and pressure fluctuations, but 

also the density and temperature fluctuations should be taken into account. Therefore, the density 

weighted time averaging (Favre averaging) approach is employed to deal with the compressible 

turbulent flows [34]. In Favre decomposition, any dependent fluid variable Φ (e.g., p, ρ, T, etc.) can 

be expressed as    = +  where /  =  and   stand for the mean and fluctuating parts, and 

the overbar “ ”̄ denotes classical time averaging (Reynolds averaging). Substituting these fluid 

variables into the governing equations of fluid mechanics yields the Favre-averaged Navier-Stokes 

equations (Einstein summation convention is applied to repeated indices), which are 

 ( ) 0i

i

u
t x




 
+ =

 
  (1) 

 ( ) ( ) 0tot

i i j ij ij

j

u u u p
t x
   

 
+ + − =

 
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tot j tot j j i ij

j

e u e u p q u
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  

 
+ + + − =

 
  (3) 

where ui or uj stands for the velocity component in corresponding direction, etot = e + uiui / 2 is the 

total energy with e being the specific internal energy, and δij is the Kronecker delta. The total stress 

tensor and heat flux are defined as 

 ( )
2 2

3 3
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ij ij i j t ij ij

j i k
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  
 = − = + + − −     

  (4) 

 
tot t
j j p j p

t j

T
q q c u T c

x




 

  
= + = − + 

 
 (5) 

where τij is the viscous stress tensor and i ju u  − is the Reynolds stress modelled by the Boussinesq 

hypothesis [35]; μ and μt represent the dynamic and turbulent viscosities, and k is the turbulence 

kinetic energy; qj is the heat flux given by Fourier’s law and p jc u T   is the turbulent heat flux 

modelled by the gradient approximation [35]; σ and σt represent the laminar and turbulent Prandtl 

numbers, and cp is the isobaric specific heat. Note that σ = μcp / κ, with κ being the heat conductivity. 

μ, σ and cp are intrinsic thermophysical properties for a given gas type, while μt, σt and k have to be 

calculated using a separate turbulence model. In this study, the standard k-ε turbulence model is 
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adopted to account for turbulence effects. The k-ε model contains two transport equations for the 

turbulence kinetic energy k and rate of dissipation ε; μt  = 2 / C k  with C being 0.09, while σt is 

set at 0.85 by default [36]. It is worth mentioning that the standard k-ε model has been successfully 

implemented in previous numerical studies on TAEs and provides reasonable estimates [37-39]. 

Equations (1) to (3) are resolved numerically using the commercial CFD package FLUENT 18.1 that 

adopts a pressure-based finite volume method. In the CFD simulations, the PISO (Pressure-Implicit 

Splitting Operators) scheme is used for pressure-velocity coupling, the second order upwind approach 

is employed for spatial discretization, and the second-order implicit algorithm is adopted for temporal 

discretization. The under-relaxation factors for fluid variables are set at default values. In this study, 

the dynamic viscosity μ is set to obey the Sutherland power law [40] while the thermal conductivity κ 

is chosen to be 0.242 W/mK in order to obtain sufficient heat exchange from the stack walls [41]. 

2.3 Initial and boundary conditions 

Two steps are implemented consecutively to realize spontaneous thermoacoustic oscillations via CFD 

[42]. Each step has different initial and/or boundary conditions. 

Step 1: steady calculation. In this step, the unsteady terms in Equations (1) to (3) are neglected. Non-

slip boundary condition is applied to all wall surfaces. The surface temperatures Ts of the solid hot 

buffer and resonator are set at Th and Tc respectively, while Ts of the stack is assumed to decrease 

linearly from Th at x = 0.1 m to Tc at x = 0.13 m. In this paper, Tc is fixed at 300 K but the temperature 

ratio Γ = Th / Tc varies from 1 to 7. The boundary condition at x = 0 is a pressure inlet (gauge pressure 

0.1 Pa) while a pressure outlet (gauge pressure 0 Pa) is enabled at x = L (i.e., no acoustic radiation). 

As a result, non-zero pressure and velocity gradients across the TAE ensue after convergence is 

obtained in Step 1.  

Step 2: transient calculation. In this step, the time dependence of fluid variables is considered and an 

appropriate time step size is assigned. The resultant flow field (with gradients) from Step 1 serves as 

the initial condition. As to the boundary conditions, the pressure inlet at x = 0 is replaced by a solid 

wall whereas the others remain the same as Step 1. 

2.4 Sensitivity study 

The sensitivity of the closed-end (x = 0) acoustic pressure to the grid and time step sizes was 

investigated. In order to find an optimal grid size, the grid size in the stack region was refined, with 

the number of nodes of the entire mesh being 101,203 (coarse), 173,871 (medium) and 254,832 (fine), 

respectively. Tests were performed on the baseline model at Γ = 2.2 and the near-wall grids were 

refined to ensure y+ < 1. As shown in Figure 2(a), when the number of nodes increases to 173,871, 

further deceasing the grid size leads to negligible differences in steady-state pressure oscillations. 

Hence, the optimal node number is chosen as 173,871. Likewise, three time step sizes Δt at 5, 10 and 
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20 μs were investigated. As shown in Figure 2(b), the pressure oscillations at 20 μs deviate from the 

other two, whereas the 10 μs shows a good resolution in comparison with the 20 μs. Hence, the 

optimal time step size is chosen to be 10 μs. To save computational cost, the optimal node number and 

time step size were adopted for all simulations in Section 3.  

 

Figure 2. Sensitivity of closed-end acoustic pressure to the (a) number of nodes and (b) time step size 

Δt. Tests were performed on the baseline model at Γ = 2.2. 

3. Mode transition 

3.1 Overview 

We first provide an overview of the bifurcation and onset points obtained in this section, as shown in 

Figure 3. The bifurcation points are identified by the change of the maximum value of pressure 

oscillations at steady state; the 1st, 2nd and 3rd bifurcations occur at Γ = 1.33, 3.4 and 6.53, respectively. 

The onset points are identified by the stability of acoustic modes; the 1st and 2nd onsets occur at Γ = 

1.33 and 2.27. See Sections 3.2 and 3.3 for descriptions of bifurcations and onsets in detail. Also 

marked on the Γ axis are five temperature ratios Γ1 to Γ5 selected as examples for comparison. The 

values of Γ1 to Γ5 are 1.2, 2.2, 2.73, 3.6 and 6.6, respectively. 

 

Figure 3. Overview of the bifurcation and onset points along the Γ axis. The 1st, 2nd and 3rd 

bifurcations occur at Γ = 1.33, 3.4 and 6.53, respectively; the 1st and 2nd onsets occur at Γ = 1.33 and 

2.27; Γ1 to Γ5 are 1.2, 2.2, 2.73, 3.6 and 6.6. 

3.2 Description 

This section aims to describe the mode transition phenomenon via wavelet transforms, bifurcation 

diagrams and spectral maps.  

(a) (b)




st Bifurcation

st Onset 2nd Onset

nd Bifurcation

     

rd Bifurcation

2 3 4 51
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3.2.1 Wavelet transforms 

Continuous wavelet transform (CWT) [43] is adopted herein to conduct time-frequency analysis of 

time-varying pressure oscillations. The synchrosqueezing algorithm (using the “wsst” function in 

Matlab) is selected that reassigns the energy in the frequency direction and preserves the time 

resolution of acoustic pressure. The wavelet synchrosqueezing contains three steps: (1) obtain the 

CWT of the input signal; (2) extract the instantaneous frequencies from the CWT output using a phase 

transform and (3) “squeeze” the CWT over regions where the phase transform is constant.  

Figures 4(a) to 4(d) illustrate the time series of the closed-end acoustic pressure and corresponding 

CWTs at Γ1, Γ2, Γ4 and Γ5. In Figure 4(a), at Γ1 = 1.2, the pressure oscillations decay with time, giving 

rise to quiescence in the steady state. Most of the acoustic energy is concentrated in the first mode 

initially and attenuates gradually with time. In Figure 4(b), at Γ2 = 2.2, spontaneous pressure 

oscillations take place, leading to constant-amplitude limit cycles at steady state. The wavelet analysis 

indicates that the steady-state acoustic pressure is primarily oscillating at the first mode. In Figure 4(c), 

at Γ4 = 3.6, the acoustic field is dominated by the second mode between 0 and 0.2 s. Then, the energy 

level of the first mode (and second mode) increases (and decreases) from 0.2 s to 0.6 s. Thereafter, the 

first two acoustic modes co-exist, forming a steady “beating” pattern in the time history. In Figure 

4(d), at Γ5 = 6.6, the second mode is dominant at all time and the steady-state response returns to 

limit-cycle oscillations. 

3.2.2 Bifurcation diagram 

Following the wavelet transforms at the selected values of Γ, we proceed to develop a bifurcation 

diagram by plotting the maximum value pmax of steady-state closed-end acoustic pressure oscillations 

versus Γ, as shown in Figure 5. Four regions are identified in line with the four different steady-state 

responses discussed in Figure 4. In region B-I (quiescence), Γ   [0, 1.27], no acoustic oscillations are 

initiated (see Figure 4(a)). The first bifurcation occurs at Γ = 1.33 where the fundamental (or first) 

mode becomes unstable and produces non-zero pmax. This type of bifurcation is called the Hopf 

bifurcation in nonlinear dynamics [44]. In region B-II, Γ   [1.33, 3.33], first-mode limit-cycle 

oscillations dominate at steady state (see Figure 4(b)) and pmax increases with Γ. The second 

bifurcation occurs at Γ = 3.4 where the growth of the second mode contributes to a comparable 

energy level to the fundamental one. This type of bifurcation is also referred to as the Neimer-Saker 

bifurcation [44]. In region B-III, Γ   [3.4, 6.47], the superposition of the first two acoustic modes 

leads to an abrupt increase of pmax and exhibits a quasiperiodic (or beat-like) behaviour (see Figure 

4(c)). The value of pmax for the quasiperiodic oscillations increases with Γ and levels off after Γ = 5.53. 

The third bifurcation occurs at Γ = 6.53 where the growth of the first mode is totally inhibited, 

resulting in a sudden drop in pmax. In region B-IV, Γ   [6.53, 7], the second-mode limit-cycle 

oscillations dominate at steady state (see Figure 4(d)) and pmax increases gradually with Γ. 
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Figure 4. Time history of closed-end acoustic pressure oscillations and corresponding continuous 

wavelet transform at (a) Γ1 = 1.2; (b) Γ2 = 2.2; (c) Γ4 = 3.6; (d) Γ5 = 6.6. 

 

Figure 5. Bifurcation diagram of steady-state responses. Region B-I: Quiescence, Γ   [0, 1.27]. 

Region B-II: Limit cycle (fundamental mode), Γ   [1.33, 3.33]. Region B-III: Quasiperiodicity, Γ   

[3.4, 6.47]. Region B-IV: Limit cycle (second mode), Γ   [6.53, 7]. 

3.2.3 Spectral map 

To facilitate the comprehension of the bifurcation diagram, a 3-D spectral map is constructed. Figure 

6(a) plots the spectra of steady-state closed-end acoustic pressure oscillations at different Γ. In region 

B-I (green lines), no dominant frequencies are observed. In region B-II (black lines), the first-mode 

(a)

(b)

(c)

(d)

B - I B - II B - III B - IV
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frequency f1 dominates. In region B-III (red lines), there are significant spectral components at both f1 

and the second-mode frequency f2. In region B-IV (blue lines), the dominant frequency becomes f2.  

Figure 6(b) displays the amplitudes pA,1 and pA,2 of the first two modes extracted from the spectral map. 

For any value of Γ, p   pA,1cos(2π f1t + θ1) + pA,2cos(2π f2 t + θ2). Since f1   f2, pmax   pA,1 + pA,2. 

Taking Γ4 = 3.6 as an example, pA,1 and pA,2 are 6788 and 5770, and their sum, i.e., 12558, 

approximates pmax = 12550. It is interesting to observe that, pA,1 and pA,2 experience sudden changes at 

three bifurcation points. In region B-III, when Γ increases, pA,1 decreases and pA,2 increases, reflecting 

the energy transition from the first mode to the second mode. 

Figure 6(c) illustrates the variation of f1 and f2 extracted from the spectral map. Since f1 after the third 

bifurcation and f2 before the second bifurcation are not initiated, their values are not displayed. In all 

regions, f1 and f2 increase with Γ due to the increase of sound speed. In region B-III, f1 and f2 are 

incommensurate. The ratio f2 / f1 varies with Γ and is less than 3, being typically 2.85. Hence, the 

second mode in this study is different from the second harmonic which would occur at 3f1 at large 

amplitudes. 

 

Figure 6. (a) Spectral map. (b) Dependence of pA,1 and pA,2 on Γ. (c) Dependence of f2 and f1 as well as 

their ratio f2 / f1 on Γ. 

3.3 Discussion 

The acoustic pressure undergoes initial decay/build-up and/or nonlinear saturation before reaching 

steady state. These processes are discussed separately in this section to deepen the understanding of 

the mode transition phenomenon. 

(a)

(b)

(c)

2f

2 1f / f
1f

A,1p A,2p
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3.3.1 Initial decay or build-up 

The initial decay/build-up refers to the very short period after the transient simulation starts. In this 

process, the pressure amplitude is relatively small so that its dynamic behaviour can be modelled by 

the linear thermoacoustic theory. 

Consider CFD simulations on the baseline model at Γ1 and Γ3 shown in Figure 7. In Figure 7(a), when 

Γ1 = 1.2, the decaying acoustic pressure contains multiple acoustic modes. Since the energy level 

decreases dramatically for higher modes, we focus our attention on the first two modes, the responses 

of which are obtained through dynamic mode decomposition (DMD). The “highpass filter” in Matlab 

is used to realize DMD. In the filter design, the filter order is 20, the sampling frequency is 105 Hz, 

and the passband frequency is set as 400 Hz. Applying curving fitting (using exponential equations 

and the nonlinear least squares method) to the local pressure maxima and Fast Fourier Transform 

(FFT) to the decomposed signals yields the ωI,1 and ωR,1 / 2π (= f1) for the first mode, and ωI,2 and ωR,2 

/ 2π (= f2) for the second mode. ωI,1 and ωI,2 are growth/attenuation rates, while ωR,1 and ωR,2 are 

oscillation frequencies. In Figure 7(b), when Γ3 = 2.73, the first two acoustic modes are both initiated. 

Likewise, implementation of curve fitting and FFT to the pressure signals after DMD gives the ωI,1, 

ωI,2, ωR,1 / 2π and ωR,2 / 2π for both cases. From Figures 7(a) and 7(b), one can also imagine the 

decomposition of acoustic pressure oscillations at Γ2 = 2.2 where the first acoustic mode is initiated 

but the second mode is not. For brevity, those results are not displayed.  

The attenuation/growth rates and oscillation frequencies can also be predicted by the reduced-order 

network model based on linear thermoacoustic theory [45-47]. The network model (see Appendix A 

for a detailed description) has been experimentally validated in our previous study [46]. Comparison 

is made between the CFD simulations (discrete dots) and theoretical estimates (solid lines) as shown 

in Figure 8. It is found that the linear theory predicts slightly higher values of ωR. Good agreement is 

achieved for ωI,1 while small deviations are observed for ωI,2 at some Γ. Overall, the linear theory 

matches well with the CFD simulations. Also highlighted in Figure 8 are three regions classified by 

the sign (positive or negative) of ωI,1 and ωI,2. In region O-I, Γ   [0, 1.27], ωI,1 > 0, ωI,2 > 0, which 

means that pressure oscillations at the first two modes decay exponentially with time. The onset of the 

first mode occurs at Γ = 1.33. Hence, in region O-II, Γ   [1.33, 2.2], ωI,1 < 0, ωI,2 > 0, indicating the 

growth of the first mode and attenuation of the second mode. The onset of the second mode occurs at 

Γ = 2.27. Hence, in region O-III, Γ   [2.27, 7], ωI,1 < 0, ωI,2 < 0, leading to exponential growth of first 

two modes. It is worth noting that region O-II in Figure 8 is narrower than region B-II in Figure 5. 

The difference is attributed to the mode competition in the nonlinear saturation process as will be 

discussed in the next section. 
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Figure 7. Decomposition of closed-end acoustic pressure oscillations in the initial decay/build-up at (a) 

Γ1 = 1.2 and (b) Γ3 = 2.73. 

 

Figure 8. Dependence of ωI and ωR on Γ in the initial decal/build-up. Solid lines are from the linear 

theory. Discrete dots are from CFD simulations. Region O-I: Γ   [0, 1.27], ωI,1 > 0, ωI,2 > 0. Region 

O-II, Γ   [1.33, 2.2], ωI,1 < 0, ωI,2 > 0. Region O-III, Γ   [2.27, 7], ωI,1 < 0, ωI,2 < 0. 

3.3.2 Nonlinear saturation 

Nonlinear saturation refers to the period in which the amplitude of acoustic pressure deviates from 

exponential growth and asymptotes towards a constant value. From an energy point of view, the 

increase of pressure amplitude induces nonlinear viscous and thermal-relaxation losses that balance 

the acoustic power generation in the stack region. The sources of nonlinearity in TAEs include minor 

losses at the stack ends, mass streaming, onset of turbulence within the boundary layers, and so on [1]. 

DMD

FFT

FFT
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Since theoretical modelling of those nonlinearities is difficult and challenging, we resort to the CFD 

methodology to investigate the complicated mode competition in the saturation process. 

Figures 9(a), 9(d), 9(g) and 9(j) plot the time histories of closed-end acoustic pressure at Γ2, Γ3, Γ4 and 

Γ5, respectively. The nonlinear saturation falls into the (green) shaded area. Figures 9(b), 9(e), 9(h) 

and 9(k) are the corresponding first-mode components whilst Figures 9(c), 9(f), 9(i) and 9(l) are the 

corresponding second-mode components. In Figure 9(a), when Γ2 = 2.2, only the first mode is 

initiated. In Figure 9(d), when Γ3 = 2.73, the first two modes are both initiated at the beginning. 

However, the first-mode acoustic pressure inhibits the second mode to death as it saturates. As a result, 

only first-mode pressure oscillations are retained after saturation. In Figure 9(g), when Γ4 = 3.6, the 

energy levels of the first two modes are comparable. The growth of first-mode pressure oscillations 

relates to the decay of the second mode during the saturation process. In Figure 9(j), when Γ5 = 6.6, 

although the first two modes are both initiated initially, only the second mode is retained after 

saturation due to the inhibition of first-mode pressure oscillations to death as shown in the enlarged 

view in Figure 9(k). 

 

Figure 9. Decomposition of closed-end acoustic pressure oscillations at (a) Γ2 = 2.2; (d) Γ3 = 2.73; (g) 

Γ4 = 3.6; (j) Γ5 = 6.6; (b), (e), (h) and (k) are the corresponding first-mode components whilst (c), (f), 

(i) and (l) are the corresponding second-mode components. 
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3.3.3 Steady state  

The steady state refers to the period where the acoustic power generation in the stack is balanced by 

the losses in the remainder of the system. Phase space trajectories, acoustic energy density, acoustic 

intensity, heat fluxes and efficiency are discussed in this section to explore the TAE performance at 

steady state. 

3.3.3.1 Phase space trajectories 

The phase space is often used to analyse the dynamic behaviour of a mechanical system [48]. For the 

TAE in this study, the steady-state closed-end acoustic pressure waveforms at Γ2, Γ4 and Γ5 are shown 

in Figures 10(a), 10(c) and 10(e), respectively. Figures 10(b), 10(d) and 10(f) plot corresponding 3-D 

phase space trajectories, in which the time delay ζ is chosen as 10-3 s [49]. At Γ2 = 2.2, periodic 

pressure oscillations in the first mode form a single loop in the phase space. So does the acoustic 

pressure at Γ5 = 6.6 but here the period is that of the second mode. At Γ4 = 3.6, however, the pressure 

oscillations are aperiodic since there are two incommensurate frequencies present in the system. In 

such case, the attractor is a torus described by two circles, and the trajectories of the state point in the 

phase space will evolve on the surface of the torus [50]. 

 

Figure 10. Steady-state closed-end acoustic pressure waveforms at (a) Γ2 = 2.2, (c) Γ4 = 3.6 and (e) Γ5 

= 6.6. (b), (d) and (f) are corresponding phase space trajectories. 

3.3.3.2 Acoustic energy density  

The instantaneous acoustic energy density often used to represent the mechanical energy of a sound 

wave is expressed by 
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where ρ0 is the density of the static medium, u is the velocity in x direction and a is the local sound 

speed. For the standing-wave TAE in this study, the acoustic field is dominated by standing waves. 

Then, the acoustic pressure and velocity can be approximated by  
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For a single acoustic mode, the time-averaged acoustic energy density w  is 
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When two acoustic modes co-exist, w  becomes 
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Figure 11 illustrates w at x = 0 from the simulations. Since u = 0 at x = 0, only the p2 term in Equation 

(6) is non-zero, and w is always positive. In Figure 11(a), at Γ2 = 2.2, w is primarily oscillating at 2f1, 

however, the amplitude is not constant. FFT and DMD analyses (not displayed) reveal that a small 

component at f1 exists due to non-zero mean pressure p0 induced during nonlinear saturation. In 

Figure 11(b), at Γ4 = 3.6, w exhibits a beat-like pattern. FFT analysis indicates that w is dominated by 

2f1 and 2f2, however, there also exist small components at f1 and f2 because p0 is non-zero. 

Figure 12 shows the dependence of w  on Γ. Figure 12 is similar to Figure 5 except at Γ = 3.4 and 

6.53 where w  undergoes a sudden drop and a sudden increase, respectively. The difference is caused 

by the incoherence of the standing waves at the first two modes. More specifically, it is because the 

( ) ( )
1 2

sin sint t   and ( ) ( )
1 2

cos cost t   terms in Equation (9) are zero. Take Γ = 3.33 in region B-II 

and Γ = 3.6 in region B-III as examples. Although pA,1 + pA,2 = 12519 at Γ = 3.6 is larger than pA,1 = 

10540 at Γ = 3.33, 
2

A,1p +
2

A,2p  = 7.9×107 at Γ = 3.6 is smaller than 
2

A,1p = 1.11×108 at Γ = 3.33. This 

explains why w  at Γ = 3.6 is smaller than that at Γ = 3.33. 
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Figure 11. Instantaneous acoustic energy density w at x = 0 at (a) Γ2 = 2.2 and (b) Γ4 = 3.6. Note the 

split time scales. 

 

Figure 12. Dependence of time-averaged acoustic energy density w  at x = 0 on Γ. 

3.3.3.3 Acoustic intensity 

The instantaneous acoustic intensity  

 I pu=   (10) 

can be interpreted as the ability of a slab of gas to do work on the gas adjacent to it. The time-

averaged acoustic intensity I represents the net work done by the gas in a period. I  = 0 in a standing 

wave. Thus, it is the travelling-wave component within the viscous and thermal boundary layers that 

contributes to a non-zero I . TAEs rely on I generated in the stack to overcome the thermal and 

viscous losses and to drive the external loads. 

Figure 13 shows the instantaneous ΔI across the stack at steady state at Γ2 and Γ4, respectively. In 

contrast to w, ΔI can be negative. However, the magnitude of ΔImax is larger than that of ΔImin, 

indicating a positive I . In Figure 13(a), ΔI is primarily oscillating at 2f1, accompanied by a small 

component at f1 due to non-zero p0. In Figure 13(b), ΔI is primarily oscillating at 2f1 and 2f2, 

accompanied by small components at f1 and f2. Figure 14 plots the dependence of I across the stack 

on Γ. Generally, I increases with increasing Γ. I also decreases and increases suddenly at Γ = 3.4 

and 6.53 due to incoherent travelling waves at incommensurate frequencies. 

(a)

(b)
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Figure 13. Instantaneous acoustic intensity generation ΔI in the stack at (a) Γ2 = 2.2 and (b) Γ4 = 3.6. 

Note the split time scales. 

 

Figure 14. Dependence of time-averaged acoustic intensity generation I  across the stack on Γ. 

3.3.3.4 Heat fluxes and efficiency 

The heat fluxes at the wall surfaces underlies the generation of acoustic intensity. To investigate the 

heat fluxes, the time-averaged mean temperature T0 of the oscillatory fluid at Γ2 = 2.2 is first 

examined, as shown in Figure 15(a). In the simulation, the surface temperature of the stack Ts is set to 

decrease from 660 K at x = 0.1 m to 300 K at x = 0.13 m. However, T0 is smaller than Ts in the left 

half of the stack, but becomes larger in the right half. In addition, due to the vortex shedding at the 

stack ends, the T0 around the stack left (or right) end is also smaller (or larger) than Ts.  

The deviation of T0 from Ts leads to non-zero heat fluxes at the wall surfaces, as shown in Figure 

15(b). In the figure, the time-averaged transversal heat flux qt is calculated by 

 0

surface

t

T
q

n



= −


  (11) 

where n represents the direction normal to the wall surfaces. A positive tq  indicates heat absorption 

by the fluid while a negative tq  denotes heat release to the walls. We can see from the figure that, in 

the stack region, most of the heat supplied by the left-half stack walls is extracted by the right-half 

(b)

(a)
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stack walls. Then, the thermal-to-acoustic efficiency η of the stack (not the TAE) can be coarsely 

estimated by 
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where 
,t siq  are the transversal heat fluxes at the stack surfaces. At Γ2 = 2.2, η is estimated to be 5.45%.  

Figure 16 further displays the dependence of η on Γ. It is found that η increases with increasing Γ, and 

there is no obvious bifurcation. In the figure, η is small which means only a small portion of heat is 

converted into acoustic power in the stack region. It should be noted that η is low in this study partly 

because the TAE is not loaded: the acoustic power generated in the stack is only used to overcome the 

thermal and viscous losses. η is often expected to be higher if an acoustic load such as a transducer is 

coupled with the TAE. 

 

Figure 15. (a) Contour of time-averaged mean temperature of the fluid and (b) time-averaged surface 

heat flux distribution around the stack region at Γ2 = 2.2. 

 

Figure 16. Dependence of thermal-to-acoustic efficiency η of the stack on Γ. 

4. Parametric studies 

Parametric studies to investigate the effect of the gap between stack plates and stack position on mode 

transition are described in this section. In the parametric studies, dS (while maintaining dS = tS) or LH 
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(while maintaining LH + LR = 0.47 m) is the varying parameter while the other geometrical parameters 

in Table 1 are fixed. In addition, Γ is kept constant at Γ4 = 3.6. 

4.1 Effect of gap between stack plates 

Figure 17 displays pmax for the steady-state response and the corresponding spectral map when dS is 

chosen to be 0.87, 0.952, 1.053, 1.176, 1.333, 1.538 and 1.818 mm, with the number of gas channels 

being 11, 10, 9, 8, 7, 6 and 5, respectively. Three different regions are identified: in region G-I, 

second-mode limit-cycle oscillations dominate; in region G-II, quasiperiodicity takes place; in region 

G-III, first-mode limit-cycle oscillations dominate. In standing-wave TAEs, rh / δk has an optimal 

value around 1.5 [51] to achieve maximum I , with rh = dS / 2 being the hydraulic radius and δk = 

(2κ / ρ0cpω)0.5 being the thermal penetration depth. Thus, a smaller value of dS requires a higher ω to 

achieve an optimal rh / δk. It is also interesting to find that pmax for the second mode (region G-I) is 

smaller than that for the first mode (region G-III). A possible reason for this is that the viscous and 

thermal losses within the boundary layers increase with ω. The increase of viscous and thermal losses 

limits the growth of pA during nonlinear saturation. In region G-II, the superposition of the first two 

modes leads to a sudden increase of pmax. When dS = 1.176 mm, pmax is higher due to a relatively 

higher proportion of first-mode component compared to that when dS = 1.053 mm. 

 

Figure 17. Effect of the gap dS on the steady-state response. (a) Bifurcation diagram. The division of 

region G-I, G-II and G-III has a coarse resolution due to limited cases simulated. (b) Spectral map. 

4.2 Effect of stack position 

Figure 18 displays pmax for the steady-state response and the corresponding spectral map when LH is 

chosen to be 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and 0.4 m. Three different regions are identified: 

second-mode limit cycle, quasiperiodic oscillations and first-mode limit cycle exist in regions P-I, P-II 

and P-III, respectively. In standing-wave TAEs, apart from rh / δk, I is also affected by the amplitude 

of p and u. Thereby, to achieve maximum I , the stack should be placed between the pressure and 

velocity antinodes. Referring to Figure 1(c), when LH = 0.05 m, the stack is located near the pressure 

G - I G - II G - III(a)
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antinode of the first mode, but between the pressure and velocity antinodes of the second mode. Thus, 

the second mode is more prone to instability. Another interesting finding is that pmax decreases 

gradually as LH increases in region P-III. Two reasons may account for this behaviour. On the one 

hand, the stack is moving towards the pressure node, leading to smaller I . On the other hand, since 

the viscous boundary layer δv = (2μ / ρ0ω)0.5 is thicker in the hot buffer with a surface temperature Th, 

the increase in LH will cause larger viscous losses that significantly reduce pmax. 

 

Figure 18. Effect of stack position on steady-state responses. (a) Bifurcation diagram. The division of 

region P-I, P-II and P-III has a coarse resolution due to limited cases simulated. (b) Spectral map.  

5. Conclusions 

This article numerically investigated the mode transition in a standing-wave thermoacoustic engine 

(TAE). Computational fluid dynamics (CFD) simulations were conducted to reproduce the mode 

transition phenomenon that has been observed in previous experimental studies, but not interpreted in 

theoretical or numerical ways. This research not only sheds light on the underlying mechanism of 

mode transition in standing-wave TAEs but also provides useful guidelines for controlling the 

dynamics of thermoacoustic oscillations. The key findings from this study are concluded as follows. 

(1) With the increase of temperature ratio Γ, a series of bifurcations in the nature of steady-state 

dynamics were observed, through which the TAE exhibited first-mode periodic oscillations, 

quasiperiodic oscillations and second-mode periodic oscillations. The wavelet transforms, 

bifurcation diagrams and spectral maps are useful tools to identify different dynamic regions and 

describe the mode transition process.  

(2) Dynamic mode decomposition (DMD) of the acoustic pressure in the initial decay or build-up 

demonstrates the onset of the first and/or second modes as Γ increases. The oscillation frequencies 

ωR and growth/attenuation rates ωI were obtained from both CFD simulations and linear theory, 

and good agreement was achieved between them. During saturation, nonlinear mode competition 

could result in the death of one acoustic mode caused by the other, even though it was initiated at 

P - I P - II P - III(a)

(b)



22 

 

the beginning of the simulation. At steady sate, periodic oscillations exhibit a closed loop in the 

phase space whilst quasiperiodic oscillations generate a torus. The time-averaged acoustic energy 

density w  and acoustic intensity generation I  versus Γ agree with the pressure maxima pmax 

versus Γ except at the 2nd and 3rd bifurcation points due to the incoherence of acoustic waves at 

incommensurate frequencies.  

(3) Parametric studies on the effect of the gap between stack plates and stack position indicate that at 

a large Γ, the TAE will exhibit second-mode oscillations when the gap is small or when the stack 

is close to the closed end. This is due to the fact that I = pu (non-zero within the boundary layers) 

is affected by both rh / δk and |p1||u1|. rh / δk is close to the optimal value at small gaps and the 

second mode; |p1||u1| for the second mode is large when the stack is placed between the pressure 

and velocity antinodes near the closed end.  

(4) The mode transition could be potentially utilized to achieve a better matching between the TAE 

and external loads. For example, for linear alternators which normally resonate at low frequencies, 

the TAE should be working at the fundamental mode. For piezoelectric transducers that normally 

have high resonant frequencies, the second mode should be encouraged. Hence, we can control 

the oscillation frequency of the TAE to be in resonance with the external loads to achieve higher 

electric power outputs. 

The CFD methodology in this research proves effective in simulating the mode transition in standing-

wave TAEs. Future work may involve the application of this numerical approach to simulate the 

mode transition/competition in more efficient travelling-wave thermoacoustic devices. 
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Appendix A. Two-port reduced-order network model 

Swift [1] linearized the nonlinear governing equations in fluidic mechanics by assuming that every 

oscillating variable can be expressed as Φ(x,t) = Φ0 +  [ Φ1(x)ejωt], where subscripts 0 and 1 

represent the mean and first-order fluctuation (in complex notation) components. [ ]  signifies the 

real part of a complex quantity and ejωt denotes harmonic time dependence. The momentum and 

continuity equations in the linearized form are 
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where U is the volume velocity and γ is the specific heat ratio. fv and fk are thermo-viscous functions 

accounting for the viscous and thermal-relaxation effects within the boundary layers [52], while 

 ( )( ) 0

2

0

1 [ ]
1 1 [ ] ,

1

v

k

v

fA
c f l

p A f






−
= + −  =

−
  (A3) 

represent the acoustic compliance and inertance per unit length, respectively. Furthermore, 
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represent the thermal-relaxation resistance per unit length, complex gain/attenuation constant due to a 

non-zero temperature gradient and viscous resistance per unit length, respectively. [ ]  signifies the 

imaginary part of a complex quantity. 

Lump the oscillatory fluid inside the TAE into a large number of small elements of length Δx. Each 

element can be represented by an equivalent circuit as shown in Figure A1. Then, the acoustic 

pressure and volume velocity at the ends of each element can be related by a transfer matrix Ti, so that 
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By assuming continuity of at the interfaces between two adjacent elements, the acoustic pressure and 

volume velocity at the ends of the TAE can be related by a total transfer matrix TT = TRTSTH, where 

TH, TS and TR are the products of the transfer matrices of all the lumped elements in the hot buffer, 

stack and resonator respectively. Hence,  
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Define Z(0) = p1(0) / U1(0) and Z(L) = p1(L) / U1(L). Equation (A6) can be rewritten as 
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where TT11, TT12, TT21 and TT22 are the four elements of matrix TT. Since U1(0) = p1(L) = 0 in the CFD 

simulations, the characteristic equation (A7) reduces to 

 11 0TT =   (A8) 

Solving Equation (A8) yields the eigenvalue (complex frequency ω = ωR + jωI) at any specified Γ. 

 

Figure A1. Two-port reduced-order network model of the TAE. 
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