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Abstract
Recommendation systems (RS) are a key component of

modern commercial platforms, with Collaborative Filtering
(CF) based RSs being the centrepiece. Relevant research has
long focused on measuring and improving the effectiveness
of such CF systems, but alas their efficiency – especially
with regards to their time- and resource-consuming training
phase – has received little to no attention. This work is a
first step in the direction of addressing this gap. To do so,
we first perform a methodical study of the computational
complexity of the training phase for a number of highly
popular CF-based RSs, including approaches based on ma-
trix factorisation, k-nearest neighbours, co-clustering, and
slope one schemes. Based on this, we then build a simple yet
effective predictor that, given a small sample of a dataset,
is able to predict training times over the complete dataset.
Our systematic experimental evaluation shows that our ap-
proach outperforms state-of-the-art regression schemes by
a considerable margin.

CCSConcepts: • Information systems→Recommender
systems; Evaluation of retrieval results.

Keywords: Recommendation systems, sampling-based pro-
cessing time prediction.

1 Introduction
A key aspect of modern recommendation systems is de-

livering relevant content for users, while maximising the
revenue for providers. Capturing users’ preferences and pro-
ducing personalised recommendations has been deemed as
one of the most effective techniques to keep the targeted
audience engaged, which in turn, means bigger gains for
the recommendation platforms and content providers. An
important class of RS models are Collaborative Filtering (CF)
based systems, which recommend items to a user based on
similar users’ preferences. Consequently, this aids users in
the item selection process, thus alleviating the information
overload problem. CF models1 often rely on explicit feedback
datasets, where the users’ tastes are captured through exact

1For space reasons, we overload the terminology and use RS to refer to
CF-based RSs.

ratings given by users to items (e.g., the ratings could be in
the range of 1 to 5, where a higher rating value indicates
that the user enjoyed the item). One of the core decisions to
be made when one builds a recommendation system, is the
selection of algorithm to be used.
Focusing only on the nominal accuracy of mainstream

algorithms is often a fallacy, as there is an inherent trade-
off between the efficiency (processing time) of the system
and the effectiveness (accuracy/quality) of the recommen-
dations. Furthermore, we would like to highlight that in CF
approaches, it is the training efficiency (i.e., processing time
for the training phase) of the RS that could make-or-break
its usability [29, 32], also demonstrated in our experimental
evaluation (§4.5), as the models are trained over large collec-
tions. Once the CF models are trained, the cost (in terms of
processing time) of producing recommendations for users
is minimal (i.e., the recommendations are produced almost
instantly, compared to the training time). While there has
been a significant body of research focusing on the latter
(effectiveness), the former (efficiency) seems to have been
largely overlooked.
Of exceptional practical interest is the highly resource-

and time-consuming training stage of CF-based recommen-
dation systems. CF RSs need to be updated (retrained) pe-
riodically to reflect the latest information, in the face of
continuously growing and highly dynamic user-item inter-
action data. Choosing which algorithm to train and deploy
is critical to strike a balance across quality of recommen-
dations and freshness of the RS model, as well as time and
resource consumption during training. For the latter, it is im-
portant to have an insight into how many resources a model
will consume before deploying it on the full dataset. Note
that the training time is several orders of magnitude higher
than the time it takes to produce a recommendation given a
trained CF RS, and higher training times/resources translate
to higher energy/monetary costs, and even to damage to the
environment as a result of increased amounts of CO2 emis-
sions from training complex models on large collections [39];
hence being able to predict the required training time can
lead to informed decisions with limited cost. There are also
practical extensions as training is a periodic process and such
a predictor can help in computing an appropriate re-training



interval or choosing a CF RS that can fit the operational time
constraints.2

For effectiveness (accuracy) purposes, it is standard prac-
tice to train the selected RS on a sample of the dataset and to
use its offline measured accuracy as a proxy for the accuracy
over the complete dataset [11]. However, no similar approach
exists for predicting their training time over the complete
dataset. Based on preliminary analysis, we argue that this is
a combination of two factors: (a) the samples produced by
the sampling strategies usually employed for effectiveness
purposes do not lend themselves well to efficiency predic-
tions; and (b) due to the inherent (often) non-linear scaling
of computational requirements over the dataset size, even
state-of-the-art regressors fail to produce accurate results.
To address the latter, we fist perform a methodical study

of the computational complexity of a number of highly pop-
ular CF algorithms for explicit datasets, covering a wide
area of the design space (including approaches based on
singular value decomposition, k-nearest neighbours, slope-
one schemes, matrix factorisation, etc. – see §3.1) and build
regression models (§3.2) that try to quantify the hidden con-
stant factors. Then, to address the former, we revisit the
sampling strategy to ensure the sample is drawn along the
key dimensions of computational complexity (§3.3). For lack
of a better term, we could call this methodology the white-
box performance evaluation, as opposed to the black-box
approach of blindly picking samples and building regression
models over them. In both cases, our proposed solution is
much simpler than the current (black-box) state-of-the-art,
yet manages to vastly outperform it in accurately predicting
the training time of the CF RSs over the complete dataset, as
evidenced by our extensive experimental evaluation.

2 Related Work
The prediction of an algorithms’ execution time has been

studied across different communities with numerous results.
For example, in parallel computing, linear regression models
have been used to predict the processing time of different li-
brary implementations for multiprocessors [6]. Other works
focused on predicting the processing time of various plan-
ning algorithms, with the aim of selecting which algorithm
to run and for how long [13, 21, 35]. Predicting the pro-
cessing times of parameterised algorithms has drawn high
interest from the research community, with existing solu-
tions incorporating the parameters as additional inputs for
the prediction models [3, 34]. Another area that has been ex-
plored consists of applications of processing time prediction,
such as determining instance hardness [28] and parameter
optimisation/tuning [34]. To our knowledge (and surprise),
this is the first work to apply processing time prediction

2The above were also confirmed in discussions with industry professionals
(e.g., Amazon, Netflix) at the ACM RecSys 2020 Doctoral Symposium [32].

models on the highly time and resource consuming training
stage of (CF-based) recommendation systems.

Evaluation is a major area of interest in CF RSs, as numer-
ous studies and projects tried to determine the best metrics
and practices in this field. Herlocker et al. [20] offer a survey
and critical evaluation of metrics and methods used to assess
the effectiveness (accuracy, coverage, novelty, serendipity,
etc.) of the recommendations. Over the years, most works
[17, 20] only report the quality of the recommendations
through effectiveness metrics, but recent studies [29] also
present some insights into the observed efficiency (process-
ing time) of the models. Thus, and in the context of environ-
mental awareness [39], we speculate that as more complex
models will be developed the community will move their
attention and efforts to (a) report the (resource) cost of new
models, and (b) incorporate ways of minimising the hard-
ware usage. This is why it is very important to be able to
predict the efficiency cost of RSs, without performing the
actual training of the models.
Regarding online versus offline evaluation, it has been

generally agreed that offline assessment should be used as a
tool for establishing the overall performance of a recommen-
dation system [17, 20]. Traditionally, this offline evaluation
of the CF RS focuses on splitting the dataset/input into train-
ing and testing collections, which are then used to assess
the output of the recommendation system. It is known that
blindly applying this method allows for the sparsity and pop-
ularity biases inherent in the dataset to affect the evaluation
protocol [4]. Hence, the standard practice in this field is to
draw random samples from the dataset, then use them to
train and evaluate the effectiveness of CF RSs as a proxy
for their performance on the complete dataset [11]. Conse-
quently, the study of how dataset characteristics affect the
quality of the recommendations, as well as their impact on
themodel’s effectiveness, has grown in interest. In [1, 11], the
authors explore the effect of the structural properties of the
user-item rating matrices with respect to the accuracy and
robustness of the collaborative filtering algorithms used in
the studies. Their results confirm that there is a relationship
between dataset characteristics and the recommendation
systems’ behaviour, and also highlight the standard prac-
tice of using samples to evaluate the effectiveness of RSs,
while alleviating the high processing costs of testing on the
complete dataset. In [32], we argued that properties of the
input data further affect the inherent trade-off between the
efficiency and effectiveness of a system, and that the choice
of RS should be based on the latter as well. This work is a
step in the direction of addressing this gap, for a set of highly
popular and impactful CF-based RSs.

3 Predicting RS Training Time
When faced with the task of predicting the effectiveness

of a CF RS on a dataset, based on its behaviour on a sample



of that dataset, the standard practice consists of building a
regression model over data points gathered through itera-
tively: (i) randomly sampling over all ratings in the dataset,
(ii) training the RS over the sample, (iii) evaluating its effec-
tiveness over the sample [11]. We follow a similar strategy
with a few notable changes. First, what we measure in each
such iteration is, of course, the training time. Second, even
the best state-of-the-art regression model requires such time
measurements over almost the complete dataset to produce
semi-accurate predictions (see §4); §3.2 discusses our white-
box approach to this task. Last, early experiments (omitted
for space reasons) showed that sampling along the ratings
dimension fails to capture the characteristics of the dataset
that affects the scaling of its training time; §3.3 discusses a
simple sampling scheme that alleviates this issue.
Figure 1 presents an overview of the proposed pipeline,

and the steps that our users need to follow to estimate the
processing time for training a recommendation system on
a chosen dataset. In the following paragraphs, we discuss
each of the steps in more depth, and how using the expected
complexity of a CF algorithm and a sample of the data, can
lead to accurate predictions of the runtime.

3.1 Complexity Analysis
Asymptotic worst-case (a.k.a. big-O) complexity analysis

[10] determines an upper bound to the way an algorithm’s
processing time grows or declines as a function of character-
istics of its input. The CF RSs studied in this work are based
onwell-known algorithms, for which big-O analysis has been
provided by the relevant literature [7, 9, 22, 36, 40, 42, 43].
However, it is often the case that design decisions may make
the complexity characteristics of particular implementations
to diverge from the theoretical bounds – a fact often hidden
behind constant factors or terms ignored during big-O anal-
ysis [2]. We thus further formulate and propose complexity
equations based on the actual implementation of said CF
RSs, as found in the highly popular Surprise [23] library (full
derivation omitted for space reasons). The analysis is done
in terms of characteristics of the input (user-item rating ma-
trix); namely, the number of users, 𝓶, the number of items,
𝓷, the total number of ratings, 𝝆, and the density of the
rating matrix, 𝜹 (= 𝜌

𝑚𝑛
). For the purpose of our approach,

the number 𝓯 of latent factors as well as the number 𝓮 of
epochs, where applicable, are considered constants set to the
predefined/recommended values by [23].
To cover as wide an area of the design space as possible,

we opted to analyse algorithms across several categories of
explicit CF RSs; specifically, (a) basic algorithms: Baseline
algorithm derived from [24]; and Maximum Likelihood Esti-
mation based Random approach [31]; (b) algorithms based
on K-nearest neighbours: Basic KNN (KNN) [19], KNN taking
into account the mean rating of each user (Centred KNN) [12],
andKNN taking into account a baseline rating (KNN Baseline)
(formula (3), §2.2 in [24]) - the former two use Mean Squared

Difference (MSD) [8] as the distance metric, while the latter
uses Pearson correlation coefficients [19] centred using base-
line scores; (c) variants of matrix factorisation: Non-negative
Matrix Factorisation (NMF) [30] and Singular Value Decom-
position (SVD) derived from [33]; (d) slope-based algorithms:
Slope One scheme [27]; and (e) co-clustering approaches:
algorithm presented in [15].

The baseline recommendation system is based on the ALS
algorithm, the naive solver3 version, which has a complexity
of𝑂 (𝓂𝓃𝒻). If we further fix 𝒻 to its default/recommended
value, the complexity can be further abstracted to 𝑶 (𝓶𝓷)

[22]. However, by examining the implementation of the base-
line recommendation algorithm, in each epoch, firstly the
users’ baseline is computed in 𝓂

2 steps, followed by the
items’ baseline which takes 𝓃2 operations. If we fix ℯ to a
predefined/recommended value, baseline’s overall complex-
ity is 𝑶 (𝓶2 +𝓷

2).
The random algorithm, based on Maximum Likelihood

Estimation (MLE), predicts the missing ratings over a normal
distribution, computed in maximum 𝑶 (𝓶𝓷) steps [42]. The
implementation reveals that the random recommendation
system computes a global mean and standard deviation dur-
ing its training phase. These are typically done in two stages
(first compute the mean, then the standard deviation) each of
which scans over all rating values. As such, the algorithm’s
complexity is in 𝑶 (𝝆).

For the neighbourhood based algorithms (i.e., KNN, cen-
tred KNN, and KNN baseline), the training phase com-
putes the distance of every user to every other user (or every
item to every other item, depending onwhether the approach
is user- or item-centric), taking into account only the items
(users, respectively) that are common across users (items, re-
spectively). This leads to a complexity of 𝑶 (𝓶2

𝓷
2) [43, 45].

However, at the implementation level, for KNN we derived
a complexity of 𝑶 (

𝝆2

i
+i

2), where 𝒙 can be either 𝓶 for
user-based KNN, or𝓷, for item-based KNN, respectively. At
the core of the KNN-based recommendation algorithms, the
similarity function computes the distance across the rele-
vant users or items with respect to (a) the ratings they gave
(for users) and (b) the rated items. By investigating the rat-
ing frequency distribution using Gini coefficients [16], we
noticed that users’ and items’ ratings follow a uniform dis-
tribution (i.e., 𝜌

𝓂
for users or 𝜌

𝓃
for items); consequently,

in the similarity function, the distances are computed in 𝓍

× 𝜌2

𝓍2 , which can be simplified to 𝜌2

𝓍
. Then, the distance is

computed for pairs of common users or items in𝓂
2 or 𝓃2

time, respectively.CentredKNN has a similar complexity to
KNN, as they use the same similarity metric (MSD), but takes
an extra (𝝆) step to compute the mean ratings of each user
(item, respectively), which brings the overall complexity to
𝑶 (

𝝆2

i
+i

2 + 𝝆). KNN Baseline is also based on KNN, and
3Naive ALS is described in http://web.cs.ucla.edu/~chohsieh/teaching/
CS260_Winter2019/lecture13.pdf

http://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture13.pdf
http://web.cs.ucla.edu/~chohsieh/teaching/CS260_Winter2019/lecture13.pdf


Figure 1. Overview of the experimental pipeline. We firstly get the data, represented as user-item rating matrices (URMs)
(step 1), then sample it using the strategy described in §3.3. In step 2, we train the various classes of CF recommendation
systems (§3.1) on the samples drawn and measure the processing time for each algorithm. Finally, as part of step 3, we employ
prediction models, detailed in §3.2, which given an upper sample S% of the data and characteristics of the URM, estimate the
expected processing time of the recommendation system on the full dataset.

computes distances across users (items, respectively) using
Pearson correlation coefficients [19], and takes into account
baseline ratings. Its overall complexity, as derived from its
implementation, is the same as the one for Centred KNN -
i.e., 𝑶 (

𝝆2

i
+i

2 + 𝝆).
The NMF recommendation system is based on the SGD

algorithm, which achieves a computational complexity of
𝑂 (ℯ𝓂𝜌) [36]. If we fix the number of epochs, the complex-
ity can be reduced to 𝑶 (𝓶𝝆). In the Surprise framework
[23], for a fixed number of epochs and factors, NMF de-
composes a given user-item ratings matrix, with respect to
the number of users (𝓂), items (𝓃), and ratings (𝜌). There-
fore, the missing ratings are computed in 𝑶 (𝝆 +𝓶 +𝓷) (or
𝑶 (𝓮𝓯(𝝆 +𝓶 +𝓷)), including the number of epochs and
factors).

SVD, a popular Matrix Factorisation-based approach, has
been extensively used to produce recommendations on ex-
plicit datasets. Over time, multiple variations of SVD were
developed [9], leading to a significant number of implemen-
tations. However, most of them converge to a complexity of
𝑶 (𝓶𝓷

2), even though other studies, such as [25], claim that
the overall complexity of SVD is close to 𝑂 (𝓃2

𝓂 +𝓂
2
𝓃).

The SVD implementation in Surprise [23] uses the user-item
ratings matrix in 𝑶 (𝓮𝝆𝓯) time to compute the correspond-
ing user and item factors. For fixed values of𝓮 and𝓯, SVD’s
complexity can be simplified to 𝑶 (𝝆).

For slope-based solutions, the Slope One algorithm has
a generic time complexity of 𝑶 (𝓶𝓷

2), as it computes the
average difference between pairs of relevant items as de-
scribed in [40]. At implementation level, Slope One firstly
computes the frequency of the pairs of items (i, j), followed
by the deviation between item i’s ratings and item j’s ratings.
This is achieved in 𝑂 ( 𝜌

2

𝓂
+ 𝓃

2). Then, the relevant ratings
are predicted using the users’ mean ratings combined with
the aforementioned frequency and deviation arrays, which
means another 𝑂 (𝜌), leading to an overall complexity of
𝑶 (

𝝆2

𝓶
+𝓷

2 + 𝝆).
Lastly, the Co-clustering recommendation system using

a fixed number of user-item clusters converges towards a
computation complexity of 𝑶 (𝓶𝓷) [7]. By examining its
implementation, Co-clustering splits users and items into
clusters in𝑂 (𝓂) +𝑂 (𝓃) and co-clusters in𝑂 (𝜌) steps, using
an assignment technique similar to K-means. This makes
Co-clustering train in 𝑶 (𝓶 +𝓷 + 𝝆) time.

3.2 Training Time Prediction Models
Using the above algorithmic complexities, the training

times measured across different inputs, and the character-
istics of the data, we propose solving the processing time
prediction problem by building regression models (figure 1
step 3) to predict the hidden factors in the complexity equa-
tions mentioned in §3.1. To this end, we propose to abstract



out all previous complexity equations to the general form
𝑡𝑖𝑚𝑒 = 𝑓 (𝑋 ) = 𝛼𝑋 + 𝛽 , where 𝑋 is a combination of the
independent variables𝑚, 𝑛 and 𝜌 , as dictated by the respec-
tive complexity equation, while 𝛼 and 𝛽 are the slope and
intercept respectively. For example, the equation for baseline
becomes 𝛼 (𝑚2+𝑛2)+𝛽 , that of NMF becomes 𝛼 (𝜌+𝑚+𝑛)+𝛽 ,
etc. The main reason behind this design is that it reduces
the execution time of our prediction model by allowing us
to use simple linear regression, while allowing us to capture
the salient features of earlier complexity equations, as will
be evidenced by our experimental results.

More specifically, the training time measured during each
iteration of the process outlined at the beginning of this
section, produces a value of 𝑓 (𝑋 ) for which we further know
𝑚, 𝑛 and 𝜌 (computed from the sample itself). Given that
we then have an overdetermined system, with more sets of
equations than unknowns, we construct our models based
on the least squares approach [5]. This technique is based on
minimising the sum of the squares of the residuals (i.e., the
difference between the observed/measured values and the
predicted/fitted values), by computing appropriate values
for the free parameters 𝛼 and 𝛽 . At the end of this process
we have a closed form equation that is then used to predict
the training time over arbitrarily the complete dataset (or
virtually any sample size).

3.3 Sampling Strategy
The standard practice with regards to sampling for the

purpose of evaluating the effectiveness of an RS, roughly con-
sists of tossing a biased coin for each rating (i.e., triplet of the
form (𝑢𝑠𝑒𝑟, 𝑖𝑡𝑒𝑚, 𝑟𝑎𝑡𝑖𝑛𝑔)) in the dataset, to decide whether
to include it in the sample. Our early experiments (omitted
for space reasons) concluded that samples drawn using this
method did not allow for accurate prediction of the training
time over the complete dataset. More specifically, fitting ei-
ther our models or state-of-the-art regression models over
the training times over these samples, required sample sizes
close to the complete dataset. Furthermore, drawing such
samples from the dataset is not for free, especially when the
number of users/items/ratings grows large.
To this end, we propose the following sampling strategy

(figure 1 step 1). Initially, the user of our system provides us
with an upper sample size – say 𝑆 (%) – as well as with a time
budget 𝐵 for our method. We then draw an initial sample
by uniformly at random selecting a 𝑆% subset of the users
and 𝑆% subset of the items, and including in the sample all
associated ratings. We then use a strategy similar to Monte
Carlo rejection sampling [41], to recursively subsample to
produce even smaller samples. This strategy has two key
characteristics: (a) sub-sampling allows us to produce a num-
ber of samples at different sampling rates at a fraction of the
cost of sampling the complete dataset; and (b) by sampling
user/item IDs, the sample better reflects the complexity char-
acteristics of the base data. For each sample drawn, we train

the CF RS and record its training time (figure 1 step 2); we
then decide whether to proceed with more samples given
the so-far cumulative execution time of the above process
and the time budget 𝐵.

4 Experimental Evaluation
4.1 Contenders

We compare our training time prediction models against
two types of baselines: (i) a hard baseline using linear regres-
sion to learn the hidden factors in the complexity equations
described in the literature, and (ii) a soft baseline which as-
sumes that the complexity of the algorithms is unknown,
and therefore the regression model is built over the sample
training times and the characteristics of the input. To make
the latter model richer, we further included an extra indica-
tor, as advised by [11]; namely, the Gini coefficient [16] of
users’ (items’, resp.) ratings, defined as:

𝐺𝑖𝑛𝑖𝑤 = 1 − 2 ×
𝑤∑
𝑘=1

(
𝑤 + 1 − 𝑘

𝑤 + 1

)
×
(

𝜌𝑘

𝜌𝑡𝑜𝑡𝑎𝑙

)
(1)

where 𝓌 is the number of users (items, resp.), 𝜌𝑘 is the
number of ratings given by a user (or received by an item,
resp.), and 𝜌𝑡𝑜𝑡𝑎𝑙 is the total number of ratings.

This approach was tested using several off-the-shelf state-
of-the-art regression algorithms available through the H2O
analytics platform4. A few examples of the tested regressors
include Random Forest, Deep Neural Networks, Support
Vector Machine (SVM), and Adaptive Boosting. In the ex-
perimental evaluation, we only report on the results of the
best performer with regards to prediction accuracy, namely
Gradient Boosting Machine (GBM) [14]. GBM was ranked as
the best state-of-the-art regression model since it acquired
the lowest RMSE, following the K-fold cross validation pro-
cedure as described in [26].

4.2 Datasets and Recommendation Task
For this study, we used the well-known MovieLens (ML)

100K and 1M collections [18], as well as the GoodBooks (GB)
10K dataset [44] (results for ML 1M omitted due to space
reasons). Each of these datasets consists of explicit ratings,
from 1 to 5, given by users to items (i.e., films for ML and
books for GB). ML 100K contains 610 users, 9,724 items, and
100,000 ratings, while ML 1M incorporates 6,040 users, 3,706
items, and 1,000,000 ratings. Finally, GB 10K has 53,424 users,
10,000 items, and 6,000,000 ratings.

The recommendation task investigated in this paper refers
to the standard prediction of the relevance of a given item to
a user [37]; in short, the recommendation system estimates
the rating the user would give to an unseen item, and if the
rating is above a certain threshold value then the item is
presented to the user as a recommendation [38].
4A complete list of the regression algorithms and the documentation of H2O
are available at http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html


4.3 Evaluation Environment
All experiments were carried out on Linux servers, each

having 2 Intel Xeon E5-2660 CPUs (8 physical cores each
with 2-way SMT) and 64GB of RAM, running Ubuntu Linux
14.04.6. As the GoodBooks dataset is significantly larger and
denser, we ran the corresponding experiments on a higher-
spec Linux server with 4 Intel Xeon E7-4870 v2 CPUs (15
physical cores each with 2-way SMT) and 512 GB of RAM,
running Ubuntu Linux 16.04.7. During the experimental eval-
uation, all resource-intensive processes were suspended to
avoid interference with our measurements.

4.4 Training Time Measurements and Evaluation
We gathered measurements for values of 𝑆 (upper limit

to the sample size) ranging from 10% all the way to 100%
in increments of 10% (i.e., 10%, 20%, . . ., 100%). As an excep-
tion, the measurements on the KNN-based algorithms over
the GoodBooks dataset proved too computationally inten-
sive, and therefore we only used values of 𝑆 up to 70% of the
dataset. We omit an evaluation of the effect of 𝐵 (time budget)
and instead use 6 samples for each (sub)sample size. In each
such set of 6 samples, we discarded the measurement for the
first sample (to avoid effects of cold caches and overheads
of the language runtime), and used the measurements of
the remaining 5 samples as the input to the regression algo-
rithms. For space reasons, since KNN Baseline and Centred
KNN follow the same complexity and show similar train-
ing time behaviour, we only provide results for one of these
representatives.

4.5 Results
Figures 2a and 2b provide an overview of the training

time prediction models and baselines across the smallest and
biggest datasets with respect to the algorithms discussed in
§3.1. The black horizontal line represents the ground truth
– i.e., the actual average training time of each RS over the
complete dataset. The remaining three curves depict the
predicted training time over the complete dataset, using
sample sizes as defined by the x-axis labels; i.e, the points in
these figures should be read as “predicted training time over
the complete dataset when upper sample size set to x-axis
value”.

We can see that in most cases, our proposed model (yel-
low star curve) converges to an accurate prediction much
faster than its two contenders and for as little a value of 𝑆
as 30-40%. As a baseline, we developed a similar regression
model built over the stock (literature) complexity equations
(blue cross curve), and as observed, this often fails to produce
accurate predictions. Last, our proposed solution clearly out-
performs the state-of-the-art GBM regressor (green triangle
curve), highlighting the strengths of our methodology and
framework towards accurate training time prediction.

5 Conclusions
The accurate prediction of the training time of CF RSs is

of exceptional practical interest to establishments of all sizes;
yet, it has gone largely unnoticed in the relevant literature.
This paper addresses this pressing problem using simple
but highly efficient techniques, combining a fit-for-purpose
sampling scheme and a fast but accurate linear regression
scheme over complexity equations drawn from the algo-
rithms’ implementations. Despite its simplicity, our model
manages to considerably outperform in accuracy even the
best performing off-the-shelf state-of-the-art regressor. We
view this work as the first step towards a systematic explo-
ration of the efficiency-effectiveness trade-offs inherent in
modern recommendation systems. In the near future we plan
to extend our approach to predict usage of other resources
(memory footprint, GPU utilisation, etc.) and to expand its
applicability to RSs based on deep learning methods.
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