

Soula, M., Karanika, A., Kolomvatsos, K., Anagnostopoulos,

C. and Stamoulis, G. (2022) Intelligent tasks allocation at the edge based on

machine learning and bio-inspired algorithms. Evolving Systems, 13(2), pp.

221-242. (doi: 10.1007/s12530-021-09379-0)

There may be differences between this version and the published version.

You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/238281/

Deposited on 7 April 2021

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/s12530-021-09379-0
http://eprints.gla.ac.uk/238281/
http://eprints.gla.ac.uk/

Noname manuscript No.
(will be inserted by the editor)

Intelligent Tasks Allocation at the Edge based on Machine
Learning and Bio-Inspired Algorithms

Madalena Soula · Anna Karanika · Kostas

Kolomvatsos · Christos Anagnostopoulos ·
George Stamoulis

Received: date / Accepted: date

Abstract Current advances in the Internet of Things (IoT) and Cloud involve the
presence of an additional layer between them acting as mediator for data transfer
and processing in close distance to end users. This mediator is the Edge Computing
(EC) infrastructure. In EC, we can identify an ecosystem of heterogeneous nodes
capable of interacting with IoT devices, collecting and locally processing the data
they report. The ultimate goal is to eliminate the latency we face when relying
on Cloud to perform the desired processing activities. In EC, any processing is
performed over a number of geo-distributed datasets formulated by the collected
data that exhibit specific statistical characteristics. Processing can have the form
of tasks requested by end users or applications. It becomes obvious that in the EC
ecosystem, we have to carefully decide the EC nodes that will host and execute
any requested task. In this paper, we extend our previous research efforts on the
conclusion of efficient task allocations into the available EC nodes. We go a step
forward and propose a batch processing model executed over multiple tasks and
study two allocation models: a scheme based on an unsupervised machine learning
technique and a bio-inspired optimization algorithm. Our models enhance the
autonomous behavior of entities performing the envisioned task allocations. We
provide the analytical description of the problem, our solution and the advances

Madalena Soula
Department of Electrical and Computer Engineering, University of Thessaly, email: msoula@e-
ce.uth.gr

Anna Karanika
Department of Electrical and Computer Engineering, University of Thessaly, email:
ankaranika@e-ce.uth.gr

Kostas Kolomvatsos
Department of Informatics and Telecommunications, University of Thessaly, email:
kostasks@uth.gr

Christos Anagnostopoulos
School of Computing Science, University of Glasgow email: chris-
tos.anagnostopoulos@glasgow.ac.uk

George Stamoulis
Department of Electrical and Computer Engineering, University of Thessaly, email:
georges@e-ce.uth.gr

2 Madalena Soula et al.

over the state of the art. We present and evaluate the proposed algorithms and
compare them with other efforts in the domain. The pros and cons of our models
are revealed through the provided extensive experimental evaluation adopting real
and synthetic data.

Keywords Edge Computing · Edge Mesh · Internet of Things · Tasks Scheduling ·
Tasks Allocation · Machine Learning · Swarm Intelligence

1 Introduction

The new era of the Internet of Things (IoT) incorporates numerous devices capable
of interacting with their environment and performing simple processing activities
to serve end users. IoT devices can record ambient data and transfer them in
an ‘upwards mode’ to the Edge, the Fog and the Cloud infrastructures. These
concrete ‘layers’ can be the host of multiple processing activities (i.e., tasks) based
on which the available data can be processed towards the provision of knowledge
and analytics. In general, the processing at Cloud can be realized in a batch
processing manner over humongous volumes of data. However, the transfer of
data to Cloud and the increased waiting time for getting the final response (i.e.,
the outcome of the desired processing activities) negatively affects the latency in
the provision of the final results [4]. This is one of the reasons made the research
community to focus on data processing at the edge infrastructure through the
emergence of Edge Computing (EC). EC mainly focuses on streams processing in
a number of EC nodes to limit the latency and succeed the immediate delivery
of analytics to any requestor. Compared to Cloud, EC nodes are characterized by
lower computational resources and heterogeneity.

EC nodes are geo-distributed and become the host of data reported by IoT
devices. They act as mediators between the IoT infrastructure and Cloud. No
matter the limited resources of EC nodes, they can store and process locally a
(sub-)set of the collected data while the remaining are sent to Cloud. This means
that at the edge of the network, we can detect an ecosystem of EC nodes placed
at different locations hosting geo-distributed datasets. It becomes obvious that
the discussed datasets can be the subject for the execution of various tasks (e.g.,
queries, simple processing tasks, etc) defined by end users or applications. When
such a setting is the case, the most significant research question is to provide
an efficient methodology for allocating the incoming tasks to specific EC nodes
instead of broadcasting them to the entire ecosystem. A broadcasting action will
‘flood’ the network with useless messages as only a sub-set of EC nodes could
be capable of responding to the requested tasks. Suppose there is a task asking
the statistics of humidity measurements between 10 and 20 for a specific area. It
is useless to broadcast this task to all the available EC nodes ‘forcing’ them to
deliver their results. The first reason is that only EC nodes located in the desired
area should respond to the task aligned with the desired spatial requirements. In
addition, from the sub-set of EC nodes placed in the specific area, only nodes
having in their datasets humidity values in the interval [10, 20] can efficiently
respond while the remaining will spend resources to return an empty set. The
allocation of the desired tasks only to EC nodes that ‘match’ to their requirements
saves resources and time involving only those that can return an efficient response

Title Suppressed Due to Excessive Length 3

based on the statistics of their datasets. Further, it is important to introduce the
EC nodes’ performance into the decision making process. In fact, resources are
scarce as well as heterogeneous in EC nodes. Therefore, taking into consideration
the performance of nodes can greatly improve the allocation.

In this paper, we envision an entity called Task Controller (TC) being responsi-
ble to receive tasks and apply a scheme for allocating them to the appropriate EC
nodes. As an allocation, we define the optimal selection of an EC node for a distinct
task determined by the task’s characteristics and EC nodes’ current performance.
The TC can be present at Cloud or at a ‘sink’ node being also responsible to
aggregate the results after the allocation of the task and formulate the final re-
sponse for the requestor. TCs have insights on EC nodes status, i.e., the data they
possess as well as historical values related to their performance. For limiting the
congestion of the network, nodes can relay statistical synopses to the TC [36] to
depictthe underlying datasets. TCs are the realization of an ‘evolving system’ that
is capable of adapting its behaviour to the dynamically changing requirements of
the incoming tasks and the performance of the underlying EC nodes. They should
exhibit learning capabilities and self-organization behaviour that make them ca-
pable of being aligned with the needs of the requestors. We assume that multiple
TCs are present at various locations having interactions with multiple EC nodes.
This creates a very dynamic and unknown environment concerning the behaviour
of all the involved ‘actors’. Every TC decides upon an unknown and unpredictable
ecosystem of EC nodes that are the owners of geo-distributed datasets fed by
data reported through the interaction with IoT devices. We have to notice that
TCs receive tasks for execution from multiple other entities imposing additional
requirements for their effective functioning. The challenge is to provide to TCs
the necessary intelligence to be able to efficiently allocate a batch of tasks to the
available nodes instead of adopting a sequential approach, i.e., the allocation of
an individual task at a time. The batch oriented approach is expected to assist in
increasing the throughput of TCs giving them the ability to serve numerous tasks
upon numerous EC nodes. Previous research has revealed that batch processing
outperforms the ‘immediate’ allocation (the allocation of individual tasks when
they arrive at TCs) when the number of tasks is high [50].

In this paper, we extend our previous research efforts in the domain and provide
a novel mechanism that assists TCs in their decision making (i.e., the allocation
process). Such a decision-making is dynamically influenced by the continuously
updated datasets and EC nodes’ performance. We consider that TCs process the
incoming tasks in batches, i.e., they allocate multiple tasks to multiple EC nodes

at once. We propose two allocation schemes: (i) the first is based on Machine

Leaning (ML) and more specifically on a clustering process; (ii) the second adopts
a bio-inspired model and more specifically a variant of the widely known Particle

Swarm Optimization (PSO) algorithm. Both models aim at detecting the optimal
allocations at a specific time instance. We rely on techniques that do not require
any training to reduce the cost of ‘preparing’ them before they are adopted in
the envisioned decision making activities. We also incorporate into our decision
process the Cost of Allocation (CoA) as defined in our previous effort [26] to depict
the cost for each allocation based on tasks’ requirements and EC nodes current
status. The CoA is also adopted to be an indicator for realizing EC nodes rankings
creating a ‘rewarding’ mechanism for solving the discussed problem. However, our
current work differs with [26] in the following aspects: (i) In [26], we focus on

4 Madalena Soula et al.

‘one-to-one’ allocations meaning that we allocate a single task at each EC node.
In this paper, the proposed models can manage a high number of tasks that could
be greater than the number of the available EC nodes; (ii) In this paper, we adopt
a ML and an optimization technique while in [26], we are based on the solution
of the known assignment problem (i.e., a minimum cost flow problem). Finally,
additional efforts in the past [33], [30], [34], [35] focus on the processing/allocation
of a single task while our current work deals with the management of a batch of
tasks.

Comparing our research with other similar efforts in the domain, we can dis-
cern that this paper aims to contribute in the respective research proposing an
approach for tasks management at the EC unlike other studies which propose the
transfer of tasks to the Cloud prior to processing them. Again, the adopted batch
oriented management differentiates our models and adds novelty to the approach.
In addition, for deciding allocations, we pay attention not only on tasks’ data
requirements compared to the available datasets but also on their priorities and
the performance of EC nodes (concerning their ability to quickly return the final
response). Our target is to handle the dynamics of the environment where TCs
and EC nodes act being aligned with all the aforementioned parameters (i.e., tasks
and nodes characteristics). Based on our approach, we avoid broadcasting activi-
ties related to the allocation of tasks that may flood the network with unnecessary
messages and uselessly spend the resources of nodes while pointing the appropriate
hosts for every processing activity.

The remaining paper is organized as follows. Section 2 discusses the related
work while Section 3 presents preliminary information and the problem under
consideration. Section 4 depicts the proposed solution and in Section 5, we provide
our experimental evaluation results adopting real and synthetic datasets. Finally,
in Section 6, we conclude our paper by presenting our future research plans in the
domain.

2 Prior Work

2.1 Independent Edge

The development of the large-scale Internet of Things (IoT) has led to the gen-
eration of enormous amounts of data. There are studies which propose real-time
processing by deploying edge servers taking into consideration the traffic and the
wireless diversity which define IoT networks [66]. It should be highlighted that the
users of mobile devices and applications are increasing by thousands in a daily
basis leading to the need of infrastructures that will process data in the most ef-
ficient way without transferring them to Cloud. The respective research suggests
Mobile Edge Computing (MEC) which aim to handle data streams at the mobile
edge [57]. Practically, EC comes into scene to ‘cover’ the disadvantages of Cloud,
especially to limit the increased latency in the delivery of results when requestors
demand various processing activities. There are many scenarios where EC can fa-
cilitate the desired processing especially when no connection is feasible with the
Cloud back end. EC offers a huge infrastructure which allows the execution of pro-
cessing activities close to the source of data instead of delivering the information
to data centers/Cloud [27]. The EC allows nodes to respond to service demands

Title Suppressed Due to Excessive Length 5

locally, reducing the consumption of bandwidth and the latency of the network
[65]. EC lies in the middle between Cloud and the IoT infrastructure where nu-
merous devices interact with each other to communicate data. EC nodes, before
data are transferred to Cloud, can be the host of a virtual or physical data sepa-
ration process, i.e., they can be part of an ecosystem where distributed datasets
are formulated through the communication with the IoT devices. IoT data can be
formulated in any format (heterogeneity) and their amount becomes humongous
as the reporting rate is high. Data should be stored in the appropriate format and
their volumes should meet EC nodes’ storage capabilities. Recall that EC nodes
are diverse ranging from routers and gateways to small servers, thus, their compu-
tational capabilities differ. Evidently, tasks or queries are requests for information,
usually issued by human users, including simple or even complex transactions aim-
ing to either read or update the collected data [13]. Tasks can have any form that
the application domain dictates. For instance, if we consider queries formulated
by SQL commands, EC nodes should be capable of detecting the parts and con-
straints of these queries and, accordingly, of interacting with the local data storage
mechanism (e.g., the RDBMS or any other model) to retrieve the corresponding
results. These processing outcomes are communicated back to the requestor while
the execution process can be centralized (e.g., in the same machine) or distributed
[10]. A future challenge of EC is to provide nodes capable of understanding tasks
requirements before starting their execution. In addition, EC nodes should be also
capable of understanding their internal status and the status of the environment
before starting any processing activity to be able to select the optimal line of
actions (this is the so-called stateful EC).

2.2 Data Partitioning

In EC and Cloud, data partitioning can be the result of the physical allocation of
various nodes connected with reporting devices. We can design our network in a
way to have EC nodes hosting the data reported by specific IoT devices in close
distance with them. For instance, suppose there is a smart city where nodes are
placed at various locations to interact with users’ smart devices (e.g., in a mall).
Additionally, data partitioning can be adopted, on purpose, to increase the par-
allelism in the execution of tasks, thus, to facilitate manageability and control.
This approach requires the design of efficient algorithms to separate data that will
deliver the final outcomes in the minimum time. A survey on data partitioning al-
gorithms can be found in [52]. The majority of the discussed efforts is coming from
the database community while gaining increased attention in the community of the
management of large scale data. There are two models for data partitioning, i.e.,
(i) ‘batch-oriented’ processing: data are, firstly, collected and, then, are separated
into a number of partitions [52]; (ii) ‘stream-oriented’ processing: as data arrive at
‘collection end points’, an algorithm decides the partition where data will be finally
stored [29]. In the former model, we have plenty of room to pre-process the data
and eliminate any heterogeneity, missing values and so on and so forth. However,
due to the huge volumes of data, the former model, naturally, requires increased
computational resources. The latter model should take decisions on the fly, i.e., for
data ‘pre-processing’ and conclude their placement to the appropriate partition.
In any case, the adopted algorithm should be efficient enough to detect and resolve

6 Madalena Soula et al.

the present heterogeneity, missing values and any other pre-processing activity in
real time. It becomes obvious that data heterogeneity, at least concerning their
format, imposes an additional burden when we want to execute analytics over the
incoming streams [8]. The former model better ‘matches’ to a Cloud environment
while the latter is aligned with the needs of EC and IoT.

2.3 ML for Large-Scale Data Management

In research activities adopted for the management of tasks, ML can play a signifi-
cant role to address not only the increasing amount of data but also the distributed
management of the available datasets. In [1], the authors present a comparative
analysis of exploratory techniques for large scale data. A framework adopted for
the analysis of sensory recordings targeting the minimization of the amount of data
transferred in the network is discussed in [22]. Such an analysis aims at supporting
analytics used for decision making in various application domains. Analytics refer
to various tasks aiming to reveal knowledge and the hidden aspects of the distri-
bution of data. Example applications of analytics are provided by the anomaly
detection research domain; an overview of the relevant approaches is provided
in [48]. A ‘special’ type of analytics are prognostics or predictive analytics [6].
Predictive analytics deal with the detection of the distribution of data and cal-
culations around specific key performance indicators to reveal their future trends.
Hence, decisions can be made not only based on current trends but also on fu-
ture estimations of data. In [11], the authors report the effect that the quality of
data has on the outcomes of processes targeting on predictive analytics and pro-
pose a method for improving it. The proposed method targets to the maintenance
domain where we have to manage a set of devices and production equipments.
In [6], the authors propose the SERENA system comprising of a number of ser-
vices, which collectively provide predictive analytics enabling the application of
predictive maintenance policies. Other example analytics models are Prism [9],
CONTROL [20] and DBO [23] systems. All these systems aim at saving time in
the provision of responses adopting sampling or progressive analytics. Usually, the
discussed systems are built upon the MapReduce model (e.g., [12], [42]).

2.4 Task Allocation at the Edge

The task scheduling/allocation problem attracts the attention of scientists working
in the EC domain. The domain is in its infancy bearing in mind that the allocation
of tasks should take into consideration the ‘special’ conditions/requirements that
should be met at the edge infrastructure (e.g., heterogeneity of devices/data/protocols,
huge volumes of data reported by IoT devices, limited latency and support of real
time applications) [28]. In [17], the authors investigate the task completion time
minimization in multiuser mobile EC networks. Multiple users can offload tasks si-
multaneously, thus, an efficient management mechanism should be delivered. The
authors adopt a partial offloading model, i.e., each user can partition its compu-
tation tasks into offloading computing and locally computing parts. In [41], to
eliminate the long-term sum cost which includes the power consumption and the

Title Suppressed Due to Excessive Length 7

task execution latency, the authors propose the adoption of channel conditions be-
tween end devices and the gateway, the computation task queue and the remaining
computational resources of devices. The problem is modelled as a Markov Decision
Process (MDP) and solved through the use of a reinforcement learning model. In
[61], a device-to-device model is studied targeting to assist users to offload tasks
to multiple nodes. Afterwards, results are retrieved over orthogonal pre-scheduled
time slots. The subject of [63] is the modelling of the task completion delay in
mobile EC environments and the analysis of the energy consumption of different
equipments. A placement method is proposed to allocate each requested task to
the available cloudlets and the public Cloud with the minimum total energy con-
sumption. In [44], the authors study the elimination of the cloudlets for all the task
requests to be allocated and provisioned. Requests scheduling is also the subject
of [45]. The allocation problem is modelled as a variant of K-facility location prob-
lem. The authors propose an approximation scheme and an online algorithm to
deal with how to schedule requests when cloudlets are placed. In [45], the authors
consider the delay of transmitting tasks. Another effort in this domain studies the
allocation of a number of edge servers based on an exact integer linear program-
ming solution [60]. The aim is the minimization of the total access delay which is
proportional to the distance between the base station and the edge server. The au-
thors of [62] propose an approximation algorithm to solve the cloudlet placement
problem while in [16], the authors try to jointly minimize the costs and the total
end-to-end transmission delay based, again, in a linear programming model. In
[39], the authors consider a heterogeneous mobile cloud computing (HMCC) ap-
proach that consists of remote Cloud servers, local cloudlets, task offloading mobile
devices (TMDs) and non-task offloading MDs (NTMDs). TMDs have the capabil-
ity of offloading tasks to Cloud servers or cloudlets. The authors adopt stochastic
geometry and calculate the outage probability to support offloading decisions. An-
other model for offloading tasks from the network to the EC is discussed in [21].
The model is based on a sum cost delay scheme and deal with the optimal binary
computational offloading decision. Reinforcement learning is adopted to conclude
the final allocation. The authors of [18] model the offloading problem as a dou-
ble auction game and analyze the Bayes-Nash Equilibrium (BNE). A Stackelberg
game is adopted to model the interactions between nodes that desire to exchange
tasks and conclude the optimal allocation of resources. The proposed model deals
with tasks related to a blockchain scenario. Multiagent systems are also adopted
for providing solutions in the management of tasks offloading [49]. The authors
detect the role of the multiagent system in the mapping between three decision
tables towards the optimization of the problem. The proposed model relies on
tasks’ priority, the load caused in the network and resources availability. In [40],
the authors present a mechanism for the allocation of data collection tasks. The
correlation between tasks and the available sensors is modelled, then, a double
selecting strategy is adopted to conclude the best node and sensor network that
fulfils the desired quality of data and collection time constraints for each task. In
[2], the authors focus on a MEC scenario and propose a model for tasks offload-
ing based on a minority game combined with a distributed learning algorithm.
Every node adopts the proposed approach to declare if it is active or not and mo-
bile devices rely on a stochastic learning automata scheme to distributively select
the appropriate active peer. The authors of [3] present a non-cooperative game
between users and conclude the Pure Nash Equilibrium (PNE) related to the opti-

8 Madalena Soula et al.

mal data offloading. The performance of the proposed framework are demonstrated
through modelling and simulation. Another work relying on the combination of
game theory and machine learning (i.e., reinforcement learning) is presented in
[53]. The aim is to model the distributed resource management in MEC for com-
putation offloading. The proposed game theoretical scheme is dedicated to deal
with the activation of energy-efficient distributed edge servers. The problem of
the distributed activation is also studied in [54]. The authors solve it through the
use of minority games guaranteeing energy-efficient activation together with the
satisfaction of users as far as the quality-of-experience concerns. Deep learning is
also adopted for the tasks offloading problem [32]. Advanced neural networks can
undertake the responsibility of learning the characteristics of data that represent
the optimal line of actions. However, the training dataset should efficiently expose
any aspect of the allocation process upon multiple parameters in order to conclude
the best possible model.

Recently, the problem of tasks allocation under uncertainty has attracted sig-
nificant attention especially in the robotics domain. The proposed algorithms take
into consideration the characteristics of robots as well as the special requirements
of tasks under the restrictions of the application domain. Uncertainty can limit
the performance as it can result in inefficient allocations. The ‘allocator’ cannot
be certain about the hidden aspects of the matching between tasks and ‘execu-
tors’. Usually, the proposed models incorporate uncertainty to account for the
performance of robots localisation and navigation reliability [43], [59]. One type of
uncertainty is the knowledge about the environment. Multiple efforts assume that
the environment is fully observable; however, this is not always the case. Hence, the
problem of robots navigation and tasks execution can be modelled by incorporating
a probabilistic decision over the available actions and formulate a planning prob-
lem with the use of MDPs [38], [56]. For producing probabilistically-guaranteed
behaviour policies, we can adopt verification-based methods where elements of an
MDP are learnt from experience [37].

2.5 Positioning to the Respective Literature

As exposed above, there are multiple research activities dealing with the problem
of tasks allocation/offloading. The research community has adopted many theories
and technologies to solve the problem and deliver efficient models that will take the
corresponding decisions upon a high number of parameters. Models dealing with
the partial offloading of tasks incorporate an increased complexity in the decision
making that is imposed by the splitting of each task into parts and aggregate
the partial responses. Additionally, the aforementioned complexity is dictated by
the need of the dynamic detection of data that are relevant to every part of the
initial task. Increased complexity is also observed when advanced ML models are
utilized in the decision making. This is more intense when supervised methods
are the case, i.e., there is the need for the presence of the appropriate training
dataset that covers all the aspects of the problem. Such models require time for
the training process and a retraining phase when the decision strategy is altered.
Game theoretic approaches may impose a high number of interactions between
various entities present in the infrastructure, thus, they are characterized by an
increased time to deliver the final outcome. Furthermore, the game based decision

Title Suppressed Due to Excessive Length 9

making may mandate the knowledge of various parameters that could not be the
usual case in real setups. Finally, only a few research efforts try to combine a
high number of parameters in the decision making as the solution space is heavily
expanded and, as natural, the the complexity of the approach is increased.

3 Preliminaries

3.1 The Envisioned Setting

For the formulation of our problem, we borrow the basic notation adopted in
our previous work [26]. We consider a set of N EC nodes (see Figure 1 [26]),
i.e., E = {e1, e2, . . . , eN} being ‘connected’ with a number of IoT devices. Every
node becomes the host of data reported by the devices, thus, it becomes the
owner of a local dataset upon which the desired processing activities are executed.
IoT devices report multidimensional data, i.e., x = 〈x1, x2, . . . , xM 〉 where M is
the number of dimensions. EC nodes should adopt the appropriate mechanisms
to store data locally and execute tasks/queries demanding for analytics. Due to
resources constraints, EC nodes cannot host all the reported data, thus, they select
the vectors that will be the subject of local storage transferring the remaining data
to Cloud. Without loss of generality, we consider that EC nodes store only ‘fresh’
data and adopt a sliding window approach. The window size depends on nodes’
storage capabilities. The obsolete data (data reported in a time instance out of the
adopted window) are evicted (sent, in an upwards mode, to Cloud) as new data
vectors arrive.

Without loss of generality, from this point forward, when we refer in tasks, we
consider tasks or queries asking for data processing. The local execution of tasks is
performed by a dedicated component, i.e., the Tasks Execution Component (TEC).
The performance of this component depends on the computational capabilities of
each EC node. Recall that the nodes are ‘characterized’ by diversity in their capa-
bilities, e.g., we can meet routers, gateways or small servers bounded all together
to cooperatively execute tasks and exchange data. TECs adopt specific plans to
execute the incoming tasks. For instance, if we focus on queries execution, TECs
can rely on query execution plans as adopted in known database management sys-
tems. In that case, TECs should ‘communicate’ and interact with the underlying
database management system to efficiently conclude the appropriate responses. If
we focus on ‘generic’ tasks, TECs could adopt any known task scheduling and ex-
ecution algorithm. Our model is not bounded to any specific algorithm. The study
of the internal process of TECs is beyond the scope of this paper. Formally, each
node ej is ‘characterized’ by a specific processing speed sj , j = 1, 2, . . . , N defined
in the unity interval that depicts the rate at which data and tasks are processed.
sj → 1 means that the jth TEC is characterized by the maximum possible speed
(e.g., a node with increased computational capabilities).

We also consider that in front of each TEC, there is a first come first served
queue where the incoming tasks are placed to wait for their execution. The size
of the queue is depicted by the number of tasks that the queue can host. The
size of the queue and the throughput of the corresponding TEC affect the current
load of each EC node. The load is a significant parameter as it can depict the
‘smooth’ execution of future tasks. For instance, if a TEC is overloaded (i.e., the

10 Madalena Soula et al.

number of the tasks waiting in the queue is close to the maximum queue size),
the node will conclude the results with an increased latency (especially for tasks
relying at the end of the queue). This can negatively affect the performance of the
applications waiting for the corresponding responses (especially, if they are time
sensitive applications). Without loss of generality, we consider that there is an
upper bound for the number of tasks that can be placed in the discussed queues.
In our analysis, we adopt the parameter lj that depicts the jth TEC’s load, i.e.,
the amount of tasks waiting for execution in the jth queue. As we adopt an upper
bound for each queue, lj can be defined in the unity interval, i.e., lj ∈ [0, 1]. lj → 1
means that the jth TEC/queue is overloaded and cannot host additional tasks.

We focus on the discrete time T and consider that at each time instance t ∈ T,
a new task εt arrives at a TC. εt has specific characteristics and constraints. This
information is ‘exposed’ through the metadata accompanied εt. For instance, if
we focus on queries, constraints can be defined in the ‘Where’ clause. For generic
tasks, constraints can be defined in the form of requirements for their execution,
e.g., the software that should be adopted, the criticality and so on and so forth.
In this paper, we consider that constraints refer in data over which the processing
should be performed. For instance, we can have a task asking for analytics only
for data present in a specific range (e.g., temperature in [10,30] and humidity in
[80,100]), i.e., a ‘type’ of a range query. Easily, we can conclude the complexity of
each task, i.e., cεt , based on the complexity of the required calculations. For that,
we can rely on the algorithmic theory or other techniques like the one presented in
[33]. In addition, tasks’ constraints can impose a deadline representing the upper
bound of time for delivering the final results, i.e., τεt . Any application can define
τεt according to its criticality. For instance, if we focus on the provision of real
time services, τεt will be short (τεt → 0).

Based on the above description, when focusing on tasks allocation delivered by
TCs, we have to ‘match’ cεt and τεt against lj and sj . TCs should take into con-
sideration these four parameters, matching them in pairs, i.e., (cεt , lj) and (τεt , sj)
to realize the most efficient allocations. The term ‘efficient’ represents allocations
that will ‘secure’ the smooth and immediate execution of tasks limiting the latency
in the provision of results. Our mechanism supports the decision making of TCs
and acts proactively trying to detect the most efficient allocations. Recall that TCs
serve multiple users/applications, thus, they should manage numerous tasks. Our
previous efforts [33], [30], [35] propose models for allocating a single task to an
individual EC node, i.e., the final outcome is a pair in the form ¡task-EC node¿. In
this paper, we depart from our previous models and propose a scheme for process-
ing a batch of tasks. The proposed scheme builds over a window W defining the
number of tasks that will be the subject of our allocation mechanism. We consider
f(·), i.e., a function that gets W tasks and the information for the available EC
nodes and results the final allocations. For every task εit, i = 1, 2, . . . ,W , we deliver
the EC node where it should be allocated, i.e., f(εit, E)→ eselected (eselected is the
selected node for εit). There is a high number of combinations between W tasks and
N nodes, thus, a ‘brute-force’ approach is not the optimal solution to get (near)
real-time results. We propose the use of two models, i.e., an unsupervised ML
model and a Computational Intelligence (CI) scheme. More specifically, we propose
the use of a clustering process and a Swarm Intelligence (SI) approach over tasks
and EC nodes characteristics. The final result is the mappings for each of the W
tasks to one of the N available EC nodes.

Title Suppressed Due to Excessive Length 11

3.2 Problem Definition

The envisioned allocation process is performed upon the ecosystem of EC nodes
exhibiting specific characteristics that should be combined with the requirements
of the incoming tasks. The aforementioned allocation function f(·) is, actually,
repeatedly evaluated for each of the W tasks. Our problem is a simple optimization
process upon f(·) that gets the requirements of the incoming tasks and try to find
the optimal solution. The optimization problem can be formulated as follows:

maximize f (cεt , τεt)

subject to
{
lj , sj

}
, ∀j

{εt} , t = 1, 2, . . . ,W

(1)

The problem discussed in this paper can be categorized as an assignment prob-
lem. The assignment problem is the problem of mapping each of n tasks to one of
the available EC nodes in the most efficient manner. The total cost equals the sum
of the partial costs of every individual allocation. Our work focuses on allocation
techniques which build on top of queries’ characteristics, the state and the features
of the system. The objective of such algorithms is the achievement of an optimal
tasks allocation which leads to the minimization of execution and communication
costs, load balancing among the nodes and, generally, to the efficient usage of the
system resources. In our discussion, communication costs are considered negligible,
thus, they are omitted in our analysis.

Every TC, having the information about the available EC nodes and the in-
coming tasks, adopts a simple rewarding mechanism to elaborate on the matching
between pairs cεt - lj and τεt - sj . More details can be found in [26]. The reward-
ing mechanism aims at ‘supporting’ the allocation of complex tasks to EC nodes
characterized by a low load towards the minimization of the initiation time. As the
initiation time, we define the time required to start the execution of a task. The
rationale is simple; an EC node with a low load can quickly devote the required
resources for the execution of tasks. Moreover, when τεt is short, we prefer to per-
form the allocation to a node exhibiting a high speed to conclude the execution as
soon as possible. In any case, both characteristics should be ‘combined’ to support
an efficient allocation. For each pair, we conclude the Cost of Allocation (CoA).
The CoA consists of two parts; it is equals to the sum of partial CoAs (one for
each pair of characteristics). Initially, the TC should calculate the rounded ratio

ρ of cεt compared to τεt , i.e., ρ =
cεt
τεt

. It is important to notice that before the

conclusion of ρ, cεt is delivered as the number of the required steps to execute a
task as proposed in [33]. ρ represents the speed required by a task (in execution
steps per time unit) to be concluded in accordance with τεt . Subsequently, sj is
compared to ρ to detect whether the EC node is fast enough to serve εt in the
required time interval. Then, lj is compared to pre-defined thresholds indicating
the ‘range’ where it is realized. For instance, we can adopt a ‘high’ and a ‘low’
thresholds, thus, lj can be ‘placed’ into a number of ratio intervals (i.e., below
the lowest threshold, between thresholds, above the highest threshold). We aim
to support three intervals/levels for lj ; low, medium, high. For instance, if the
load is over 0.80, we consider a high CoA especially for tasks exhibiting a high
complexity. Actually, we propose a fuzzy number to depict the cost for pairing lj
with cεt . For each interval/level, we adopt a constant value for the corresponding

12 Madalena Soula et al.

cost and for each combination of pairs cεt - lj and τεt - sj , our mechanism defines
the appropriate reward or penalty attributed to the CoA. After the conclusion of
the CoA, we apply the envisioned models (i.e., the clustering scheme and the SI
model). Hence, the problem is transformed to the problem of deciding the final
allocations over the CoAs.

Fig. 1: The connection of task controllers and edge nodes.

4 Tasks Management based on ML and CI

4.1 Clustering of EC nodes & Tasks

We propose and apply a prioritization scheme of the incoming tasks, based on [58].
As TCs receive new tasks, they detect the available EC nodes, i.e., nodes with lj
below a pre-defined threshold. If no EC node meets the condition, the incoming
tasks are placed in another queue at TCs. This additional queue is sampled to
collect randomly some tasks and examine again the availability of EC nodes. Recall
that EC nodes exhibit a very dynamic behaviour concerning the conclusion and the
allocation of tasks, thus, their availability varies. In any case, our algorithm adopts
a priority model to immediately serve tasks with a high priority. High priority
tasks will be firstly allocated in the available EC nodes. The priority of a task εt is
calculated through the adoption of the following equation: pεt = τεt+ i

max(i) where

i is the index of the incoming task when it arrives at the TC and τεt is the deadline
that the user/application have specified for the task. Therefore, the priority of a
task is closely connected to the deadline. The priority is inverse to the pεt value,
i.e., pεt → 0 represents the highest priority. Tasks are sorted in an ascending order
of pεt and the TC processes W of them. To avoid the ‘starvation’ problem (a task
exhibits a low priority for a long time), we apply an ageing mechanism through the

Title Suppressed Due to Excessive Length 13

second term in the equation. Based on this mechanism, after a pre-defined interval,
we increase the priority of tasks waiting for a long time in the corresponding queue.

Clustering is a widely adopted unsupervised ML algorithm aiming at grouping
objects exhibiting similar characteristics. The clustering approach is applied into
our scenario as follows. We consider a number of ‘virtual’ clusters and their cen-
troids represented by the tasks that the TC wants to allocate. A virtual cluster is

a set of EC nodes having the minimum ‘distance’ δ with the centroid, i.e., a task. This
means that every task ‘attracts’ the set of EC nodes that exhibit the maximum
similarity becoming candidates to host and execute it. A ‘free’ EC node is the
node that is not yet assigned to a cluster, thus, the EC node is not assigned as
a candidate to execute a task. A ‘candidate’ is an EC node which is part of a
cluster, thus, it is a candidate to be assigned the task representing the centroid of
the specific cluster. δ is the difference between EC nodes characteristics’ and tasks’
requirements. Our algorithm defines a cluster centroid for every task and popu-
lates the corresponding cluster with free EC nodes, rendering them candidates.
The selection of candidates is determined by a heuristic realized by the parameter

Rj defined for every EC node as follows: Rj =
δj
sj

.

We consider that the k EC nodes with the minimum Rj are defined as can-
didates for a specific cluster. The EC node that will, finally, execute the task is
selected among the candidate nodes. Cluster members are sorted in an ascending
order based on the CoA and the node with the minimum execution cost is selected
to ‘host’ the task being the centroid of the corresponding cluster. For realizing δj ,

we adopt an additional heuristic function, i.e., δj = τεt
1−lj−cεt

sj
. Considering that

lj is the load of the node, 1− lj is the degree to which the specific node can accept
new tasks. Additionally, Rj is defined in a way that serves our purpose to assign
a task to the appropriate node. We refer to the node which has the highest load
while still being able to host it. This means that a node with virtually no free space
for new tasks is preferred. At the same time, the speed of the appropriate node
should be high. As δj → 0 and s → 1, then R → 0 which is desired, since it leads
to optimized task allocation. In Algorithm 1, we present the proposed algorithm
based on the aforementioned process.

4.2 Bio-inspired Tasks Allocation

Particle Swarm Optimization (PSO) [15] consists of a method which involves a
population of candidate solutions, i.e., a swarm of particles. A candidate solution
(particle) can be iteratively improved given a quality threshold. Particles search
for the optimal solution adopting a ‘distributed’ coordination model based on
specific parameters like their current position (solution) and velocity (update on
their position) towards the best solution in the swarm. This way, particles are able
to move in the search space influenced by their own local best position and the
best position in the swarm. Any movement to a new solution is performed and
affected through the adoption of a fitness function. Obviously, the discovery of a
better position by a peer-particle will affect the searching activities of any other
participant in the swarm representing the bio-inspired approach in searching the
solution space.

In the current work, we adopt the Simplified Swarm Optimization (SSO) al-
gorithm [64]. In this variant of the PSO algorithm, the concept of stochasticity

14 Madalena Soula et al.

Algorithm 1 The clustering approach

Input: Set of W tasks, Set of N EC nodes E
Output: Allocation X(εi, ej),∀i = 1, 2, . . . ,W
newTasks = receiveNewTasks() //new cycle starts
tasks = countAllTasks()
free = countFreeENs() //EN: EC node
if (free == 0) then

//if no available EC nodes existaddToQueue(newTasks) //add new tasks to queue to
be executed in the next cycle return

end if
prioritizeAllTasks() //prioritize tasks based on time of arrival and task index
clusters = min(tasks, free) //calculate number of tasks that can be allocated in this cycle
defineNewTasksAsClusterCentroids() //make a centroid for each of the most prioritized
tasks that can be allocated in this cycle
if (tasks ≥ free) then

//if clusters greater than or equal to free nodesC = 1 //allocate exactly one node to
each task/centroid remainder = 0 if (tasks > free) then

addToQueue(extraTasks) //cannot accommodate all tasks
end if

else
//if clusters less than free nodesC = free/tasks //allocate at least C nodes to each task
remainder = free mod tasks //and the rest of the nodes to some tasks

end if
for all clusters i in priority do

//find candidate nodes for each cluster in priorityfor c = 1, 2, . . . , C do //at least C
candidates

for all free ENs j do
Rij = distanceij/speedj //based on heuristic realized by R

end for
EN = findENWithMinRForTask(i)
addToCluster(EN, i)

end for
end for
for all clusters i in priority do

//allocate remaining free EC nodes as candidates to clustersfor all free ENs j do

Rij = distanceij/speedj
end for
EN = findENWithMinRForTask(i)
addToCluster(EN, i)

end for
for all clusters i do

for all ENs j in cluster i do
costij = costFunction(i, j) //find cost for each candidate node j’s allocation to task
i

end for
Xi = findENWithMinCost(i) //choose minimum-cost solution for each task

end for

is introduced and incorporated in the selection of particles’ next position. The
aim is to apply randomness in their behaviour limiting the possibilities of hav-
ing particles being trapped in local minima. PSO combines local search methods
(through self experience) with global search methods (through neighboring expe-
rience), attempting to balance exploration and exploitation. PSO is a stochastic
search algorithm, thus, is prone to the lack of global search ability at the end
of a run. PSO sometimes suffers from premature convergence on problems with
many local minima, thus, this property may cause a swarm to become trapped

Title Suppressed Due to Excessive Length 15

in one of them and fail to explore more promising neighboring minima [55]. In
every iteration, each candidate solution’s fitness value is realized according to a
function that is affected by the costs of execution and communication. This way,
the SSO algorithm incorporates into its logic the constraints of the execution for
each task. Such constraints aim at securing that the retrieved solution is aligned
with the requirements of the problem. Particles personal best position is updated
only when the current fitness value is better than the previous one while the global
best position is also updated to be the optimal of the local best solutions in the
swarm. The last step for every iteration is to calculate each particle’s new position
randomly selecting among its personal best, the global best, its current position
and a random value. Decisions over random values impose the aforementioned
stochasticity of the model. In our scenario, a particle is a potential allocation of
W tasks to the available nodes. Every movement of a particle is represented by
updates in tasks allocation. The cost of execution for the ith task to the jth node
is calculated as follows: ecij = ci

sj
This equation, i.e., the calculation of ecij , de-

picts the ability of a node to quickly conclude a task affected by the complexity
of the task as depicted by the steps required to deliver the final outcome. The
speed sj depicts the processing capacity of the jth node as requested by the SSO
algorithm. In addition, we consider lj as the memory capacity of a node as also
required by the SSO algorithm. Without loss of generality, we assume the commu-
nication cost equal to zero (it depicts the communication between the TC and the
available nodes). Finally, the tasks’ processing requirement is defined through d̂i.
The stopping criterion for SSO is the execution of the envisioned processing for a
number of epochs. In Algorithm 2, we present our bio-inspired approach.

5 Experimental Evaluation

5.1 Simulation Setup & Performance Metrics

The development of the real world large-scale IoT applications leads to the gen-
eration of enormous amounts of data ready to be processed. Such a use case con-
stitutes the smart-watch applications widely used during these times. A set of
sensors embedded in a smart watch constantly collect data concerning biometrics
as a result of human activities. On a daily basis, data are aggregated for each
user and preliminary calculations performed on top of them taking place at the
edge prior the transfer to Cloud. The proposed models distribute multiple tasks
coming from multiple users to the appropriate EC nodes in order to be processed
efficiently. Thus, the overall load can be distributed in a way that all nodes have
uniform loads, by taking into consideration their current performance as well as
the tasks’ requirements.

We present the performance of the proposed allocation algorithms, i.e., the
Clustering Approach and the Simplified Swarm Optimization Approach. We adopt
a set of performance metrics and simulate a task streaming environment by set-
ting the values of tasks and nodes’ characteristics. Specifically, the load of nodes
is drawn from two datasets; the Cooling Load feature of the Energy Efficiency
dataset1 and the Processor Utilization feature of the Optical Interconnection Net-

1 https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

16 Madalena Soula et al.

Algorithm 2 The SSO approach

Input: Set of W tasks, Set of N EC nodes E
Output: Allocation X(εi, ej),∀i = 1, 2, . . . ,W
initializeConstants(Cg , Cp, CW , λ) //Cg < Cp < Cw ∈ (0, 1): constants that affect the
possibility of updating a particle based on global best, personal best, or random value
respectively, λ: coefficient defining the restraints’ effect on the fitness function
X = produceRandomCandidateSolutions() //start with random particles
first = true //flag signifying the first iteration
while !criterionIsMet() do

for all candidate solutions Xk do
//calculate fitness function for all particlesf(Xk) =

∑m
j=1

∑n
i=1 ecij(Xki ==

j?1 : 0) //consider execution costs for particle’s allocation F (Xk) = f(Xk) +

λ

(∑m
t=1

(max(0,Mt−
∑n
i=1 mi(Xki==t?1:0))2∑S

w=1(max(0,Mt−
∑n
i=1 mi(Xwi==t?1:0)))2

+
∑m

t=1
(max(0,Pt−

∑n
i=1 pi(Xki==t?1:0))2∑S

w=1(max(0,Pt−
∑n
i=1 pi(Xwi==t?1:0)))2

)
//consider whether the particle’s allocation exceeds nodes’ memory and processing
capacities best = 1 if (first||(F (Xk) > pBestF itnessk)) then //check and save
if particle’s current solution is personal best

pBestk = Xk

pBestF itnessk = F (Xk)
first = false

end if
if (pBestF itnessk > pBestF itnessbest) then

//check and note if particle’s personal best solution is global bestbest = k
end if
gBest = pBestbest

end for
for all candidate solutions Xk do

//update every particle’s position per taskfor all tasks Xki do

ρ = random(0, 1) //randomly pick ρ ∈ (0, 1)
if (ρ < Cg) then
Xki = gBesti //update with globally best EC node for this task

else if ρ < Cp) then
Xki = pBestki //update with personally best EC node for this task

else if (ρ ≥ Cw) then
Xki = random(1, N) //update with random EC node

end if
end for

end for
end while

work dataset2. At this point, we highlight that the aforementioned values are used
in the experiments after their normalization in the unity interval. The remaining
features - nodes’ speed, tasks’ complexity and deadline - are initialized randomly
being uniformly distributed in the same interval. Recall that sj , cεt and τεt can
be also defined in the unity interval. When these parameters approach the unity
means that we experience the highest possible value (the highest speed, the highest
load and the highest possible deadline) while the opposite scenario holds true when
they are approaching zero (we experience the lowest possible value). In addition,
we compare our model with other mechanisms found in the relevant literature:

– the Greedy Fast Processing (GFP) model presented in [46]. The model selects
the node offering the best processing time for each task. The model is also met
in [24] named as the myopic best response selection algorithm and in [7] named

2 https://archive.ics.uci.edu/ml/datasets/Optical+Interconnection+Network+

Title Suppressed Due to Excessive Length 17

as the performance aware allocation scheme. We have to note that the model
presented in [7] allocates tasks to the best idle nodes; if not any idle nodes are
available, the model performs a random allocation (see the RTS model below);

– the Random Task Scheduling (RTS) model proposed in [7]. The model selects
nodes without taking into consideration any contextual information. Tasks are
randomly allocated in the available nodes.

– the model proposed in [5] called ETSI. ETSI is mainly focused to IoT envi-
ronments and is based on a heuristic that delivers the final outcome upon the
distance from the edge of the network and the number of neighbours to re-
trieve the ranking of each processing node. The node with the lowest ranking
is selected for the final allocation.

– the Demand-driven Proactive Tasks Management (DPTM) model proposed in
[25]. DPTM considers historical demand values for tasks in various regions.
Based on them, it maintains a Kernel Density Estimator (KDE) that predicts
future task demands in these areas. Local and external KDEs are considered
to decide whether or not a task should be executed locally in the future.

We define the metric T which represents the time required for the allocation
of a task εt to a node ej . T realizations may vary depending on the adopted
algorithm and the number of tasks or nodes involved in the allocation process.
Our main target is to reduce the average T for each simulation scenario. As far as
the chosen node’s load is concerned, we adopt the metric Λ. This metric depicts
the difference of the selected node’s load with the lowest load among all nodes.
The following equation holds true:

Λ = lselected − llowest (2)

When Λ→ 0 the selected node’s load is low, thus, this node is the most appropriate
to host the task since the waiting time before starting the execution is the least
among all nodes. In contrast, when Λ→ 1, we conclude that the selected node is the
worst to choose w.r.t. the waiting time for tasks’ execution. Another performance
metric adopted in our experiments in order to evaluate the selected node’s speed
is Σ. Σ is defined as the difference between the highest speed among all nodes
with the speed of the selected node. Σ is calculated by the following equation:

Σ = shighest − sselected (3)

When Σ → 0 the speed of the selected node is high, approaching the highest
possible. In that case, the selected node is the most appropriate to host the task
since the task will be quickly processed and results will be returned as early as
possible. On the other hand, the higher the Σ is, the lower the processing speed
for the task becomes. The final adopted metric, Φ, is a linear combination of Λ
and Σ specified as follows:

Φ = α ∗ Λ+ (1− α) ∗Σ,α ∈ [0, 1] (4)

where α constitutes a weighting factor, whose value is set depending on the metric
- Λ or Σ - we want to focus on. More specifically, when α → 0, Σ gains full
attention and dominates the performance of the system leaving no room for Λ to
affect Eq.(4). When α→ 1, Λ is the parameter which mostly affects Eq.(4). In case
of α = 0.5, Φ depends equally on Λ and Σ. When Φ → 0, the best performance

18 Madalena Soula et al.

is achieved for Λ, Σ at the same time. It should be noted that the higher the Φ
is, the lower the overall performance becomes. We also evaluate the performance
of the clustering algorithm based on a widely adopted metrics, i.e., the Silhouette
coefficient (SC) [14]. The SC refers to the validation of the consistency within the
delivered clusters clusters and provides a representation of how well each object
has been classified. The SC metric is defined as follows:

ai =
1

|CLi − 1|
∑

j∈CLi,j 6=i
d(i, j) (5)

bi = min
k 6=i

1

|CLk|
∑

j∈CLk

d(i, j) (6)

SCi =
bi − ai

max(ai, bi)
(7)

where CLi is the ith cluster, d() is the distance function.

5.2 Performance Assessment

In this subsection, we study and analyse the metrics that we previously defined
for the two models and for the two datasets used for the experiments respectively.
The first model of which experiments are discussed is the Clustering Approach;
Following that, we demonstrate results of the Bio-inspired Tasks Allocation Model
and as a final step of our experiments we compare the aforementioned models.

5.2.1 The Clustering Approach

In this section, the results of our experiments using the Clustering Approach are
demonstrated. The metrics as well as their graphical representation are analysed
in order to provide the full understanding of the experiments. As Figure 2 shows,
when N → W the T metric is minimized. In case of N → 1000, our mechanism
should process a high number of nodes that clearly affects the total required time.
The same stands for W → 1000, i.e., many tasks should be processed before a
final decision is in place. In any case, our results exhibit an efficient decision
mechanism as the maximum conclusion time is below 0.01 seconds no matter the
adopted dataset. This means that we are able to have a high throughput in the
allocation process increasing the performance of TCs and making them capable of
efficiently supporting a tasks streaming scenario.

In Figure 3, we notice that the Λ tends to have small deviations. When adopting
the Energy Efficiency dataset, Λ ranges in the interval [0.29, 0.43]. It appears that
as long as M > N , which indicates that the EC nodes outnumber the tasks, every
task selects the most appropriate candidate among the nodes which are assigned
to its cluster. In contrast, in case the number of tasks N is high and the number
of nodes M is low, Λ maximizes. Specifically, in each iteration, tasks with the
highest complexities choose nodes with low loads (for their clusters), rendering
those nodes unavailable until the tasks’ completion. As a result, the remaining
free nodes, whose load values are high, are repeatedly chosen by low-complexity
tasks leading to the maximization of the average Λ. The same ‘attitude’ stands

Title Suppressed Due to Excessive Length 19

(a) 1st dataset (b) 2nd dataset

Fig. 2: The conclusion time for the clustering approach

when the second dataset feeds our parameters. Performance outcomes are affected
by the number of nodes leading to a slightly higher Λ realizations compared to the
previous experimental scenario.

(a) 1st dataset (b) 2nd dataset

Fig. 3: The load of the selected node - Clustering approach

Figure 4 shows that for both datasets, Σ is low when the number of nodes is
low. This is explained by the fact that, after the first iteration of the allocation
process, the fastest nodes are mainly available to execute the next set of queries,
leading to the reduction of Σ. An increased Σ is realized when multiple nodes are
available and examined for selecting the best one for each task. In these cases, our

20 Madalena Soula et al.

model results a slightly higher Σ compared to the experimental scenario involves
a low N . Recall that are decision mechanisms tries to take into consideration all
parameters when matching tasks with nodes, thus, fluctuations may be present in
the realizations of each metric. This is because the proposed model tries to achieve
the best results for all parameters at the same time.

(a) 1st dataset (b) 2nd dataset

Fig. 4: The speed of the selected node - Clustering approach

Figure 5 demonstrates our results for the Φ metric. Recall that Φ depicts the
performance of Λ and Σ at the same time. We observe that the trend of Φ is
affected, as natural, by the trends of the two aforementioned parameters. The
interval where Φ takes its values is [0.30, 0.55] for both datasets. In general, N is
the parameter that affects more the final outcome as in the previous experimental
scenarios.

Concerning the performance of the clustering approach, we get a mean SC
in {0.25, 0.29, 0.48, 0.71, 1.0} and {0.23, 0.29, 0.47, 0.71, 1.0} for the aforementioned
datasets, respectively and for all theW realizations (i.e.,W ∈ {10, 50, 100, 500, 1000}).
These results are retrieved for N ∈ {10, 50, 100, 500, 1000}. We observe that the
increased number of nodes and tasks positively affect the performance of the clus-
tering model as it manages to place the available EC nodes to the appropriate
cluster, i.e., the task-centroid. Recall that when the SC metric is near unity, it in-
dicates that every object (i.e., EC node) is far away from the neighboring clusters
(i.e., the other tasks). Our observations reach to the conclusion that the underly-
ing dataset does not affect the outcome, thus, making the proposed model to be
adopted in various application scenarios.

5.2.2 Bio-inspired Tasks Allocation

In this section, the results of the experiments adopting the Bio-inspired Tasks
Allocation are depicted through the graphical representation of the results inter-
pretation. In Figure 6, we observe that when N is low and, especially, when W is

Title Suppressed Due to Excessive Length 21

(a) 1st dataset (b) 2nd dataset

Fig. 5: Our performance evaluation for the Φ metric - Clustering approach

high, T is maximized. This is caused by the fact that for every node and every
candidate solution a high set of constraints have to be calculated according to the
SSO algorithm. However, T is less than 0.0030 seconds which, in turn, is lower
than T realization when adopting the clustering approach. Our model is capable
of supporting the immediate conclusion of allocations no matter the number of
nodes. In this set of experiments, we adopt a number of 10 iterations for reaching
a solution and the number of particles is 10 as well. This means, that the solution
space is limited, however, the proposed scheme can easily and timely respond to
the desired allocations.

In Figure 7, we focus on an experimental scenario where the number of particles
and the number of iterations are 1000. This increases the size of the solution space
with a clear impact in the time required to conclude a decision. Now, T is higher
than in the previous experimental scenario (i.e., adopting a limited particles and
iterations number). This is natural as our model needs more time to examine all
the potential solutions and conclude the final decision. Again, T is maximized
when N → 10 and W → 1000.

In Figures 8 and 9, we present our results for Λ and different number of particles
and iterations. When the number of particles and iterations are limited, out model
results Λ below 0.40 and 0.60 for the 1st and 2nd datasets, respectively. The
performance outcomes are affected by increased N and W ; in these experimental
scenarios Λ is maximized. This is natural, since as M increases the probability of
finding the most appropriate node for every task decreases, because the probability
distribution is uniform, and the candidate solutions are generated and changed
randomly. In case we adopt an increased number of particles and iterations, our
model results Λ below 0.42 and 0.70 for the 1st and the 2nd datasets, respectively.
Now, we observe a difference in our results depending on the adopted dataset.
For instance, when the 2nd dataset is feeding our parameters, an decreased N

(N → 10) leads to the highest Λ. In these cases, our model cannot find the optimal

22 Madalena Soula et al.

(a) 1st dataset (b) 2nd dataset

Fig. 6: The conclusion time of the bio-inspired model - low number for particles
and iterations

(a) 1st dataset (b) 2nd dataset

Fig. 7: The conclusion time of the bio-inspired model - high number for particles
and iterations

solution in the limited solution space. However, as the number of particles and the
number of iterations increase, the Λ values, for the most part, decrease.

As far as the Σ is concerned, Figures 10 & 11 present our results. When we
adopt a low number of particles and iterations, Σ is in the interval [0.30, 0.51] for
both datasets. In general, Σ is close to the maximum value for the majority of
the experimental scenarios. An increment of the number of particles and iterations
increases the maximum value of Σ as well. Now, the realizations of Σ are between
0.30 and 0.70 for both datasets. This means that the increased number of particles

Title Suppressed Due to Excessive Length 23

(a) 1st dataset (b) 2nd dataset

Fig. 8: The load of the selected node for the bio-inspired model - low number for
particles and iterations

(a) 1st dataset (b) 2nd dataset

Fig. 9: The load of the selected node for the bio-inspired model - high number for
particles and iterations

makes our model to conclude a higher speed difference with the optimal node.
The best performance of the proposed scheme is achieved when a limited solution
space is adopted (low N and W). When M is low, as explained previously for the
Λ metric, the probability of generating the appropriate solution increases. On the
other hand, when N is low, the tasks’ complexity and deadline requirements don’t
exceed the EC nodes’ load and speed limits, thus leading to better allocations and,
by extension, low Σ values. What is more, as long as M is low and N is high, Λ’s

24 Madalena Soula et al.

values are increased due to the fact that the tasks’ requirements exceed the nodes’
capacities which leads to inaccurate allocations.

(a) 1st dataset (b) 2nd dataset

Fig. 10: The speed of the selected node for the bio-inspired model - low number
for particles and iterations

(a) 1st dataset (b) 2nd dataset

Fig. 11: The speed of the selected node for the bio-inspired model - high number
for particles and iterations

Figures 12 & 13 demonstrate the results of our experiments for the Φ metric,
for both datasets. As natural, the metric ‘inherits’ its realization being affected

Title Suppressed Due to Excessive Length 25

by Λ and Σ. Having Λ and Σ increased when the number of particles and itera-
tions are low, Φ increases as well. In any case, Φ is below 0.55 and 0.60 (for the
two experimental scenarios) which relies at the middle of the interval where Φ is
realized.

(a) 1st dataset (b) 2nd dataset

Fig. 12: Our results for Φ and for the bio-inspired model - low number for nodes
and iterations

(a) 1st dataset (b) 2nd dataset

Fig. 13: Our results for Φ and for the bio-inspired model - high number for nodes
and iterations

26 Madalena Soula et al.

5.2.3 Comparative Assessment

In this section, we compare the results of the two proposed algorithms along with
other models found in the literature. The performance concerning the time T

that each algorithm needs to allocate a task is presented on Figures 14, 15 and
16. When the number of tasks N equals the number of nodes M , T , for both
algorithms, remains mainly constant with the clustering approach exhibiting the
best results among the algorithms when N = 1000. In the case where the number
of nodes exceeds the number of tasks, the clustering approach shows the best
results while the SSO behavior is the worst. For the opposite case, the SSO model
provides better time results than the clustering approach.

(a) Algorithm 1 (b) Algorithm 2

Fig. 14: Comparison of the proposed approaches (T metric - N = M)

In Figures 17, 18, 19, 20, 21 and 22 we present our performance assessment re-
sults for the Φ metric comparing the proposed algorithms for α ∈ {0.20, 0.50, 0.70}.
Specifically, in Figures 17 and 18, where the numbers of tasks and nodes are equal,
Φ values follow a virtually steady course, since there are only small increases which
may be considered negligible. Furthermore, in Figures 19 and 20, as the number
of tasks increases with respect to the number of nodes, the observed Φ of the clus-
tering approach is reduced, whereas the SSO model’s respective values increase.

In Figure 21, we observe that the clustering approach results better than the
SSO model when N → 10 and the opposite stands when N → 1000. α is not
affecting the final outcome having a Φ around 0.50. In Figure 22, we provide
results for the second dataset. We observe a similar performance as when the 1st
dataset feeds our parameters. In both experimental scenarios we get M = 10.

We compare our models with the GFP, RTS and ETSI schemes found in the
relevant literature. The GFP, for uniformly distributed parameters, results Λ in
[0.41, 0.48] for N ∈ {10, . . . , 1000}. For the same setup, the RTS achieves Λ around
0.50. For the same experimental scenarios, ETSI achieves Λ in [0.04, 0.23] for both

Title Suppressed Due to Excessive Length 27

(a) Algorithm 1 (b) Algorithm 2

Fig. 15: Comparison of the proposed approaches (T metric - N = 10)

(a) Algorithm 1 (b) Algorithm 2

Fig. 16: Comparison of the proposed approaches (T metric - M = 10)

the experimental datasets. Additionally, ETSI achieves Σ in [0.001, 0.44] for the
aforementioned datasets. Recall that our clustering approach manages to retrieve
Λ in [0.29, 0.43] and [0.37, 0.61] for the 1st and the 2nd datasets, respectively. Fur-
thermore, the clustering process manages to achieve Σ in [0.26, 0.56] for both the
experimental datasets. Our SSO model results Λ in [0.30, 0.40], [0.25, 0.60] for the
1st dataset (low and high values for the number of particles and iterations). In
the scenario where we adopt the 2nd dataset, our performance outcomes are Λ in
[0.30, 0.42], [0.30, 0.70]. The outcomes for Σ are in the following interval [0.30, 0.68]
for both datasets. We observe that our models outperform the GFP and the RTS
managing to select nodes with low load, thus, to facilitate the fast initiation of tasks

28 Madalena Soula et al.

(a) Algorithm 1 (b) Algorithm 2

Fig. 17: Comparison of the proposed approaches (Φ metric - N = M - 1st dataset)

(a) Algorithm 1 (b) Algorithm 2

Fig. 18: Comparison of the proposed approaches (Φ metric - N = M - 2nd dataset)

execution. When comparing our models with ETSI, we can detect the strength of
our approach. We observe that ETSI outperforms the proposed models when we
take into consideration only the metric Λ. This holds true due to the ‘attitude’ of
ETSI to ‘reward’ the allocation of tasks in nodes with a low load, however, being
‘blind’ to the remaining decision making parameters. However, when it comes to
compare ETSI with our models concerning the metric Σ, we observe the clear
superiority of our approach. ETSI exhibits a very low Σ compared to our schemes.
Evidently, we see that our clustering and SSO schemes target to take into con-
sideration all the adopted parameters before the allocation takes place. Hence,
we manage to achieve a low load and a high speed at the same time making our

Title Suppressed Due to Excessive Length 29

(a) Algorithm 1 (b) Algorithm 2

Fig. 19: Comparison of the proposed approaches (Φ metric - N = 10 - 1st dataset)

(a) Algorithm 1 (b) Algorithm 2

Fig. 20: Comparison of the proposed approaches (Φ metric - N = 10 - 2nd dataset)

approach resilient to the adoption of multiple parameters into the decision making
model. In addition, comparing our models with DPTM, we reach the following
conclusions. DPTM demonstrates low Φ values, which fall in [0.01, 0.17]. Our own
models achieve Φ values in [0.3, 0.6], which are higher than the DPTM. Never-
theless, the time it takes for our models to make decisions is T ∈ [0.0001, 0.038],
whereas the DPTM model achieves T ∈ [0.5, 0.7]. The proposed models’ decision-
making exhibits lower precision than the DPTM while still being acceptable. Our
models achieve a Φ around 0.45 (the aggregated difference from the optimal node
exhibiting the lowest load and the highest speed) which is not forbidden to de-
cide an allocation for a task. This value indicates that our models manage to select

30 Madalena Soula et al.

(a) Algorithm 1 (b) Algorithm 2

Fig. 21: Comparison of the proposed approaches (Φ metric - M = 10 - 1st dataset)

(a) Algorithm 1 (b) Algorithm 2

Fig. 22: Comparison of the proposed approaches (Φ metric M = 10 - 2nd dataset)

nodes with the load and speed being at acceptable levels. If varΦ was close to unity,
then the performance could be the worst possible as the worst node (the node with
the highest load and the lowest speed) is selected. However, if we also focus on the
T metric, we can see a huge difference in the throughput of our models compared
with the DPTM. In average, the DPTM manages to serve (allocate) around 1.67
tasks per time unit while the proposed models serve (allocate) around 52.36 tasks
per time unit. This means that if we want to support streams submitting tasks
at high rates and support real time applications, we can accept the trade off for
serving a high number of tasks per time unit (thus, limiting the waiting time at
TCs) in the burden of a (still acceptable as the outcomes for Φ are beyond the

Title Suppressed Due to Excessive Length 31

unity) higher load and lower speed than the DPTM. The ability of the proposed
models to conclude immediately the envisioned allocations while spending lower
resources than the DPTM can be an alternative solution in a scenario where TCs
select an allocation model depending on the surrounding contextual data.

6 Conclusions & Future Work

The management of the huge amounts of data generated in a daily basis constitutes
a challenge to overcome in order to serve real time applications. Together with that
novel models, especially defined in the Internet of Things, require intelligent and
efficient models to process the continuously tasks execution requested by users
or applications. In this paper, we propose models for tasks management that are
based on Machine Learning and Computational Intelligence. We define the concept
of a Task Controller (TC), a module which orchestrates tasks’ allocation at a
number of available nodes. TC is based on nodes’ and tasks’ characteristics aiming
to reduce the time costs for the envisioned allocations and achieve a load balance
among the available nodes. Our experimental results show that different algorithms
would best answer the problem’s requirements. We present performance insights
for the time required to conclude an allocation as well as the optimality of each
allocation in terms of selected nodes’ characteristics.

Our future research plans involve the incorporation of more parameters into
the decision-making process. One such parameter can be the data that a tasks
demands to be executed for. Another parameter to be taken into consideration is
the communication cost during the allocation of the tasks to EC nodes. We have to
study a more complex decision process realized over multiple parameters not only
related to the load and the speed of every node. Hence, we have to incorporate
data similarity measures to the proposed approach to create a data-aware scheme.

References

1. Apiletti, D., et al., ’Frequent itemsets mining for Big Data: a comparative analysis’, Big
Data Research, 9, 2017, pp. 67-83.

2. Apostolopoulos, P., Tsiropoulou, E., Papavassiliou, S., ’Game-theoretic Learning-based QoS
Satisfaction in Autonomous Mobile Edge Computing’, Global Information Infrastructure
and Networking Symposium (GIIS), 2018.

3. Apostolopoulos, P., Tsiropoulou, E., Papavassiliou, S., ’Risk-Aware Data Offloading in
Multi-Server Multi-Access Edge Computing Environment’, IEEE/ACM Transactions on
Networking, vol. 28(3), 2020.

4. Bangui, H., et al., ’Moving to the Edge-Cloud-of-Things: Recent Advances and Future
Research Directions’, Electronics, 7, p. 309, 2018.

5. Baranidharan, B., Saravanan, K., ’ETSI: Efficient Task Allocation in Internet of Things’,
International Journal of Pure and Applied Mathematics, 117(22), 2017, pp. 229–233.

6. Bowden, D., et al., ‘A Cloud-to-Edge Architecture for Predictive Analytics’, Workshops of
the EDBT/ICDT Conference, 2019.

7. Breitbach, M., Schafer, D., Edinger, J., Becker, C., ’Context-Aware Data and Task Place-
ment in Edge Computing Environments’, IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), pp. 1-10, 2019.

8. Chai, Z., et al., ’Towards Taming the Resource and Data Heterogeneity in Federated Learn-
ing’, USENIX Conference on Operational Machine Learning, pp. 19–21, 2019.

9. Chandramouli, B., Goldstein, J., Quamar, A., ’Scalable Progressive Analytics on Big Data
in the Cloud’, in the VLDB Endowment, vol. 6(14), pp. 1726-1737, 2013.

32 Madalena Soula et al.

10. Chatterjea, S., Havunga, P., ’A Taxonomy of Distributed Query Management Techniques
for Wireless Sensor Networks’, IJCS, 20(7), pp. 889-908, 2007.

11. Chen, Y., Zhu, F., Lee. J., ’Data quality evaluation and improvement for prognostic model-
ing using visual assessment based data partitioning method’, Computers in Industry, 64(3),
2013, pp. 214-225.

12. Condie, T., et al., ’MapReduce online’, In the 7th Conference on Networked Systems
Design and Implementation, p. 21, 2010.

13. Cummins, R., et al., ’A Polya Urn Document Language Model for Improved Information
Retrieval’, ACM TIS, 9(4), pp. 1-34, 2010.

14. de Amorim, R. C., Hennig, C., ’Recovering the number of clusters in data sets with noise
features using feature rescaling factors’, Information Sciences. 324: 126–145, 2015.

15. Engelbrecht, A. P., ’Computational Intelligence An Introduction’, Wiley, 2007.
16. Fan, Q., Ansari, N., ’Cost aware cloudlet placement for big data processing at the edge’,

in Proceedings of the IEEE International Confenference on Communications (ICC), 2017,
pp. 1–6.

17. Fang, F., Xu, Y., Ding, Z., Shen, C., Peng, M., Karagiannidis, G., ’Optimal Task
Assignment and Power Allocation for NOMA Mobile-Edge Computing Networks’,
http://arxiv.org/abs/1904.12389v1, 2019.

18. Guo, S., Dai, Y., Guo, S., Qiou, X., Qi, F., ’Blockchain Meets Edge Computing: Stack-
elberg Game and Double Auction Based Task Offloading for Mobile Blockchain’, IEEE
Transactions on Vehicular Technology, vol. 69(5), 2020.

19. Gupta, M., Banerjee, P. (1992). ’Demonstration of automatic data partitioning tech-
niques for parallelizing compilers on multicomputers.’ IEEE Transactions on Parallel and
Distributed Systems, 3(2), pp. 179-193.

20. Hellerstein, J. M., Avnur, R., ’Informix under control: Online query Processing’, Data
Mining and Knowledge Discovery Journal, 2000.

21. Hossain, S. H., Nwakanma, C. I., Lee, J. M., Kim, D.-S., ’Edge computational task of-
floading scheme using reinforcement learning for IIoT scenario’, ICT Express, 2020.

22. Huang, Z., Zhong, A., Li. G., ’On-Demand Processing for Remote Sensing Big Data Anal-
ysis’, In IEEE ISPDPA, pp. 1241-1245, 2017.

23. Jermaine, C., et al., ’Scalable approximate query processing with the DBO engine’, In
SIGMOD, pp. 1-54, 2007.

24. Jošilo, S., Dán, G., ’Decentralized Algorithm for Randomized Task Allocation in Fog
Computing Systems’, IEEE/ACM Transactions on Networking, vol. 27(1), 2019, pp. 85-97.

25. Karanika, A., Oikonomou, P., Kolomvatsos, K., Loukopoulos, T., ’A Demand-driven,
Proactive Tasks Management Model at the Edge’, in 2020 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2020, pp. 1-8.

26. Karanika, A., Soula, M., Anagnostopoulos, C., Kolomvatsos, K., Stamoulis, G., ’Optimized
Analytics Query Allocation at the Edge of the Network’, in 12th International Conference
on Internet and Distributed Computing Systems, Naples, Italy, Oct. 10-12, pp. 181-190,
2019.

27. Khan, W., et al., ’Edge Computing: A Survey’, FGCS, 97, 2019, pp. 219-235.
28. Kolomvatsos, K., ’Proactive Tasks Management for Pervasive Computing Applications’,

Journal of Network and Computer Applications (JNCA), Elsevier, vol. 176, 2021.
29. Kolomvatsos, K., ’A Distributed, Proactive Intelligent Scheme for Securing Quality in

Large Scale Data Processing’, Springer Computing, vol. 101(11), 2018, pp. 1687–1710.
30. Kolomvatsos, K., ’An Intelligent Scheme for Assigning Queries’, Applied Intelligence, pp.

2730-2745, 2018.
31. Kolomvatsos, K., Anagnostopoulos, C., ’Multi-criteria Optimal Task Allocation at the

Edge’, FGCS, 93, 2019, pp. 358-372.
32. Kolomvatsos, K., Anagnostopoulos, C., ’A Deep Learning Model for Demand-driven,

Proactive Tasks Management in Pervasive Computing’, IoT, MDPI, 1(2), 240-258, 2020.
33. Kolomvatsos, K., Anagnostopoulos, C., ’An Edge-Centric Ensemble Scheme for Queries

Assignment’, in 8th CIMA Workshop, 2018.
34. Kolomvatsos, K., Anagnostopoulos, C., ’Reinforcement Machine Learning for Predictive

Analytics in Smart Cities’, Informatics, 4(16), pp. 16, 2017.
35. Kolomvatsos, K., Hadjiefthymiades, S., ’Learning the Engagement of Query Processors for

Intelligent Analytics’, Applied Intelligence, 46, 2017, pp. 96-112.
36. Kolomvatsos, K., Anagnostopoulos, C., Koziri, M., Loukopoulos, T., ’Proactive Time-

Optimized Data Synopsis Management at the Edge’, IEEE Transactions on Knowledge
and Data Engineering (IEEE TKDE), 1-1, 2020, 10.1109/TKDE.2020.3021377.

Title Suppressed Due to Excessive Length 33

37. Lacerda, B., Parker, D., Hawes, N., ’Optimal policy generation for partially satisfiable
co-safe LTL specifications’, in IJCAI, pp. 1587-1593, 2015.

38. Lahijanian, M., Kwiatkowska, M., ’Specification revision for Markov decision processes
with optimal trade-off’, in CDC, pp. 7411-7418, 2016.

39. Lee, H. S., Lee, J. W., ’Task Offloading in Heterogeneous Mobile Cloud Computing: Mod-
eling, Analysis, and Cloudlet Deployment’, IEEE Access, vol. 6, 2018, pp. 14908-14925.

40. Li, X., Zhu, L., Chu, X., Fu, H., ’Edge Computing-Enabled Wireless Sensor Networks for
Multiple Data Collection Tasks in Smart Agriculture’, Journal of Sensors, art. id 4398061,
2020.

41. Liu, X., Qin, Z., Gao, Y., ’Resource Allocation for Edge Computing in IoTNetworks via
Reinforcement Learning’, http://arxiv.org/abs/1903.01856v1, pp. 1-6, 2019.

42. Logothetis, D., Yocum, K., ’Ad-hoc Data Processing in the Cloud’, VLDB Endowment,
1(2), pp. 1472-1475, 2008.

43. Ma, H., Kumar, T., Koenig, S., ’Multi-agent path finding with delay probabilities’, in
AAAI, 2017.

44. Ma, L., Wu, J., Chen, L., ’OTA: Delay bounded optimal cloudlet deployment and user
association in WMANs’, in Proceedings of the IEEE/ACM International Symposium on
Cluster Cloud Grid Computing (CCGRID), 2017, pp. 196–203.

45. Meng, J., Shi, W., Tan, H., Li, X., ’Cloudlet placement and minimum-delay routing in
cloudlet computing’, in Proceedings of the IEEE International Conference on Big Data
Computing and Communication (BIGCOM), 2017, pp. 297–304.

46. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., De Turck, F., Davy, S., ’Design and
evaluation of algorithms for mapping and scheduling of virtual network functions’, in Pro-
ceedings of the 1st IEEE Conference on Network Softwarization, 2015, pp. 1-9.

47. Munkres, J., ’Algorithms for the assignment and transportation problems’, JSIAM, 5(1),
1957, pp. 32-38.

48. Murphree, J., ’Machine learning anomaly detection in large systems’, IEEE AUTOTEST-
CON, 2016, pp. 1-9.

49. Mutlag, A. A., et al., ’MAFC: Multi-Agent Fog Computing Model for Healthcare Critical
Tasks Management’, Sensors, 20(7), 2020.

50. Muthucumaru, M., et al., ’Dynamic Mapping of a Class of Independent Tasks onto Hetero-
geneous Computing Systems’, Journal of Parallel and Distributed Computing, vol. 59(2),
1999, pp. 107–131.

51. Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., Garćıa, Á. L., Heredia, I., ... Hluchý, L.
’Machine Learning and Deep Learning frameworks and libraries for large-scale data mining:
a survey.’ Artificial Intelligence Review, 52(1), 2019, pp. 77-124.

52. Phansalkar, S., Ahirrao, S., ’Survey of Data Partitioning Algorithms for Big Data Stores’,
in Proceedings of the 4th IEEE International Conference on Parallel, Distributed and Grid
Computing, pp. 163-168, 2016.

53. Ranadheera, S., Maghsudi, S., Hossain, E., ’Mobile Edge Computation Offloading Using
Game Theory and Reinforcement Learning’, arXiv:1711.09012, 2017.

54. Ranadheera, S., Maghsudi, S., Hossain, E., ’Computation Offloading and Activation of Mo-
bile Edge Computing Servers: A Minority Game’, IEEE Wireless Communications Letters,
vol. 7(5), 2018.

55. Salehizadeh, S. M. A., Yadmellat, P., Menhaj, M. B., ’Local Optima Avoidable Particle
Swarm Optimization’, in proceedings of the IEEE Swarm Intelligence Symposium, pp. 16-
21, 2009.

56. Smith, S., Tmova, S., Belta, C., Rus, D., ’Optimal path planning for surveillance with
temporal-logic constraints’, IJRR, vol. 30(14), pp. 1695-1708, 2011.

57. Sun, X., Ansari, N. (2016). ’EdgeIoT: Mobile edge computing for the Internet of Things.’
IEEE Communications Magazine, 54(12), pp. 22-29.

58. H. Meireles Valadares, Clustering task assignment: an algorithm for time critical task
assignment problems, UNIVERSIDAD POLITÉCNICA DE MADRID, 2017.

59. Wagner, G., Choset, H., ’Path planning for multiple agents under uncertainty’, in ICAPS,
2017.

60. Wang, S., Zhao, Y., Xu, J., Yuan, J., Hsu, C.-H., ’Edge server placement in mobile edge
computing’, Journal of Parallel Distributed Computing, vol. 127, pp. 160–168, 2018.

61. Xing, H., Liu, L., Xu, J., Nallanathan, A., ’Joint Task Assignment and Resource Allocation
for D2D-Enabled Mobile-Edge Computing’, http://arxiv.org/abs/1902.10017v1, pp. 4193-
4207, 2019.

34 Madalena Soula et al.

62. Xu, Z., Liang, W., Xu, W., Jia, M., Guo, S., ’Efficient algorithms for capacitated cloudlet
placements’, IEEE Transactions on Parallel and Distributed Systems, vol. 27(10), pp.
2866–2880, 2016.

63. Yang, S., Li, F., Shen, M., Chen, X., Fu, X., Wang, Y., ’Cloudlet Placement and Task
Allocation inMobile Edge Computing’, IEEE Internet of Things Journal, vol. 6(3), 2019,
pp. 5853-5863.

64. Yeh, W. C., Lai, C. M., Huang, Y. C., Cheng, T. W., Huang, H. P., Jiang, Y., ’Simplified
Swarm Optimization for Task Assignment Problem in distributed computing system’, in
2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowl-
edge Discovery (ICNC-FSKD), IEEE, 2017, pp. 773-776.

65. Yu, W., et al., ’A Survey on the Edge Computing for the Internet of Things’, IEEE Access,
2017, pp. 6900-6919.

66. Zhao, Z., Min, G., Gao, W., Wu, Y., Duan, H., Ni, Q. (2018). ’Deploying edge computing
nodes for large-scale IoT: A diversity aware approach.’ IEEE Internet of Things Journal,
5(5), pp. 3606-3614.

