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Adaptation of microbial communities to anthropogenic stressors can lead to reductions

in microbial diversity and disequilibrium of ecosystem services. Such adaptation

can change the molecular signatures of communities with differences in taxonomic

and functional composition. Understanding the relationship between taxonomic and

functional variation remains a critical issue in microbial ecology. Here, we assessed the

taxonomic and functional diversity of a lake metacommunity system along a polymetallic

pollution gradient caused by 60 years of chronic exposure to acid mine drainage (AMD).

Our results highlight three adaptive signatures. First, a signature of taxon—function

decoupling was detected in the microbial communities of moderately and highly polluted

lakes. Second, parallel shifts in taxonomic composition occurred between polluted and

unpolluted lakes. Third, variation in the abundance of functional modules suggested

a gradual deterioration of ecosystem services (i.e., photosynthesis) and secondary

metabolism in highly polluted lakes. Overall, changes in the abundance of taxa, function,

andmore importantly the polymetallic resistance genes such as copA, copB, czcA, cadR,

cCusA, were correlated with trace metal content (mainly Cadmium) and acidity. Our

findings highlight the impact of polymetallic pollution gradient at the lowest trophic levels.

Keywords: function, taxon, decoupling, polymetallic gradient, Cadmium, evolution, adaptation, resistance

INTRODUCTION

Micro-organisms represent a significant portion of global biodiversity and are the engine driving
Earth’s biogeochemical cycles and primary production (Falkowski et al., 2008; Green et al.,
2008). Ecosystem services provided by microbes ensure optimal environmental conditions for
all multicellular life forms (Robinson et al., 2010). For decades, the implications of taxon-
function relationships in microbial communities have been debated by researchers (Doolittle and
Zhaxybayeva, 2009; Bissett et al., 2013; Martiny et al., 2013; Louca et al., 2016b; Morrissey et al.,
2016). On one hand, researchers showed that even very closely related taxa exhibited contrasting
metabolic and ecological functions (e.g., distinct growth rates and metabolic substrate utilization
profiles), indicating a gap between taxon phylogeny and the functional repertoires of some bacterial
genera (Jaspers and Overmann, 2004; Maharjan et al., 2006; Doolittle and Zhaxybayeva, 2009).
These studies employed molecular taxonomic profiling, either by sequencing SSU (small subunit
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ribosomal ribonucleic acid) 16S rRNA (Jaspers and Overmann,
2004; Doolittle and Zhaxybayeva, 2009) or specific housekeeping
genes (Maharjan et al., 2006). On the other hand, studies
focused on microbial molecular evolution and ecology reported
a significant relationship between phylogenetic groups or
taxonomic composition at different hierarchical levels (i.e.,
Phylum and Class) with ecological and functional traits (Webb
et al., 2002; Martiny et al., 2006, 2013; Ward et al., 2006; Gupta
and Lorenzini, 2007; Allison and Martiny, 2008; Philippot et al.,
2010; Gravel et al., 2011). The majority of these genomic studies
have been limited to correlating traits with taxa abundance
variation. Additional evidence at the community level is needed
to predict the interplay of evolutionary processes [horizontal
gene transfer (HGT), gene loss, selective pressure] and
ecological processes (spatial dispersal limits, biotic interactions,
neutral biogeography) drive metacommunity composition and
functional repertoires in complex ecological contexts.

With advances in sequencing technologies, metagenomic
approaches have the potential to advance our understanding
of both the taxonomic and functional composition of complex
microbial communities. In this respect, metagenomic studies
have revealed significant coupling between taxonomic
composition or phylogenetic lineages and ecological traits
(Bouvier and del Giorgio, 2002; Philippot et al., 2010) or
functional gene repertoires (Debroas et al., 2009; Goldfarb
et al., 2011; Muegge et al., 2011; Bryant et al., 2012; Fierer
et al., 2012b; Langille et al., 2013; Martiny et al., 2013; Forsberg
et al., 2014; Mayali et al., 2014; Vanwonterghem et al., 2014;
Morrissey et al., 2016; Larkin and Martiny, 2017). For example,
in natural lake communities, associations are reported between
taxon abundance and function (Debroas et al., 2009), and in
soil communities from multiple environments, with chemical
substrate variation (Goldfarb et al., 2011) and functional
attributes (Fierer et al., 2012b). Most of these studies have
been conducted in relatively unperturbed environments, and
on microbial communities facing moderate to low selective
pressure.

Other microbial community studies, mostly based on
16S rRNA gene analysis, and rarely complemented by whole
metagenome shotgun sequencing, revealed either partial or
marked decoupling between taxonomic composition and
ecological traits (Lima-Mendez et al., 2015) or functional gene
repertoires. Patterns of complete to partial decoupling are often
found in natural environmental conditions (Hooper et al., 2008,
2009; Burke et al., 2011; Raes et al., 2011; Smillie et al., 2011;
Barberán et al., 2012; Louca et al., 2016b). This taxon-function
decoupling has rarely been discussed in extreme environments
such as acid mine drainages (AMD) (Kuang et al., 2016). These
findings highlight the need to further investigate environments
where initial conditions have been perturbed by xenobiotic
factors (Bowen et al., 2011).

The occurrence of taxon-function decoupling has been
reported in other metagenomic studies as functional redundancy
between phylogenetically distant taxa (Green et al., 2008;
Burke et al., 2011; Stokes and Gillings, 2011) and divergent
microenvironments (Hooper et al., 2008, 2009). To summarize,
taxonomic and functional features could be useful in assessing

adaptive response of microbial metacommunities in disturbed
ecosystems. One study, to our knowledge, has focused on
the outcome of microbial taxon-function relationships under
selection gradients, indicating possible linkages between the
structure and functioning of soil microbial communities (Fierer
et al., 2012a). Thus, it remains uncertain whether taxon-
function decoupling is an adaptive response to a gradual
selective pressure. Xenobiotic stressors like antibiotics, chemical
and metallic pollutants erode microbial biodiversity (Parnell
et al., 2009), which is predicted to impair or erode ecosystem
services (Sandifer and Sutton-Grier, 2014). Therefore, the
characterization of taxon-function decoupling patterns will
enhance our understanding of the robustness of microbial
functional networks that ensure key ecosystem services. Here,
the complex connections of microbial biodiversity and ecosystem
services (Miki et al., 2014) were addressed at the molecular
level by comparing variation in the taxonomic composition and
molecular functions of microbial communities.

We hypothesized that a stress gradient, specifically
a polymetallic pollution gradient over a relatively long
evolutionary time scale in terms of bacterial generation time,
would result in adaptive signatures in taxonomic composition
and functional repertoires. Specifically, we predicted that
stress gradients would gradually induce selection for microbial
metacommunities with functional repertoires and a taxonomic
composition capable of thriving in this harsh environment.
To test our hypothesis, we targeted lakes polluted by a
polymetallic gradient of acid mine waters. Heavy metals can
originate either from natural sources such as volcanic activity
or anthropogenically by mines tailings, an important source of
AMD. Acidity gradients recorded in lake waters surrounded
by natural volcanic activity (e.g., Indonesian crater lake Kawah
Ijen, Argentinian volcanic lake in Patagonia), have significant
effects on themicrobial community composition and biodiversity
(Wendt-Potthoff and Koschorreck, 2002; Löhr et al., 2006). AMD
is created by the exposure of sulphidic minerals to air and water
forming soluble sulfates (Almeida et al., 2008). Ferrous minerals
become oxidized in contact with water producing ferric ions and
H2 (Johnson and Hallberg, 2003; Edwards and Bazylinski, 2008).
Leached ions into streams generate acidic water by lowering
the pH (<3). Consequently, other metal ions such as Zn, Hg,
Ni, Cr, Cd, Cu, Mn, Al, As, and Pb appear in AMD waters at
high concentrations. There are limited descriptions of microbial
diversity in AMD in the literature, especially in impacted
environments with high zinc and cadmium concentrations
(Almeida et al., 2008). In AMD polluted surface water, Almeida
et al. (2008) showed that bacterial diversity in Sepetiba Bay,
Brazil, which is much higher than archaeal diversity, was
dominated by Proteobacteria, Actinobacteria, Cyanobacteria
and had a high abundance of unclassified bacteria (unknown
strains). Similar composition (dominance of Proteobacteria) was
observed over 59 microbial communities from physically and
geochemically diverse AMD sites across Southeast China (Kuang
et al., 2013). Kuang et al. (2013) revealed that acidity gradient
is a major factor explaining community differences between
AMD communities regardless of the long-distance isolation and
the distinct substrate types. Likewise, the investigation of the
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microbial diversity of an extremely acidic, metal-rich water lake
(Lake Robule, Bor, Serbia) revealed low diversity dominated by
Proteobacteria strains (Stankovic et al., 2014). Similar community
composition was observed in bacterioplankton communities
exposed to cadmium in coastal water microcosms (Wang et al.,
2015). Similar to surface waters, Hemme et al. (2010, 2016)
highlighted that chronic exposure to high concentrations of
heavy metals (∼50 years) in groundwater caused a massive
decrease in biodiversity, characterized by a high abundance
of Proteobacteria, as well as a significant loss in allelic and
metabolic diversity. More importantly, Hemme et al. (2016)
pointed to the importance of HGT during the evolution of
groundwater microbial communities in response to heavy
metal exposure. However, very few studies were carried out
on water polluted across a polymetallic gradient (Kuang et al.,
2013; Desoeuvre et al., 2016). One of those studies reported the
impact of an extreme poly-metallic gradient (including arsenic)
on the diversity and distribution of arsenic-related genes in
river waters (Desoeuvre et al., 2016). Other studies on AMD
polluted freshwater sediments (Sánchez-Andrea et al., 2011;
Jackson et al., 2015; Jie et al., 2016; Ni et al., 2016) showed the
dominance of Proteobacteria in microbial communities as well
as community specialization. In lake sediments exposed to AMD
gradients, the effects of different metals on specific microbes
and microbial activities were correlated with their respective
chemical properties. All these studies used 16S rRNA gene
analysis, except for one, which used deep coverage data from
shotgun metagenome sequencing (Hemme et al., 2016).

In our study, we used a shotgun metagenomic sequencing
approach to characterize the functional and taxonomic diversity
of bacterioplankton from five lakes within a catchment that was
historically exposed to a polymetallic contamination gradient
(PCG) for over 60 years. As the PCG was previously correlated
with taxon abundance variation (Laplante and Derome, 2011;
Laplante et al., 2013), taxon-function decoupling was expected to
occur in the most polluted lakes and be absent in less polluted or
unpolluted lakes. Our first objective was to assess the taxonomic
and functional signatures of bacterioplankton adaptation to PCG.
Secondly, we aimed to provide insight into the interplay of
biodiversity and ecosystem services under a stress gradient by
analyzing taxon-function variation.

MATERIALS AND METHODS

Lake Characteristics and Locations
Over the last 60 years, the Rouyn-Noranda (Western
Quebec, Canada) mining sites have dumped AMD with
heavy polymetallic traces (Laplante and Derome, 2011)
into surrounding lakes. We targeted five lakes in this area
(Supplementary Figure S1). Among them, three have common
surface water interconnected along the same hydrologic basin:
Arnoux Lake (LAR-hc; highly polluted), Arnoux Bay (BAR-mc;
medium levels of pollution), and Dasserat Lake (DAS-lc; the
least polluted). The water polluted by AMD spreads from
Arnoux to Dasserat Lake generating a polymetallic gradient
over 20 km. Around 30 km to the south side of this natural
system of connected lakes, Opasatica Lake (OPA-nc), which is

a landlocked unpolluted site, was sampled and considered as
an unpolluted negative control, and ca. 40 km to the north side,
Turcotte Lake (TUR-hc), another landlocked site was selected
as a highly polluted lake. Longitude and latitude coordinates
are given in Supplementary File S1. This Western Quebec lake
system is 425 km northwest of Ottawa, Ontario. The abandoned
mine site is a source of tailings and eroded mine waste into the
Arnoux River, which drains west to Arnoux Lake, Arnoux Bay,
and then Dasserat Lake. These lakes are irregular in shape and
the bathymetry reflects the relief of the underlying bedrock. The
immediate surrounding area consists of hilly terrain, volcanic
rocks, ultramafic rocks, mafic intrusions, granitic rocks, and
early and middle Precambrian sediments (Alpay, 2016).

Metallic and Chemical Gradient Surveys
pH and Polymetallic concentration (Al, Cd, Cu, Fe, Mn, Pb,
Zn) in the studied lakes was measured in June 2010, a year
prior to the present study, using ICP VISTA Varian-axial mass
spectrometer as described in Laplante and Derome (2011).
Trace metal profiles showed a polymetallic gradient in the
three interconnected lakes (Supplementary Figure S1). For each
lake, we measured temperature (OPA-nc: 12◦C; DAS-lc: 10◦C;
BAR-mc: 9.9◦C; LAR-hc: 11.5◦C; TUR-hc: 9.5◦C). Dissolved
organic carbon (DOC) were determined in each sample using a
total organic carbon (TOC) analyzer (Shimadzu) following the
non-purgeable organic carbon (NPOC) method (Laplante and
Derome, 2011).

Water Sampling
Sampling was carried out in September 2011 by collecting 6 L
of water per lake at a depth of 60 cm below the surface. Water
samples were sequentially filtered (3 filters per sample), first
through a 47-mm poly carbonate filter with 3-micron pore size,
followed by a 0.22µm nitrocellulose membrane filter (Advantec)
using peristaltic filtration (Masterflex L/S Pump System with
Easy-Load II Pump Head; Cole-Parmer, Vernon Hills, IL, USA).
Duplicates of the 0.22µm filter were placed into cryotubes at
−80◦C.

DNA Extraction and Metagenome
Sequencing
Filters duplicates were pooled, then genomic DNA was extracted
as described by Laplante et al. (2013). Library preparation
(TruSeq DNA Illumina) of paired-end reads (2 × 100 bp read
length) was performed by theMcGill University/GenomeQuebec
Innovation Center for whole metagenomic shotgun sequencing
using a HiSeqTM 2000 Sequencing System. A total of 30 Gbps
were obtained and the sequencing data summary is shown in
Supplementary File S2. The sequence files are available from
the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra),
BioProject ID: PRJNA449990.

Bioinformatic and Statistical Analysis
Reads-Based Approach (Figure 1)
To first discard methodological biases including sequencing
artifacts, we pre-processed data for quality filtering, chimeric
sequences, homopolymers, and short reads (cutoff: 50 bp)
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FIGURE 1 | Bioinformatics analysis pipeline. Two approaches were developed for this work. With the ORF-based approach, de novo assembly was performed on raw

reads data using Ray Meta software. Then, the predicted ORFs (Open Reading Frames) were annotated using Diamond similarity research tool against SEED, which is

a curated database. With the reads-based approach, merged (with FLASH algorithm) and filtered reads (with Nesoni) (length ∼200pb in average) were annotated

using the same tool as the ORF-based approach, Diamond algorithm and SEED database. For both approaches, we used the lowest common ancestor (LCA)

algorithm in the taxonomic assignment and the subsystems hierarchy in function classification. Diversity measures were computed using mothur software.

using the Nesoni Clip tool (https://github.com/Victorian-
Bioinformatics-Consortium) version 0.133. Overall, the quality
of forward reads (R1) was better than reverse reads (R2).
This difference is related to sequencing quality decrease over
the length of reads, in addition to the loss of enzymatic
specificity overtime in the paired-end platform technology.
Base calling quality was selected at a Phred or Q score of 33
(Supplementary File S2). FLASH software v1.2.11 (Magoč and
Salzberg, 2011) was used with default parameters (10–65 bp
overlapping window) to merge paired-end reads.

As a second step, following the selection of good quality
reads for all five metagenomic samples, a sequence similarity
search was performed against the SEED database (Version:
May 2015) (Overbeek et al., 2014) using Diamond v0.7.9.58
(Buchfink et al., 2015). The taxonomic content of each sample
was assigned using the Lowest Common Ancestor (LCA)method
(Huson et al., 2007). Functional abundance was estimated using
the SUPERFOCUS software (Silva et al., 2015) with Diamond
(1e−12 as p-value, 60 identity as threshold, 30 base pairs as
minimum alignment length). To cope with missing biological
replicates and unequal read numbers across all five lake samples
(varying from 37–80 million paired-end reads before filtration),
a read subsampling approach without replacement was used
instead of rarefying or simulating reads from complete genomes.

Accordingly, eachmetagenomic sample was subsampled 12 times
with an equal number of reads (1 million reads). The uniformity
in terms of number of subsampled reads from all samples
were largely respected as in previous studies using simulated
metagenomes (Mavromatis et al., 2007; Garcia-Etxebarria et al.,
2014). The 60 generated metagenomic pseudo-replicates of equal
size were submitted to our custom pipeline of taxonomic and
functional abundance annotations.

Thirdly, to measure alpha and beta diversity based on feature
abundances, we employed the OTU concept of taxonomic
units (Schloss et al., 2009). Considering each feature (genus,
function) as an OTU, alpha and beta diversity were computed
using Mothur software (Schloss et al., 2009). UniFrac distances
based on shared and unshared features were computed for each
compared pair of samples. To inspect how environmental factors
impact metacommunity composition, subsampled sites were
first plotted based on their feature abundances with non-metric
multidimensional scaling (NMDS) using Bray–Curtis distance
between samples. Hence, the OPA-nc sample was used as control
reference to compute the differential abundance of genera. Then,
the computed distance matrix was clustered with Ward’s method
based on minimum variance. Clusters of genus abundance were
distinguished with different colors on the NMDS plot. Next,
mixed metals metadata were projected on NMDS axes by fitting a
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regression model. The significance of the “regression coefficient”
of the model was computed using a random permutation test
(1,000 iterations). Then the regression coefficient between the
randomized response and the fitted values from the model
was computed. The NMDS model was run using the VEGAN
package (Oksanen et al., 2016) in the R statistical environment
(R Foundation for Statistical Computing, 2008). To test for a
correlation between taxonomical and functional composition, a
Canonical Correlation Analysis using the CCA (González et al.,
2008) and mixOmics (Rohart et al., 2017) packages in R were
applied. With CCA, the function-taxon cross-correlation was
computed by maximizing the linear combinations between the
two matrix vectors. Then a regularization function of CCA
from mixOmics was used to deal with the high number of
features (genus, function) compared to the low number of
samples (60 subsamples). Regularization parameters (λ1 and
λ2) were determined through a standard cross-validation (CV)
procedure on a two-dimensional surface. The optimal value for
λ was obtained by searching for the largest CV-score on the
2D surface that requires intensive computing time to converge
for the optimal cross-validation value. Choice of canonical
dimensions and graphical representation of features and samples
were performed with mixOmics package.

ORFs-Based Approach (Figure 1)
To improve annotation accuracy in terms of length and coverage,
an Open Reading Frame (ORF) prediction approach was used
after de novo assembly. Collinear metagenomic reads belonging
to the same genetic unit were merged into contiguous sequences
(contigs). Firstly, de novo assemblies of raw reads were performed
using the RAY Meta (Boisvert et al., 2012) assembler. Secondly,
to explore contig features and gene contents, contigs were
submitted to the MG-RAST webserver (Glass et al., 2010)
and ORF prediction was conducted using the FragGeneScan
tool (Rho et al., 2010). Afterwards, contigs were annotated
with the BLAT tool implemented in MG-RAST against the
SEED database using stringent filtering parameters (1e−12 as
p-value, 85% identity as threshold, 50 base pairs as minimum
alignment length). Statistical summaries of annotated contigs
are available in Supplementary File S2. Customized microbial
annotations from the MG-RAST webserver were improved using
the RESTful API tool (Wilke et al., 2015). An additional similarity
research step based on BLASTx (parameters; identity threshold
of 85%, e-value of 10−12 and minimum alignment length of 50
base pairs) (Camacho et al., 2009) was performed on contigs
against the BacMet database (Pal et al., 2014) for annotating all
polymetallic resistance genes (hereafter termed PMRGs). After
annotations, contig coverage information determined by the Ray
Meta assembler was added to normalize abundance information.
Then, both abundance matrices of taxon and function coverage
(both normalized and non-normalized) were analyzed with the
STAMP software using a differential proportion comparisons
test (Parks and Beiko, 2010). In a second additional workflow
analysis, the ORFs were locally annotated with Diamond as
described above in the “Reads-based approach” section. BLAT
and Diamond provided similar annotation results. To measure
alpha and beta diversity within and between communities,

abundance matrices were adapted for the Mothur software.
At the third step, metabolic abundance was analyzed using
MG-RAST metabolite annotations. The metabolic differential
abundance was surveyed using iPATH (Yamada et al., 2011);
this tool offers the visualization of shared and specific pathways
between pairs of samples.

RESULTS

Decoupling Taxon-Function
To investigate the impact of the polymetallic selection gradient
on lake metacommunity composition, we measured the
pattern of decoupling between taxon and function along the
contamination gradient of the five lakes. We hypothesized that
taxon-function decoupling pattern is an adaptive response of
lake metacommunities. To detect this pattern, we performed
two independent analyses: (i) taxonomic structure vs. functional
diversity and (ii) canonical correlation of taxon and function.

Detangled Taxonomic Structure and
Function Diversity
According to alpha-diversity analysis, the highest value of
community richness (chao index) at the genus level was recorded
in BAR-mc (OPA-nc: 126.8, DAS-lc: 115.07, BAR-mc: 212.6,
LAR-hc: 121.66, TUR-hc: 68). In contrast to richness, community
evenness (Shannon index) was lowest in TUR-hc (0.116),
intermediate in OPA-nc (2.24), gradually decreasing along the
metallic gradient from DAS-lc (2.85) < BAR-mc (2.58) < LAR-
hc (2.47). However, community evenness of functions (OPA-
nc: 2.36, DAS-lc: 2.32, BAR-mc: 2.92, LAR-hc: 2.62, TUR-hc:
2.87) was higher in BAR-mc, LAR-hc and TUR-hc then OPA-
nc and DAS-lc. Then, beta-diversity analysis at the genus level
(Figure 2F) revealed two patterns of structural convergence: (i)
between the two independent lake communities, namely the
unpolluted control (OPA-nc) and the low polluted lake (DAS-
lc); (ii) between the interconnected BAR-mc-LAR-hc and the
polluted control TUR-hc communities. Concerning functional
diversity distribution, beta-diversity of all subsystems (Figure 3B)
revealed two convergent patterns: (i) between the polluted
control (TUR-hc), the highly-polluted gradient lake (LAR-hc),
and the medium-polluted lake (BAR-mc); (ii) between the
independent lake communities, namely the low-polluted DAS-lc
and the negative control (OPA-nc) communities.

Canonical Correlations of Taxon and
Function
Regularized canonical correlation analysis (rCCA) of function
(subsystems level 1, 2, 3) with taxon was assessed using a
maximal cross-validation criterion (see Materials and Methods).
To detect linear combinations between function and taxon
we separately performed the same rCCA analysis for OPA-
nc/DAS-lc, and then for BAR-mc/LAR-hc/TUR-hc. For OPA-
nc/DAS-lc (Figures 6A–D), we found a maximum variance of
only 1% explained by the first axis computed from the taxon
covariance matrix, and 1% explained by the first canonical
correlation principal component computed from the function
subsystems level 1 (results not shown) covariance matrix, even
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FIGURE 2 | Composition of metacommunities based on the ORF approach. (A) Metacommunity composition (y-axis) is shown in stacked bars for each lake

metagenome (x-axis). Only phyla with relative abundance (RA) greater than 1% are shown. (B) Hierarchical clustering of samples based on genus RA using Ward’s

method and Bray–Curtis dissimilarity distance, bootstrap AU (Approximately Unbiased) p-value and BP (Bootstrap Probability) values are shown on the nodes.

(C,D) Principal Component Analysis (PCA) of samples based on genus RA with different annotation parameters of alignment length cutoffs (50 pb in c and 30 bp in d)

and identity threshold (85% in C and 60% in D). (E) NMDS of genera abundance fitted to trace metals was performed with Bray–Curtis distance, three dimensions

were a priori defined for distance rank ordination and stress value was below 0.05. Cadmium (Cd), Manganese (Mn), and pH significantly fitted with NMDS axes are

highlighted in red. NMDS loadings (NMDS1, NMDS2), and P-value of correlation r2 of trace metals were reported in Supplementary File S6. Each small dot

represents the ordinated genus, while each large point represents the lake communities’ samples using a circle for OPA-nc in blue and the control TUR-hc in black,

and the connected lakes are illustrated with squares (LAR-hc in red, BAR-mc in orange and DAS-lc in yellow). Genus plot coordinates, clusters and dot labels are

shown in Supplementary File S4. (F) Tree based Unifrac distance computed with mothur is indicated by branch lengths. All these results were obtained using the

ORF based approach with 85% identity threshold, e-value of 10−12, minimum alignment length of 50 base pairs, and the lowest common ancestor (LCA) algorithm

for taxonomic assignment. OPA-nc (Opasatica Lake) is the negative control; DAS-lc (Dasserat Lake) is low polluted; BAR-mc (Arnoux Bay) is medium polluted; LAR-hc

(Arnoux Lake) is highly polluted, and TUR-hc (Turcotte Lake) is the positive control of contamination.

when we tested the canonical model at the most accurate
hierarchical functional resolution (subsystems level 3). Supported
by a high cross-validation score (0.975), this result suggested
a strong coupling between taxon and function. Conversely, in
BAR-mc/LAR-hc/TUR-hc (Figures 5A–D) we found the first
axis explained 25% of the variance computed from the taxon

covariance matrix, and 3% (Subsystem level 1) to 6% (subsystems
level 3) explained by the first canonical axis computed from the
functional covariance matrix. This result, supported with a high
cross-validation score (0.99), revealed a weak correlation between
taxon and function, thus suggesting a strong taxon-function
decoupling. Using the first two canonical axes, in BAR-mc,

Frontiers in Microbiology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 869

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Cheaib et al. Taxon-Function Decoupling in Stress Gradient

A

C

B

FIGURE 3 | Function abundance classification based on ORF approach. Composition analysis of metacommunity functions based on relative abundance (RA) of

subsystems using principal component analysis (PCA) (A), tree based Unifrac distance (B) and NMDS (C) identified the same pattern. (A) PCA figure was obtained

from STAMP software (Parks et al., 2014). (B) NMDS (three a priori predefined dimensions projected into two dimensions, stress value < 0.05, Bray–Curtis distance)

axes of all annotated subsystems level 1 fit significantly with Cadmium (Cd), and pH using the ORF approach. In d, each small dot represents a subsystem, while the

large dot does represent the lake metagenome indicated with a circle for the negative control lake (OPA-nc) in blue and the positive control lake (TUR-hc) in black. The

connected lakes are illustrated with squares (LAR-hc in red, BAR-mc in orange and DAS-lc in yellow). NMDS loadings (NMDS1, NMDS2), and P-value of correlation r2

of trace metals were reported in Supplementary File S6. Subsystems plot coordinates, clusters, and dot labels are resumed in Supplementary File S4. (C) Tree

based Unifrac distance computed with mothur is indicated by branch lengths In the ORF based approach the following parameters were strictly respected; 85%

identity threshold, e-value of 10−12, minimum alignment length of 50 base pairs, and the lowest common ancestor (LCA) algorithm for taxonomic assignment.

OPA-nc (Opasatica Lake) is the negative control; DAS-lc (Dasserat Lake) is low polluted; BAR-mc (Arnoux Bay) is medium polluted; LAR-hc (Arnoux Lake) is highly

polluted, and TUR-hc (Turcotte Lake) is the positive control of contamination.

LAR-hc, and TUR-hc, a clear separation was observed between
taxon and function (Figure 5C), while the axes are superimposed
in OPA-nc and DAS-lc (Figure 6C).

Taxonomic Variation Signatures
The metacommunity composition analysis emphasized three
major patterns marked by abundance shifts within and between
Proteobacteria, Cyanobacteria and Actinobacteria phylum
(Figure 2A). In the first pattern, Proteobacteria mostly
dominated by Betaproteobacteria (Supplementary File S3)
reached a higher relative abundance in the highly-polluted
(hc) lakes TUR-hc (99%) and LAR-hc (35%) compared to
the moderately-polluted (mc) lake BAR-mc (20%), the least-
polluted (lc) lake DAS-lc (19%), and the unpolluted (nc) lake
OPA-nc (27%). At the genus level, Polynucleobacter, unclassified
Burkholderia, and Burkholderia were the most dominant within
polluted lakes TUR-hc, LAR-hc, and BAR-mc, respectively, while

Polaromonas was the most dominant in DAS-lc and OPA-nc
(Supplementary File S3). In the second pattern, Actinobacteria
were the most dominant phylum (Supplementary File S3)
in less polluted lakes [OPA-nc (53%) and DAS-lc (62%)]
and their relative abundance gradually decreased in more
polluted lakes [BAR-mc (33%), LAR-hc (10%) and completely
disappeared in TUR-hc], mainly for the five most abundant
genera: Streptomyces, Frankia, Mycobacterium, Kribbella, and
Nocardioides (Supplementary File S3). In the third pattern,
Cyanobacteria (Supplementary File S3) were abundant in
OPA-nc (15.4%) and BAR-mc (42%), and much less frequent
in LAR-hc (4.4%), DAS-lc (0.2%), and TUR-hc (< 0.01%). At
genus level, Synechococcus was most dominant, accounting
for 98% and 92% of Cyanobacteria genera in OPA-nc and
DAS-lc, respectively. In contrast, distinct Cyanobacteria genera
were dominant in polluted lakes: the filamentous Anabaena
in BAR-mc, unclassified Cyanobacteria in LAR-hc, and both
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A

B

FIGURE 4 | Polymetallic resistance genes (PMRG) abundance correlation with

trace metals. (A) For PMRG on chromosomes (72 genes), Cadmium (Cd) was

significantly correlated with NMDS axes and it was the main explanatory factor

of abundance variation of these genes between metacommunities. (B) NMDS

axes based on relative abundance of PMRG located on plasmids (27 genes)

do not significantly fit with any trace metal arrows. This NMDS analysis was

performed with Bray–Curtis distance, three dimensions were a priori defined

for distance rank ordination and stress value was below 0.05. NMDS loadings

(NMDS1, NMDS2), and P-value of correlated trace metals are reported in

Supplementary File S6. Each small dot represented an individual PMRG,

while each large point represents the lake communities’ samples using circles

for OPA-nc in blue and the control TUR-hc in black, and the connected lakes

were illustrated with squares, LAR-hc in red, BAR-mc in orange and DAS-lc in

yellow. PMRG plot coordinates, clusters and dot labels are shown in

Supplementary File S4. Thresholds of 75% of identity, minimum alignment

length of 50 base pairs and e-value of 10−12 parameters were strictly

respected. PMRG were annotated by performing Blastn of ORFs against

BacMet database using Diamond software.

the diazotrophic Cyanothece, and the filamentous Anabaena in
TUR-hc.

Lake metacommunity abundance shifts were further
documented using bootstrapped hierarchical classification and
PCA. At the genus level, both methods showed similar pattern of

clustering with high statistical support (bootstrap values above
75%; more than 95% of explained variation by the first two PCA
components), with BAR-mc, LAR-hc, and TUR-hc grouped
separately from OPA-nc, DAS-lc (Figures 2B–D).

Role of Trace Metals in Taxonomic
Variation Signatures
NMDS analysis based on ORFs (Figure 2E) revealed interesting
relationships (significant R-squared indicating regression
model’s goodness of fit) between taxonomic abundance and
different factors such as pH, DOC and trace metals (mainly
Cadmium). OPA-nc and DAS-lc were significantly correlated
with DOC and pH axes, while all other sites exposed to
polymetallic gradient (BAR-mc, LAR-hc, and TUR-hc) were
significantly correlated with trace metals axes (Figure 2E). To
further analyze the link between abundance shifts at different
taxonomic ranks and the trace metal gradient, the same
NMDS analysis was performed using the ORFs approach. The
abundance of Proteobacteria (Supplementary Figure S3a),
Actinobacteria (Supplementary Figure S3b), and Cyanobacteria
(Supplementary Figure S3c) were studied separately.
NMDS analyses of abundance shifts at the genus level
revealed significant correlations with different metal axes,
pH and DOC. The shifts in composition within lake
metacommunities were not explained by the same factors.
For example, variation in the abundance of Proteobacteria
among lakes was mainly explained by Cd, pH, Mn, Alu,
while Cd and Fe explained variation in the abundance of
Actinobacteria, and Alu and Mn were the main factors
explaining variation in the abundance of Cyanobacteria among
lake metacommunities.

Function Variation Signatures
Our results showed 6,801 annotated functions from all
communities distributed into 988 subsystems in level 3,
192 subsystems in level 2, and 28 subsystems in level 1
(see sheet 2 in Supplementary Figure S5). At the first level
(see Supplementary Figure S5 and Supplementary File S5),
our results of cross-metagenomes comparison suggested
that the relative abundance of “Photosynthesis,” “Cofactors,
Vitamins, Prosthetic Groups, Pigments,” and “Respiration”
subsystems was significantly highest in OPA-nc while the “Stress
response” was the lowest in this lake. However, Subsystems of
“RNA metabolism,” and mobile elements (Phages, prophages,
plasmids, and transposable elements) showed the highest
abundance in BAR-mc, followed by LAR-hc and TUR-hc,
and low abundance in OPA-nc and DAS-lc. Furthermore,
the relative abundance of the “carbohydrates” subsystem
decreased gradually in all lakes except from DAS-lc to OPA-
nc (Supplementary File S5). Interestingly, among the 28
subsystems (Level 1), four subsystems “Nitrogen metabolism,”
“Cell cycle and division,” “Sulfur metabolism,” “and “Motility
and Chemotaxis” decreased gradually along the contamination
gradient. In addition, three subsystems (Phosphorus and
Potassium metabolism, Membrane transport) were absent
in LAR-hc and showed specific profiles of low abundance
(Supplementary File S5) varying between 0.2 and 3.8% in
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BAR-mc and TUR-hc. For multiple subsystems in Level 1 (n =

12), no gradual abundance variation was observed. However,
at a deeper resolution, many important functions related to
metals transport and resistance from the “Virulence defense
and disease,” “Membrane transport,” and “Iron acquisition
and metabolism” subsystems showed few gradual (i.e., Cobalt-
Zinc-Cadmium resistance) abundance profiles and high
specific abundance per lake (Supplementary Figure S7). At
the functional level, variation abundance was detectable within
all subsystems where three profiles of abundance variation
were observed from OPA-nc to TUR-hc: (i) profile 1 (FP1)
represents gradual function abundance decrease (106 functions)
along the contamination gradient (Supplementary File S5 and
Supplementary Figure S10), (ii) profile 2 (FP2) represents
gradual function abundance increase (123 functions) along
the contamination gradient Supplementary File S5 and
Supplementary Figure S10, and (iii) profile 3 (FP3) represents
specific functional abundance (Supplementary File S5 and
Supplementary Figure S11) in control negative OPA-lc
(167 functions), or in polluted lakes (225 functions). These
functional profiles were not necessarily observed in one
subsystem, but rather multiple profiles were detectable within
one subsystem (Supplementary File S5). For example, under
the “Virulence, Disease and Defense” subsystem, we observed
all these profiles with functions related to metal resistance
FP2 (i.e., Cobalt-zinc-cadmium CzcA protein, Cation efflux
system protein CusA), and FP1 (i.e., Magnesium and cobalt
efflux protein CorC), and FP3 (i.e., Copper homeostasis)
OPA-nc (see Virulence subsystem in Supplementary File S5).
However, functions related to mobile genes and HGT agents
(Supplementary Figure S8) were significantly more abundant
in polluted lakes (e.g., Gene transfer agent proteins, conjugative
transfer proteins, DNA repair, CRISPR associated proteins,
integrons). Classification of functional abundance (subsystem
levels 1, 2, 3) identified two independent clusters. The first
cluster grouped BAR-mc, LAR-hc and TUR-hc, and the second
grouped DAS-lc and OPA-nc (Supplementary Figures S5,
S6). Similar topologies were obtained using both approaches:
ORF (Supplementary Figure S4b) and reads subsampling
(Supplementary Figures S4c,d). PCA analysis based on the
ORF approach produced the same results, where at least 71%
of variance was explained on the first PC for all subsystem
function levels. We only presented a PCA plot for subsystems
abundance in level 1, where more than 82% of variation in
functional abundance was explained by the first component
(Figure 3A). At the metabolic level, analysis of enzymes
abundance profiles cross-metagenomes showed different
topology which was a dichotomy between OPA-nc and all
others pollution gradient lakes (See Supplementary File S7 and
Supplementary Figure S9).

Role of Trace Metals in Function Variation
Signatures
NMDS analysis of functional abundance highlighted two
main patterns of correlation (significant R-squared indicating
regression model’s goodness of fit) with metadata (Figure 3C).

First, BAR-mc, LAR-hc, and TUR-hc were correlated with
Cadmium axis (p ≤ 0.05). Second, OPA-nc and DAS-lc were
correlated with pH axis (p ≤ 0.05). The same analysis performed
on the subsystems in level 2 (192 functional modules) suggested
a significant contribution of all studied factors (results not
shown). At the finest functional level, lakes ordination based
on the NMDS of polymetallic resistance genes (PMRG)s
abundance showed a fit with the cadmium concentration
gradient (Figure 4), where DAS-lc was ordinated near BAR-
mc and LAR-hc. In NMDS analysis of PMRGs located on
chromosomes (Figure 4A), only Cadmium played a significant
role in explaining abundance variation. Similarly, the NMDS
analysis of PMRGs located on plasmids provided the same
classification profile even though they do not fit significantly with
any metal traces (Figure 4B).

DISCUSSION

Decoupling Taxon-Function as a Signature
of Adaptive Strategies
Comparing the compositional signatures of taxon and function,
we observed that relative shifts in taxon abundance could
only partially predict the impact of metallic toxicity on
metacommunity structure (see section Role of Trace Metals in
Taxonomic Variation Signatures). By considering the signatures
of functional abundance of the subsystems explained by pH and
Cadmium in polluted lakes, we could more accurately predict
the impact of metallic contaminants on ecosystem services
of lake metacommunities. In this respect, the contamination
gradient explained much variation in community function
structure and provided a powerful way to further assess the
relationship between the distribution of functional abundance
and selective pressure, which may increase gradually with the
expelled AMD flow over time. The impact of the selection
gradient on lake metacommunity composition was tested
through two independent analyses, first using diversity measures,
and second by detecting taxon-function decoupling patterns.
Alpha taxonomic diversity suggest a switch in BAR-mc, while
the gradual decrease in evenness based both taxon and function
in OPA-nc: (2.2t; 2.3f), DAS-lc (2.8t; 2.3 f), BAR-mc (2.5t; 2.9f),
LAR-hc (2.4t; 2.6f), TUR-hc (0.1t; 2.8f) could be a potential
consequence of composition homogeneity in community type
(e.g., Proteobacteria in TUR-hc). Indeed, this observation
may be related to the low complexity in AMD communities
previously documented for the same lake system (Laplante
and Derome, 2011; Laplante et al., 2013), and for other AMD
metacommunities (Allen and Banfield, 2005; Huang et al., 2016).

The rCCA analysis allowed for the detection of significant
spatial correlation between taxon and function in OPA-nc/DAS-
lc, reflecting a coupling between taxon and function. In these
unpolluted lakes, as mentioned above, NMDS analysis showed
that environmental factors (Cadmium, pH, and DOC) explained
variation in the overall taxonomic and functional composition.
At high resolution (subsystems level 2, 3) NMDS showed a
slight difference between OPA-nc and DAS-lc, but we cannot
unequivocally associate these variations to trace metal ratios. We
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FIGURE 5 | Decoupling of taxon and function between metacommunities based on the subsampled reads approach. (A–D) Regularized canonical correlation

analysis (rCCA) performed on BAR-mc, LAR-hc, and TUR-hc. (A) rCCA of a taxon (relative genus abundance) showed 25% of the explained variance on the first

canonical component. (B) rCCA of function (subsystems level3 relative abundance) showed only 6% of the explained variance on the first canonical component.

(C) The canonical cross-correlation of taxon-function identified a decoupling pattern. (D) Cross-validation score converged to a maximum value of 0.99 when

regularization parameters λ1 and λ2 were both fixed at 0.375.

may have missed other explanatory environmental and chemical
variables (i.e., NFigure2, NO3, SO4, PO4), or the potential
variation resulting from neutral ecological process, drift or
random reproduction as observed in wastewater habitats (Ofiteru
et al., 2010). Such coupling is not necessarily absolute but partial,
owing to the presence of some differentiated sub-communities
performing the same ecosystem services. In pristine natural
conditions (without stressful anthropogenic inputs), coupling
between taxon and function was observed in freshwater lakes
(Langenheder et al., 2005; Debroas et al., 2009), and decoupling
was observed in oceanic bacterial communities from contrasted
environments (Louca et al., 2016b).

Overall, in the present study, we found that functional
variation between polluted and unpolluted lakes was better
explained by environmental factors than taxonomic variation
between and within functional groups. Concerning the three
lake communities facing exposure to a polymetallic gradient
(BAR-mc/LAR-hc/TUR-hc), the explained variance between
taxon (25%) and function (6%) strongly suggests a decoupling

between taxa and functions. The shared functions in these
three polluted lakes reflect a convergent pattern, which in
turn could be interpreted as a predictive signature of the
ecosystem service’s impairment associated with acid mine lake
water. This conclusion is further supported by the NMDS
results, where the distribution of polluted lakes fitted closely
to Cadmium. In addition to rCCA, when comparing tree
topologies of structure and function (Figures 2F, 3C), we
detected additional patterns of taxon-function decoupling, like
the PCG. Such an approach offers interesting insights into
the adaptive strategies used by metacommunities facing long-
term exposure to polymetallic pollution. Often interpreted as
an indicator of HGT in natural communities (Ram et al.,
2005; Green et al., 2008; Burke et al., 2011; Louca et al.,
2016a,b) and AMD communities (Navarro et al., 2013; Devarajan
et al., 2015; Chen et al., 2016; Hemme et al., 2016), taxon-
function decoupling may provide evidence for selective pressure
on microbial communities (e.g., exerted by metallic exposure).
Indeed, as mentioned above, multiple proteins playing a role in
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FIGURE 6 | Coupling of taxon and function between metacommunities based on the subsampled reads approach. (A–D) Regularized canonical correlation analysis

(rCCA) performed on OPA-nc, and DAS-lc. (A) rCCA of the taxon (relative genus abundance) showed 1% of the explained variance on the first canonical component.

(B) rCCA of function (subsystems level3 relative abundance) also showed 1% of the explained variance on the first canonical component. (C) The canonical

cross-correlation of taxon-function identified a coupling pattern between taxon and function. (D) Cross-validation score converged to a maximum value of 0.975 when

regularization parameters λ1 and λ2 were both fixed at 0.0925. The rCCA method was applied using mixOmics and CCA package in R.

HGT, such as cassettes of integrons and transposable elements,
were present in polluted lakes, and absent in an unpolluted
lake (OPA-nc). We observed more than 14 mobile PMRGs
located on plasmids, and only two PMRGs on both plasmids and
chromosomes. The plasmid location of these PMRGs indicates
that bacterial conjugationmay be a vector for HGT. Interestingly,
a heatmap of abundance clustering from chromosomal and
plasmid PMRGs (figure not shown) produced a similar topology
of functional profiles (i.e., OPA-nc; DAS-lc-BAR-mc; LAR-hc-
TUR-hc).

Evolutionarily speaking, such taxon-function decoupling
patterns are expected to be signature of adaptation within
communities between closely, but also distantly, related bacterial
strains. Consequently, community composition in BAR-mc,
LAR-hc or TUR-hc may have independently evolved via HGT
events of resistance and regulatory genes. According to functional
abundance results, the potential occurrence of HGT is higher

in LAR-hc and TUR-hc compared to BAR-mc, which is closer
to DAS-lc and OPA-nc in terms of functional distribution. A
subset of adaptive beneficial transferred genes is expected to
reach fixation (Lind et al., 2010), but the long term metallic
contamination may have funneled the “metal resistance gene
pool” into different evolutionary trajectories due to the mounting
selective pressure.

Taxonomic Adaptive Signatures
In this study, the overall taxonomic variation suggests three
salient patterns of abundance distribution. First, a “composition
gradient” pattern constituted three shifts in taxonomic structure:
(i) high abundance of Proteobacteria in polluted sites (TUR-
hc, LAR-hc; BAR-mc), (ii) high abundance of Actinobacteria
in unpolluted sites (OPA-nc, DAS-lc), (iii) intermediate levels
of Cyanobacteria in all sites, with Nostocales being abundant
in polluted lakes and Chroococcales abundant in unpolluted

Frontiers in Microbiology | www.frontiersin.org 11 May 2018 | Volume 9 | Article 869

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Cheaib et al. Taxon-Function Decoupling in Stress Gradient

lakes (Supplementary File S3). Second, a “community type”
pattern suggests that the overall metacommunity exhibited
compositional shifts along the five lakes from wide (phylum)
to narrow (genus) taxonomic levels. Third, a “taxonomic
convergence” pattern highlights parallel changes of community
taxonomic structure, thus confirming previous results based
on semi-quantitative and quantitative studies (Laplante and
Derome, 2011; Laplante et al., 2013).

To further reinforce the taxonomic composition analysis,
we examined genera abundance and ORF distributions.
Similar ratios of ORFs/Genus were observed in the five
studied metagenomes (Supplementary Figure S2). The number
of annotated ORFs in all metagenomes was comparable.
Furthermore, random subsampling analysis without replacement
produced similar results (slightly different in topology)
compared to the ORFs approach, with remarkable clustering
fidelity of subsampled replicates from each metagenome
(Supplementary Figure S4a). Here, the subsampling approach
revealed consistency in the molecular signal of each lake.
We acknowledge that the subsampling approach used in our
analysis cannot replace real biological replications, but it is
rather an indicator of the metagenomic data robustness to the
metacommunity structure.

To understand the sources of variation in contributing to
the three major shifts of relative abundance in community
type, combined NMDS and correlational analyses were
performed for each pattern of taxonomic variation. First,
the Proteobacteria genus distribution of eight predefined
clusters (Supplementary File S4) showed that abundance
variation between communities was mainly explained
by synergistic interactions of Cd, pH, Mn, and Alu
(Supplementary Figure S3a). According to previous studies,
Proteobacteria were among the most abundant phyla in acid
mine water (Laplante et al., 2013; Streten-Joyce et al., 2013) and
in freshwater lake sediments polluted by “heavy metals” (Ni
et al., 2016). Second, in contrast to Proteobacteria, our results
divided Actinobacteria into four genus abundance clusters
(Supplementary File S4) constrained by two main and opposite
explanatory factors, Cd and Fe (Supplementary Figure S3b).
In fact, the most abundant Actinobacteria genera (Streptomyces,
Frankia, Mycobacterium), which varied between polluted
and unpolluted lakes, fall in the same abundance cluster
(see Actinobacteria in Supplementary File S4). Indeed,
some Actinobacteria (e.g., Streptomyces) strains are known
to have different metal-resistance profiles (Álvarez et al.,
2013). Interestingly, strains like Mycobacterium were able
to transport and uptake Cd (Dimkpa et al., 2009). On the
other hand, Cyanobacteria abundance showed different
patterns of abundance in polluted and unpolluted lakes
(Supplementary File S4 and Supplementary Figure S3c)
suggesting that Chroococcales (Cyanothece, Microcystis,
Synechocystis, Thermosynechococcus) and Synechococcales
(Synechococcus, Prochlorococcus) are muchmore affected by trace
metals compared to the Nostocales (Anabaena, Aphanizomenon,
Cylindrospermopsis, Dolichospermum, Nodularia, Nostoc,
Raphidiopsis). Although Cd was not identified here as a
significant explanatory factor, diverse strains of Nostocales were

documented to have the capacity to adsorb Cadmium (Pokrovsky
et al., 2008) and trace metals (Mota et al., 2015). Interestingly,
the sudden break of Nostocales lineages (Supplementary File S3)
between the connected lakes DAS-lc, BAR-mc and LAR-hc is
potentially related to resistance thresholds to trace metals, as
higher levels become toxic to Synechococcus (Ludwig et al., 2015).
Furthermore, the high relative abundance of Chroococcales and
Cyanobacteria in OPA-nc and DAS-lc is potentially related to
their role in photosynthesis and DOC mineralization (Bittar
et al., 2015). Overall, our results show that metallic toxicity
impacts metacommunity structure and provides a partial
explanation for the relative shifts in abundance found in the lakes
we studied. The dominance of Proteobacteria in over polluted
communities confirms the result previously observed in the same
lake system (Laplante et al., 2013), and from various acid mine
waters in the world (Almeida et al., 2008; Hemme et al., 2010;
Kuang et al., 2013; Stankovic et al., 2014; Wang et al., 2015).

Functional Adaptive Signatures
At the general level (subsystems level 1), only four
subsystems showed gradual variation. At the function level,
our results suggest deterioration in ecosystem services
along the contamination gradient, as relative abundance of
functional modules in 18 subsystems such as “Carbohydrates,”
“Photosynthesis,” “Cell division and cycle,” “DNA metabolism,”
and “Respiration” decrease gradually. However, under “Virulence
defense and disease” and “Membrane transport” subsystems (level
1), many important metals transport and resistance functions
(i.e., Cobalt-Zinc-Cadmium resistance) increased between
OPA-nc and other lakes (Supplementary Figure S7). These
profiles of gradual changes were less observable at the general
level (subsystems level 1), and more detectable at the functional
level resolution of many subsystems. The gradual decrease
and increase in relative abundance proportions was clearly
observed at le the lowest molecular function (i.e., Photosynthesis
functions) along the polymetallic gradient. Overall, variation
in the functional composition of metacommunities suggests
convergence between BAR-mc/LAR-hc and TUR-hc, two
geographically distant and independent lakes affected by
independent AMD sources.

In contrast to the community classification based on
taxonomic composition, BAR-mc is functionally closer to LAR-
hc-TUR-hc than OPA-DAS. NMDS of functional composition,
community hierarchical clustering, and PCA analysis all find
the same classification results. Cadmium and pH were the main
factors explaining functional composition variability among
lakes. However, independent analysis performed on both PRMGs
and enzymatic functions abundance showed that DAS-lc fitted
within the polluted lakes (BAR-mc-LAR-hc-TUR-hc) instead
of OPA-nc. PMRGs located on plasmids (Figure 4B) were
differentiated from those located on chromosomes (Figure 4A)
since plasmid genes are known to house more adaptive genes
acquired via bacterial conjugation (Li et al., 2015). Only
two experimentally confirmed genes (copA and actP) were
found in both plasmids and chromosomes. CopA is involved
in silver/copper export and homeostasis (Cha and Cooksey,
1991; Outten et al., 2001; Banci et al., 2003; Behlau et al.,
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2011). Acetate Permease (ActP) controls copper homeostasis in
rhizobium preventing low pH-induced copper toxicity (Reeve
et al., 2002). NMDS analysis based on Chromosomal PMRG
abundance revealed that Cadmium plays a significant role (p
≤ 0.05) in shaping the differential abundance of these genes.
Alternatively, analysis of plasmid PMRGs did not highlight
any significant fit with metal axes (Figure 4B), owing to the
low number of annotated PMRGs on plasmids. Using OPA-
nc as an unpolluted reference in our comparative framework,
differential metabolic abundance variation revealed an erosion of
biosynthesis pathways along the contamination gradient (results
of compared pathways not shown). Eroded metabolic functions
were associated to degradation of aromatic compounds, amino
acid biosynthesis, and carbohydrates, thus leading to the loss
of major bacterial mediated ecosystem services. As bacterial
communities experienced a consistent metallic stress over 60
years of mining activities, many functions associated with
ecosystem services likely became energetically too expensive
to be maintained. Such a selective environment may have
led to community specialization. Community specialization has
recently been demonstrated in soil AMD communities (Volant
et al., 2014) and natural freshwater communities (Pernthaler,
2013; Salcher, 2013; Pérez et al., 2015). In summary, the twomain
elements (or factors) that explained the majority of the functional
variation between polluted vs. unpolluted communities were pH
and Cadmium concentration. Nonetheless, other metal trace
gradients offered partial explanations for functional variation.

CONCLUSIONS

In this study, we examined adaptive signatures within natural
lacustrine microbial communities living under a gradient of
selective pressure induced by trace metal contamination from
over 60 years of mining. Using a metagenomic approach
based on whole genome shotgun sequencing, we identified
a convergence in both taxonomic and function responses,
thus providing evidence for genotypic signatures of adaptive
evolution. Strong selective pressure may drive overall taxon-
function decoupling, which may reflect the occurrence of gene
loss and HGT induced by AMD gradient, or the result of strong
selection exerted on existing strains possessing the necessary
resistance genetic background. This study remains a preliminary
assessment of decoupling phenomenon and further studies are
eventually needed to understand in a deeper manner the nature
of convergence between unpolluted environments vs. polluted
environments in a context of stress gradient. At the taxonomic
scale, metacommunity composition showed marked relative
abundance shifts of major phyla, but was much more marked
at the genus level, suggesting a “community type” adaptation
to the metallic gradient within each ecological niche. At the
function scale, we observed the erosion of metabolic pathways
along the metallic gradient despite the higher abundance of
functional categories like stress response, regulation, protein
metabolism, and metallic resistance in polluted lakes compared
to unpolluted lakes. Investigating the relationship of both
taxonomic and functional signatures, we detected a decoupling

pattern between taxon and function in polluted lakes as an
indicator of adaptation potentially via HGT. These results
suggest, for the first time, a decoupling pattern of taxon-
function within natural communities adapted to a gradient of
polymetallic contamination. This decoupling pattern highlights
the gap between microbial biodiversity and ecosystem services in
polluted environments.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.00869/full#supplementary-material

Supplementary Figure S1 | Geographical localisation and metallic profiles of

sampled lakes. (a) Geographical localisation of the sampling sites located in

Ryoun-Noranda (West Quebec, Canada) visited in June 2011. Latitute and

longitude coordinates of sampling sites are 48.25005489 and −79.40574646 in

Opasatica lake (OPA-nc); 48.07601448 and −79.3082428 in Dasserat lake

(DAS-lc); 48.24090959 and −79.35012817 in Arnoux Bay (BAR-mc);

48.25051211 and −79.333992 in Arnoux lake (LAR-hc); 48.30474963 and

−79.07742262 in Turcotte lake (TUR-hc). This map was produced using Arc GIS

Esri® Arc MapTM 10.1 under academic license certification. (b) Trace metals

concentrations measured in the five sampled lakes 1 year before this study

(Laplante and Derome, 2011). The x-axis represents the log ratio of trace metal

concentrations (mg/l) and the y-axis represents detection limit in each lake. The

metallic gradient showed that Cadmium was under the detection limit in OPA-nc

(negative control), at the detection limit in DAS-lc (low contamination), three times

more than the detection limit in BAR-mc (medium contamination), LAR-hc (high

contamination), and TUR-hc (positive control). Contamination gradient

classification refers to the Cadmium log ratio across the five lakes.

Supplementary Figure S2 | Classification of lake metacommunities based ORF

approach at genus and phylum levels. (a) Distribution of ORF and annotated

genus in the five metagenomes. This figure showed that not only the number of

predicted ORFs (Supplementary File S2), comparable between metagenomes

but also the genus count (Supplementary File S3). (b) Hierarchical clustering of

samples using Ward’s method and Bray–Curtis dissimilarity distance, bootstrap

AU (Approximately Unbiased) p-value and BP (Bootstrap Probability) value are

shown on nodes. (c,d) principal component analysis (PCA) of samples based on

genus relative abundance (RA) assigned with coverage (c) and without coverage

(d) normalization. Metacommunity clustering based on genus abundance is

different at phylum level where BAR-mc was closer to OPA-nc and DAS-lc.

(e) PCA analysis of samples based on function RA with different annotation
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parameters of alignment length cutoff (30 bp) and identity threshold (60%).

(f) Distribution of filtered ORFs on different alignment length cutoffs. For the ORF

based approach (a–d), the 85% identity threshold, e-value of 10−12 and minimum

alignment length of 50 base pairs parameters were selected in filtering

annotations, and the LCA (Lowest Common ancestor) algorithm was used to

assign taxonomy.

Supplementary Figure S3 | Composition of metacommunities based on the

ORFs approach. NMDS (with Bray-Curtis distance) of genera abundance for major

abundant phyla fitted to trace metals for Proteobacteria (a), Actinobacteria (b),

Cyanobacteria (c), the water pH, and trace metals which correlated significantly

with NMDS axes were highlighted in red. Each small point in figures a, b, and c

represented the genus abundance, while each big point does represent the lake

metacommunities samples using circle shape for OPA-nc in blue and the control

TUR-hc in black, and the connected lakes were illustrated with square shape,

LAR-hc in red, BAR-mc in orange and DAS-lc in yellow. NMDS loadings (NMDS1,

NMDS2), and P-value of correlation r2 of trace metals were reported in

Supplementary File S6. Genus plot coordinates, clusters and dot labels are

resumed in Supplementary File S4.

Supplementary Figure S4 | Hierarchical clustering of taxon and function.

(a) Hierarchical clustering of artificial replicates based on genus abundance using

the subsampled reads approach. (b) Hierarchical clustering of samples based on

abundance of subsystem level 1 using the ORF approach. (c, d) Hierarchical

clustering of subsampled replicates based on subsystems level 1 and 3 using the

reads approach. Hierarchical clustering was performed using Ward’s method and

Bray–Curtis dissimilarity distance; bootstrap AU (Approximately Unbiased) p-value

and BP (Bootstrap Probability) value are shown on the nodes.

Supplementary Figure S5 | Heatmap of subsystems in level 1. This heatmap

represents metagenomes classification based on subsystems in level 1 (See

Supplementary File S5). Dendrogram’s topology identified two clusters. The first

cluster grouped BAR-mc, LAR-hc and TUR-hc, and the second grouped DAS-lc

and OPA-nc. The hierarchical clustering of relative abundance proportions of

subsystems, and of samples was performed using Ward’s method and

Bray–Curtis dissimilarity distance. The ORF approach was used with identity

threshold of 85%, e-value of 10–12 and minimum alignment length of 50 base

pairs parameters. Vegan package and heatmap () function in R were used to

produce this figure.

Supplementary Figure S6 | Heatmap of subsystems in all levels. Subsystems

relative abundance were clustered cross-metagenomes in different levels, level2

(981 modules), level3 (192 modules) and function level (6801 functions) (See

Supplementary File S5). The same topology was observed in level 1 (See

Supplementary Figure S5) and in all levels. The hierarchical clustering of relative

abundance proportions of subsystems, and of samples was performed using

Ward’s method and Bray–Curtis dissimilarity distance. The ORF approach was

used with identity threshold of 60%, e-value of 10–12 and minimum alignment

length of 50 base pairs parameters. Vegan package and heatmap () function in R

were used to produce this figure.

Supplementary Figure S7 | Heatmap of multiple subsystems abundant in

function level. This heatmap represents cross-metagenomes, the common and

most abundant functions (>2%) in 22 subsystems (See Supplementary File S5).

Functions of polymetallic resistance (Cation efflux system protein CusA and

Cobalt–zinc–cadmium resistance protein CzcA) showed a profile of gradual

abundance increase along the pollution gradient. The hierarchical clustering of

relative abundance proportions of functions, and of samples was performed using

Ward’s method and Bray–Curtis dissimilarity distance. The ORF approach was

used with identity threshold of 60%, e-value of 10–12 and minimum alignment

length of 50 base pairs parameters. Vegan package and heatmap () function in R

were used to produce this figure.

Supplementary Figure S8 | Subsystem of “Phages, prophages, plasmids, and

transposable elements” cross-metagenomes. Under this subsystem multiple

relevant functions (level 3) related to mobile elements and transfer vectors (Gene

transfer agents, transposons, prophages, conjugative plasmids, integrons) were

shared between DAS-lc, BAR-mc, LAR-hc, TUR-hc, and depleted in OPA-nc.

However, each metagenome contains specific profile of mobile elements functions

such like agents of gene transfers and conjugative elements in TUR-hc. The

hierarchical clustering of relative abundance proportions of this subsystem

modules, and of samples was performed using Ward’s method and Bray–Curtis

dissimilarity distance. The ORF approach was used with identity threshold of 60%,

e-value of 10–12 and minimum alignment length of 50 base pairs parameters.

Vegan package and heatmap () function in R were used to produce this figure.

Supplementary Figure S9 | Metabolic abundance cross-metagenomes. This

heatmap represents 1,842 annotated enzymes (See EC number in

Supplementary File S7) in all samples. The hierarchical clustering of relative

abundance proportions of enzymes, and of samples was performed using Ward’s

method and Bray–Curtis dissimilarity distance. The dendrogram shows dichotomy

between OPA-nc metagenome and all others. The ORF approach was used with

identity threshold of 60%, e-value of 10–12 and minimum alignment length of 50

base pairs parameters. Vegan package and heatmap () function in R were used to

produce this figure.

Supplementary Figure S10 | Gradual variation of functions cross-metagenomes.

Two heatmaps represent gradual function abundance FP1 (106 functions) and

FP2 (123 functions) along the contamination gradient. The hierarchical clustering

of relative abundance proportions of functions was performed using Ward’s

method and Bray–Curtis dissimilarity distance. The ORF approach was used with

identity threshold of 60%, e-value of 10–12 and minimum alignment length of 50

base pairs parameters. Vegan package and heatmap () function in R were used to

produce this figure.

Supplementary Figure S11 | Specific variation of functions cross-metagenomes.

Two heatmaps represent specific function abundance FP3-OPA-nc (167 functions)

and FP3 specific to pollution gradient (225 functions). The hierarchical clustering of

relative abundance proportions of functions was performed using Ward’s method

and Bray–Curtis dissimilarity distance. The ORF approach was used with identity

threshold of 60%, e-value of 10–12 and minimum alignment length of 50 base

pairs parameters. Vegan package and heatmap () function in R were used to

produce this figure.

Supplementary File S1 | This file contains two tables. The first table resumed the

geographical coordinates of sampled sites. The second table presented abiotic

parameters measured for each sampled site 1 year before this study (Laplante

and Derome, 2011).

Supplementary File S2 | This file summarized statistics of reads, contigs, and

ORFs MG-RAST annotations per lake metagenome.

Supplementary File S3 | This file summarized in one table the relative

abundance of major taxa at phylum, class, and genus levels.

Supplementary File S4 | This file resumed details of NMDS plots. NMDS

loadings, abundance clusters and points labels of all genus (Table 1),

Proteobacteria (Table 2), Actinobacteria (Table 3), Cyanobacteria (Table 4), then of

all subsystems (Table 5) were reported for assuming a better understanding of

NMDS figures and Supplementary Figures.

Supplementary File S5 | This file reported subsystems annotations and data

analysis; All subsystems data (dataset output of STAMP software) in Table 1,

subsystems level 1 relative abundance (RA) in Table 2, list of all annotated

subsystems in Table 3, function profiles classification of RA proportions in Table 4,

different function profiles (FP) (Tables 5, 6, 7, 8), resume of FP occurrence in

subsystems level 1 (Table 9), summary of most abundant functions (Table 10) and

summary of the subsystem “virulence, disease, and defense” (Table 11).

Supplementary File S6 | This file summarized details of NMDS correlation

analysis with metadata. Each table resumed NMDS loadings (NMDS1, NMDS2),

P-value of correlated trace metals of taxa (Table 1), subsystems level 1 (Table 2)

and PMRGs.

Supplementary File S7 | This file resumed diversity measures based relative

abundance of taxa (genus) and function (subsystems) in Table 1 and all annotated

enzymes by their EC-number in Table 2.
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