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Connected networks are a fundamental structure of neurobiology. Understanding

these networks will help us elucidate the neural mechanisms of computation.

Mathematically speaking these networks are “graphs”—structures containing objects

that are connected. In neuroscience, the objects could be regions of the brain, e.g., fMRI

data, or be individual neurons, e.g., calcium imaging with fluorescence microscopy. The

formal study of graphs, graph theory, can provide neuroscientists with a large bank of

algorithms for exploring networks. Graph theory has already been applied in a variety

of ways to fMRI data but, more recently, has begun to be applied at the scales of

neurons, e.g., from functional calcium imaging. In this primer we explain the basics of

graph theory and relate them to features of microscopic functional networks of neurons

from calcium imaging—neuronal graphs. We explore recent examples of graph theory

applied to calcium imaging and we highlight some areas where researchers new to the

field could go awry.

Keywords: brain networks, calcium imaging, graph theory, functional connectivity, network analysis, neuronal

networks

1. NETWORKS OF NEURONS—NEURONAL GRAPHS

Organised networks occur across all scales in neuroscience. Broadly, we can categorise networks
that involve neurons in two ways (Figure 1): macroscopic vs. microscopic; and functional
vs. structural:

• In fMRI recordings of brain activity,macroscopic, functional networks are often extracted where
entire brain regions (macroscopic) are related by their correlated activity or (anti-correlated)
inhibition (functional).

• Diffusion MRI connectomics provides macroscopic, structural networks where anatomical
(structural) connections are determined between regions of the brain.

• Analysis of electron microscopy can be used to extract microscopic, structural networks where
neurons (microscopic) are related by their physical connections (e.g., Scheffer, 2020) synapses.

• Finally, cell-resolution calcium imaging provides microscopic, functional networks where
individual neurons are related by their correlated activity or (anti-correlated) inhibition—we
call these networks neuronal graphs (cells can also be grouped in to brain regions to create
mesoscopic or macroscopic, functional networks).
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FIGURE 1 | Networks of neurons occur across scales and can be functional

or structural. Microscopic networks (left), i.e., at neuron or synapse scale, are

usually recorded with calcium imaging or electron microscopy techniques.

Macroscopic networks (right), i.e., recordings of indistinguishable groups of

neurons or brain regions, are often recorded using MRI techniques. Neuronal
Graphs are microscopic (neuron-resolved), functional networks extracted from

calcium imaging experiments.

Graph theory (or network science) techniques are used for all
of these network categories (Bassett et al., 2018).

This primer focusses on the application of graph theory to
microscopic, functional networks of individual neurons that can
be extracted from calcium imaging—we will call these neuronal
graphs. Analysis of neuronal graphs has shown clear differences
of organisation in brain organisation through development in
zebrafish (Avitan et al., 2017) and xenopus (Khakhalin, 2019).
In fact, graph theory analysis was able to reveal changes in
organisation of the optic tectum under dark-rearing where
past experiments that used neuronal activation statistics were
not (Avitan et al., 2017). Using neuronal graphs to study
development opens up greater understanding of organisational
changes and, as shown by Khakhalin (2019), this knowledge can
be used to develop, validate and compare models of specific
neuronal computations.

Further, graph theory analysis allows the quantification
of changes in functional organisation across the whole
zebrafish brain due to genetic or pharmacological
perturbations (Burgstaller et al., 2019). Combining light
sheet microscopy and graph theory creates a pipeline that could
be used for high-throughput small-molecule screening for the
identification of new drugs. The use of graph theory in such
cases with large and densely connected neuronal graphs provides
researchers with a bank of tools for exploring changes in both
local and global functional organisation.

Through this paper we will briefly explain how calcium
imaging data can be processed for the extraction of neuronal

graphs but will focus on the essential background needed to
understand and use neuronal graphs, e.g., what types of graphs
there are, i.e., weighted vs. unweighted. We will then go on
to introduce some of the simpler graph theory metrics for
quantifying topological structure, e.g., degree, before moving
on to some of the more complex measures available, such
as centrality and community detection. We will relate all
of these theoretical notions to the underlying neuroscience
and physiology being explored. Throughout, we will highlight
possible problems and challenges that the calcium imaging
community should be aware of before using these graph theory
techniques. This paper will introduce common mathematical
concepts from graph theory that can be applied to calcium
imaging in a way that will encourage the uptake of graph theory
algorithms in the field. Throughout this paper, we make use of
the notation defined in Table 1.

2. WHAT IS A GRAPH?

A graph is fundamentally comprised of a set of nodes (or vertices),
with pairs of nodes connected together via an edge. These
edges can be undirected (Figure 2A), or directed edges, with
implied direction between two nodes creating a “directed graph”
(Figure 2B). A simple graph can be defined as one which contains
no self loops (edges which connect nodes with themselves) or
parallel nodes (multiple edges between two nodes).

Edges (and nodes) can have associated weights, often in the
form of a numeric value. A graph with weighted edges can
be seen in Figure 2C. These graphs are known as weighted
graphs and are used to embed a greater quantity of information
within the structure of a graph (Barrat et al., 2004). Working
with macroscopic, functional networks, i.e., graphs with nodes
representing regions on interest (Dingle et al., 2020) used average
edge weight as a measure of overall connectivity.

In calcium imaging a node could represent a segmented
neuron and a weighted edge the strength of correlation between
two nodes. It should be noted that the term graph and network
are often used interchangeably in the literature. Mathematically
a simple graph can be defined as G = (V ,E) where V is a finite
set of nodes or nodes and E is a set of edges (Kolaczyk, 2009). The
elements in E are unordered pairs {u, v} of unique nodes u, v ∈ V .
The number of nodes NV = |V| and edges NE = |E| are often
called the order and size of the graph G. A directed graph G can
be represented where each edge in E displays an ordering to its
nodes, so that (u, v) is distinct from (v, u).

Graph theory is the study of these graphs and their
mathematical properties. Graph theory is a well-developed
field and provides a wide spectrum of mathematical tools
for exploring and quantifying graphs. Such graphs could
be social networks, molecular modelling and, in our case,
networks of neurons, i.e., neuronal graphs, or networks of
brain regions.

A graph can be represented mathematically in several forms,
common ways being the adjacency, degree and Laplacian
matrices (Newman, 2010). An adjacency matrix A for a graph G,
with unweighted edges, is an NV x NV matrix, where for a basic
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TABLE 1 | A list of symbols and definitions as used in this paper.

Symbol Definition Interpretation

G A graph with an associated set of nodes V and corresponding set

of edges E.
A neuronal graph with a set of neurons* and edges representing some

relation between neurons.

NV The number of nodes in the graph. The number of neurons* in the neuronal graph.

NE The number of edges in the graph. The number of edges in the neuronal graph.

ki The total degree, or number of edges, of node i ∈ V. A simple measure of connectivity of a node.

P(k) The degree frequency distribution over all nodes in G. A useful summary of connectivity across a whole graph.

A The adjacency matrix, a matrix of size NV ×NV , where Ai,j is 1 if an

edge is present between nodes i and j and 0 otherwise. If the

graph is weighted Ai,j is w.

A matrix representation of all the connections in a network, often an

interesting visual overview for comparisons+.

L The Laplacian matrix of graph G, a matrix of size NV × NV . Useful in determining metrics related to clustering and graph partitioning.

dist(i, j) The shortest path between nodes i and j. A measure of connectivity between neurons.

ℓG The Characteristic Path Length (CPL), also known as average

shortest path, of graph G.
A measure of the overall information flow of a neuronal graph.

EG The global efficiency of graph G; reciprocal of ℓG. A measure of overall information flow efficiency of a neuronal graph.

CCi The Closeness Centrality computed for node i. A measure of the importance of a neuron in neuronal graph organisation.

Bi The Betweenness Centrality computed for node i. A measure of the importance of a neuron in information flow.

Bu The Edge Betweenness Centrality computed for edge u. A measure of the importance of an edge between two neurons in

information flow.

Ci The clustering coefficient for node i. A description of connectedness; less useful when considering spatial

networks, e.g., connectomics, but useful in functional networks.

CG The global clustering coefficient for graph G. A description of the connectedness of a neuronal graph.

Each definitions is provided with an interpretation, which are discussed in more detail in the main text along with examples. *“Neurons” are often represented as regions of interest in
calcium imaging data. + In fMRI functional connectivity the “connectivity matrix” is often used; the connectivity matrix is the matrix inversion of the adjacency matrix.

FIGURE 2 | Types of graphs and their representation. (A) An undirected and unweighted graph; this is occasionally used for graph analyses where edge weights

cannot be consider, e.g., certain community detection algorithms. (B) A directed and unweighted graph. (C) An undirected and weighted graph where the thickness

of the edge indicates the weight, this is the most common graph type in calcium imaging due to the limited temporal resolution that is usually captured. Directed,

weighted graphs can be produced when the temporal resolution is high enough to infer some causality between neuron activations. (D) An adjacency matrix of a

weighted graph, which is an NV × NV matrix where a value in index i, j is the weight between node i and j.

graph, the values are determined such that:

Aij =

{

1 if node i and j are connected via an edge;

0 if no edge is present.
(1)

This notation can also be adjusted for the case of weighted graphs
(Figure 2D) such that:

Aij =

{

w if node i and j are connected via an edge with weight w;

0 if no edge is present.

(2)
The degree ki for any node i is the total number of edges
connected to that node. The degree distribution P(k) for graph
G is the frequency of nodes with degree k.

Finally, the graph Laplacian L is again a matrix of size NV x
NV . We can define the graph Laplacian matrix as,

Lij =











ki if i = j;

−1 if i 6= j and node i and j are connected by an edge;

0 otherwise.

(3)
One other way to consider the Laplacian matrix of a graph is that
it is the degree matrix (a matrix where the diagonal values are
the degree value for a certain vertex) subtracted by the adjacency
matrix. Whilst seemingly simple, the graph Laplacian has many
interesting properties which can be exploited to gain insights into
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FIGURE 3 | Extracting neuronal graphs from calcium imaging. (A) Well-developed algorithms now allow for automated neuron segmentation from calcium movies.

After pairwise correlation with an appropriate metric a graph is extracted. (B) Often neuronal graphs are thresholded based on the pairwise correlation metric used,

removing weak and potentially spurious edges; the remaining edges are either unweighted or weighted based on the original metrics. (C) Neuronal graphs can

represent whole datasets, e.g., whole-brain calcium imaging, or sub-graphs of neural assemblies, e.g., only neurons activated by a particular stimuli, which may

overlap such as in this example (blue and green subgraphs).

graph structure (Chung, 1997). For example, the number of 0-
eigenvalues of the Laplacian matrix corresponds with number of
connected components within the graph.

3. FROM CALCIUM IMAGING TO
NEURONAL GRAPHS

The complexities and open challenges of extracting information
about neurons from calcium imaging data could form a review
in itself (e.g., Pnevmatikakis and Paninski, 2018). Here we briefly
summarise the process from calcium imaging to neuronal graphs.

Calcium imaging is one of the most common ways
of recording activity from large numbers of neurons at
the cellular level, c.f. electrophysiological recordings with
electrodes (Grienberger and Konnerth, 2012). In combination
with new fluorescent reports, disease models, and optogenetics
(e.g., Packer et al., 2015), calcium imaging has proved a
powerful tool for exploring functional activity of neurons in
vitro (e.g., Tibau et al., 2013) and in vivo (e.g., Denk et al.,
1994; Grewe et al., 2010). The broad study of such data is
referred to as functional connectomics (Alivisatos et al., 2012),
of which neuronal graph analysis is just one aspect. Unlike
electrophysiological recordings, calcium imaging can record
simultaneously from hundreds or even thousands of neurons
at a time (Ahrens et al., 2013), which can lead to challenging
quantities of data being produced. However, calcium imaging
does suffer from lower signal-to-noise ratio and lower temporal
resolution when compared to electrophysiology which can cause
issues in the extraction of neural assemblies (Pnevmatikakis and
Paninski, 2018).

Neuronal graphs, i.e., networks of functionally connected
neurons, can be extracted from calcium imaging with a variety of
techniques, and research into accurate segmentation of neurons,
processing of calcium signals and measurement of functional
relation is an area of research full of caveats, warnings and

open questions (Stetter et al., 2012). At the simplest level,
it is possible to segment individual neurons, with tools such
as CaImAn (Giovannucci et al., 2019), assigning each neuron
as a node, vi, in our neuronal graph. It is then possible to
measure the temporal correlation, using the Pearson correlation
coefficient, of activity between pairs of neurons (Figure 3),
assigning this value as weighted edges, E(vi, vj), in our neuronal
graph (Smedler et al., 2014).

It is important to note that a biological network of neurons
is temporally directed, i.e., the activation of one neuron causes
the activation of other neurons. However, the Pearson coefficient
represents a measure of correlation insensitive to causality and,
as such, neuronal graphs are usually undirected. The Pearson
coefficient is very suitable for most calcium imaging experiments
where the temporal resolution is too low to truly measure
any directionality in correlation. Very high-speed imaging
of calcium dynamics (≫20 captures per second) allows the
extraction of not just pairwise correlations of activity but also
the propagation of calcium signalling. By using a pairwise metric
that incorporates causality, e.g., transfer entropy, it is possible to
extract directed graphs. In Khakhalin (2019), the author uses such
an approach to create directed neuronal graphs of small numbers
of neurons in the developing Xenopus tectum to investigate
looming-selective networks.

Regardless of the metric of functional connectivity used,
the resulting graph will have a functional connection between
every pair of neurons. This densely connected graph is then
typically thresholded to consider only those edges (neuron-
neuron correlations) with a correlation above a set value (Betzel
et al., 2019; Burgstaller et al., 2019) or above that expected in a
random case (Avitan et al., 2017); this removes possibly spurious
neurons and connections, as well as minimising computational
requirements. Alternatively, the weakest edges are removed one-
by-one until the total number of edges in the neuronal graph
reaches some predetermined number (Khakhalin, 2019); this
can be beneficial when comparing metrics across samples as
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some metrics can be skewed by the number of nodes or edges.
For whole-brain calcium imaging, e.g., light sheet fluorescence
microscopy in zebrafish, this neuronal graph represents all
captured neurons (∼80.000 in the zebrafish brain) and their
relationship, i.e., all overlapping neural assemblies in the brain.

However, whole-brain calcium imaging is a relatively new
technique and capturing the organisation of all neurons may
not be the best way to answer a specific biological question.
In many calcium studies it makes more sense to look for
sub-populations of neurons that engage in concerted activity
where functionally connected neurons activate in a correlated
(or anti-correlated) fashion. These networks of functionally
connected neurons, neural assemblies, may carry out specific
functions, such as processing visual stimuli in the visual system;
a neural assembly can be considered another type of neuronal
graph. Within a population of neurons, each neuron may
be a member of multiple assemblies, ie multiple different
neuronal graphs. Neural assemblies have been demonstrated
in a range of systems including the cortex (e.g., See et al.,
2018), hippocampus (e.g., Harris et al., 2003) and optic tectum
(e.g., Avitan et al., 2017). In particular, assemblies seen in
spontaneous activity during development often demonstrate
similarity to those assemblies seen in evoked stimulus processing
post-development (Romano et al., 2015).

Recent work summarised and compared several methods
for extracting specific neural assemblies from calcium imaging
data (Mölter et al., 2018). The reader is directed to this
article for further information on specific methods. Importantly,
the authors show that a spectral graph clustering approach,
which does not depend directly on correlations between pairs
of neurons, provided results that more consistently agreed
with the consensus neural assemblies across all methods
(see Box 1). Each assembly could then be considered it’s
own neuronal graph for further analysis. This techniques
illustrates that there may be many other future roles of
graph theory in studying microscopic, functional networks
of neurons.

For the purposes of this work a “neuronal graph” refers to any
graph where nodes represent neurons and edges represent some
measure of functional relation between pairs of neurons.

It is worth mentioning that analysing large neuronal graphs
is computationally challenging and can be very noisy for further
analysis. As such, there is a large body of calcium imaging
literature that groups neurons into regions of interest and
using graph theory on these mesoscopic, functional networks
(e.g., Betzel, 2020; Constantin et al., 2020; Vanwalleghem et al.,
2020). Certain assumptions and analyses will differ between these
graphs and true neuronal graphs and these assumptions will
relate to how the mesoscopic networks are created, e.g., region
of interest size as discussed in Dingle et al. (2020).

4. GRAPH THEORY METRICS

Once a graph has been extracted from the imaging data then
a variety of metrics can be used to explore the organisation
of the network. Graph theory provides us with a range of

BOX 1 | Similarity Graph Clustering for the Extraction of Neuronal Graphs.

Spectral Graph Clustering is a recently developed approach that uses

powerful graph theory techniques to separate assemblies of neurons with

temporally correlated activity. The technique was proposed in Avitan et al.

(2017) but, briefly, comprises the following steps:

1. Segment neurons and calculate calcium fluorescence signal (compared

to baseline signal).

2. Convert the calcium fluorescence signal to a binary activity pattern for

each neuron, i.e., at frame t neuron n is either active (1) or not (0).

3. Identify frames where high numbers of neurons are active. Each of these

frames becomes the node of a graph.

4. Calculate the cosine-distance between the activity patterns of all pairs of

frames. Edges of the above graph represent this distance metric.

5. Use spectral clustering, a well-developed graph theory method that is

beyond the scope of this paper, to extract the “community structure”

of this graph using statistical inference to estimate the number of

communities, i.e., assemblies.

6. Reject certain activity patterns and communities as noise.

7. Each neural assembly is then the average activity of all frames that belong

to any kept assembly (detected community).

well-defined mathematical metrics that can quantify how a graph
is organised, how this evolves through time, and how the graph
structure contributes to the flow of information through the
network. Changes in metrics of neuronal graphs indicate changes
in the functional organisation of a system. Such organisational
changes may not be obvious when considering only population
statistics of the system. In this section, we will define some of the
more commonly used graph theory metrics and their relation to
neuronal graphs; we will also signpost possible pitfalls for those
new to interpreting graphs.

4.1. Node Degree
One of the most frequently used and easily interpretable metrics
is the degree of a node. A node’s degree is simply the number
of edges connected to it (Newman, 2010). For a directed graph,
a node will have both an “in” and an “out” degree which can be
calculated separately or summed together to give the total degree.
Often the degree of node i ∈ V is denoted by ki and for a simple
graph with NV nodes, the degree in terms of an adjacency matrix
A can be calculated as:

ki =

n
∑

j=1

Aij . (4)

Although a simplistic metric, the graph degree alone can
provide significant information about a graph. As an example
of this, comparing the two unweighted graphs in Figures 4A,C,
highlights that although both graphs have the same number of
nodes, the mean degree of each graph is significantly different,
with the higher mean degree of Figure 4C indicating that this
graph is much more densely connected than Figure 4A.

To further analyse the structure of complex graphs,
the distribution of degree values is frequently used (see
Figures 4B,D). The degree distribution is used to calculate the
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FIGURE 4 | Graph degree, degree distribution, and density all reveal

information about how connected the nodes of a graph are. More connected

graphs may represent fast flow of information in a network. A not well

connected graph (A) with low density and thus low mean degree and

individual node degree as shown by the degree distribution (B). A “complete,”

i.e., very well-connected, graph (C) with 100% density and thus high mean

and node degree and a different degree distribution (D, c.f. B).

probability that a randomly selected node will have a certain
degree value. It provides a natural overview of connectivity
within a graph and is often plotted as a histogram with a bin size
of one (Newman, 2003). In Figure 4D for example, studying the
degree distribution alone would inform us that the associated
graph is fully connected, known as a complete graph.

Another metric producing a single score indicating how
connected nodes are within a graph is that of density. Graph
density measures the number of existing edges within a graph
vs. the total number of possible edges, e.g., Figures 4A,C, where
the density score of 100% informs us the graph has all nodes
connected to all other nodes. The interpretation of degree
distribution is also important, particularly in relation to scale-free
networks (see section below).

The degree of a graph has been used as a measure of the
number of functional connections between neurons and used to
quantify network properties in cell cultures (Smedler et al., 2014)
and in vivo (Avitan et al., 2017; Burgstaller et al., 2019; Khakhalin,
2019). It’s common to use the mean degree of a neuronal
graph, which represents a measure of overall connectivity for a
system (Avitan et al., 2017). Throughout the development of the
zebrafish optic tectum the degree of the representing neuronal
graphs increases during development to amid-development peak
followed by a slight decreased toward the end of development

indicating that neuronal systems go through different phases of
reorganisation during development (Avitan et al., 2017).

4.2. Paths in Graphs
Another common set of graphmetrics to consider revolve around
the concept of a path in a graph. A path is a route from one
node to another through the graph, in such a way that every
pair of nodes along the path are adjacent to one another. A
path which contains no repeated vertices is known as a simple
path. A graph for which there exists a path between every pair
of nodes is considered a connected graph (Kolaczyk, 2009),
which can be seen clearly in Figure 4C. Often there are many
possible paths between two nodes, in which case the shortest
possible path, which is the minimum number of edges needing
to be traversed to connect two nodes, is often an interesting
metric to consider (Bodwin, 2019). This concept is highlighted in
Figures 5A,B which both illustrate paths between the same two
nodes within the graph, where the first is a random path and the
second is the shortest possible path.

In Avitan et al. (2017), the authors relate the length of a path
to the potential for functional integration between two nodes.
The shorter the path, the greater the potential for functional
integration, i.e., a shorter average path length implies that
information can be more efficiently shared across the whole
network. In turn, the potential for functional integration is
closely linked with efficiency communication between nodes,
i.e., shorter paths between nodes indicate a smaller number of
functional pathways between neurons and thus more efficient
communication between neurons (Figure 5C). Although it
should be noted that this being universally true has been
disputed in the literature, with evidence that some information
taking longer paths to retrain the correct information modality
(Fornito and Bullmore, 2015).

4.2.1. Characteristic Path Length
Linked to the shortest path is the characteristic path length (CPL)
or average shortest path length of a graph, as used in Burgstaller
et al. (2019). The CPL is calculated by first computing the average
shortest distance for all nodes to all other nodes, then taking the
mean of the resulting values:

ℓG =
1

NV (NV − 1)

∑

i,j∈Vi6=j

dist(i, j), (5)

where dist is the shortest path between node i and j. The CPL
represents a measure of functional integration in a neuronal
graph: a lower CPL represents short functional paths throughout
the network and thus improved potential for integration and
parallel processing cross the graph.

4.2.2. Global Graph Efficiency
In Avitan et al. (2017), the authors use a different but related
metric—global graph efficiency. Global graph efficiency again
draws on the shortest path concept, and allows for a measure
on how efficiently information can flow within an entire
graph (Latora and Marchiori, 2001; Ek et al., 2015). It can also
be used to identify the presence of small-world behaviour in the
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FIGURE 5 | Paths, and especially shortest paths, in graphs give an idea of efficiency of flow or information transfer. Graphs with shorter average paths between nodes

may represent networks with very efficient information transfer. (A) An example random path through a graph between the two green nodes. This is not the shortest

path but just one of many potential paths. (B) An example shortest path between the same green nodes, there are multiple routes of the same shortest length,

between the same two nodes in the same graph. This path represents one of the most efficient routes for information flow in a graph. (C) The distribution of shortest

path lengths across all pairs of nodes in a graph can give an idea of flow efficiency in a network. A left-shifted distribution might be expected within connected brain

network where neurons may be connected in a highly compact and efficient fashion for fast information processing.

graph (see below). This metric has seen many interesting real
world applications in the study of the human brain, as well as
many other areas (e.g., Honey et al., 2007).

Global graph efficiency EG can be defined as:

EG =
1

NV (NV − 1)

∑

i,j∈Vi6=j

1

dist(i, j)
, (6)

where dist is the shortest path between node i and j.
A key benefit of using EG is that it is bounded between zero

and 1, making it numerically simpler to compare between graphs.

4.3. Node Centrality
There are many use cases for which it would be beneficial to
measure the relative importance of a given node within the
overall graph structure, e.g., to identify key neurons in a neuronal
circuit or assembly. One such way of measuring this is node
centrality, within which there are numerous methods proposed
in the literature which measure different aspects of topological
structure, i.e., the underlying graph structure. Some of these
methods originate in the study of web and social networks, with
the PageRank algorithm being a famous example as it formed
a key part of the early Google search algorithm (Page et al.,
1999). In addition to this, some of the other frequently used
centrality measures include Degree, Eigenvector, Closeness and
Betweenness (Klein, 2010).

We will explore Closeness and Betweenness centrality in
greater detail. Closeness centrality computes a node’s importance
by measuring its average “distance” to all other nodes in the
graph, where the shortest path between two nodes is used as the
distance metric. So for a given node i ∈ V from G(V ,E), its
Closeness centrality would be given as

CCi =
1

∑

j∈V
dist(i, j)

, (7)

where dist is the shortest path between i and j. This is visualised
in Figure 6A, where the two nodes in the dark blue colour have

FIGURE 6 | Centrality measures indicate the relative importance of a node

within a graph. There are a great number of centrality metrics that make

different assumptions and provide different insights, here we provide two

example metrics. (A) Closeness centrality gives a relative importance based on

the average shortest path between a node and all other nodes. The smaller

the average the more important the node (darker blue) and vice versa (whiter).

(B) Betweenness centrality is similar but considers how many shortest paths

must pass through a node and, in this example, clearly separates the central

two nodes (dark blue) as much more important than the other nodes (which

appear white). (C) Centrality can also be applied to edges instead of nodes;

here more blue indicates a more central role in information flow for an edge.

the highest Closeness centrality score as they posses the lowest
overall average shortest path length to the other nodes.

Additionally, Figures 6B,C demonstrates both node and
edge Betweenness centrality measures respectively. Betweenness
centrality exploits the concept of shortest paths (discussed
earlier) to argue that nodes through which a greater volume
of shortest paths pass through, are of greater importance in
the graph (Freeman, 1977). Therefore, nodes with a high
value of Betweenness centrality can be seen as controlling
the information flow between other nodes in the graph.
Edge Betweenness is a measure, which analogous to its node
counterpart, counts the number of shortest paths which travel
along each edge (Newman, 2010).

4.4. Graph Motifs
A more complex measure of graph local topology is that of
a motif, a small and reoccurring local pattern of connectivity
between nodes in a graph. It is argued that one can consider
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FIGURE 7 | Motifs represent repeating highly-localised topological patterns in the graph; remember, here “local” refers to directly connected nodes in the graph and

not, necessarily, physically located neurons. (A) An example 3-motif in blue; there are a total of 55 3-motifs in this graph. (B) An equivalent 4-motif in blue; there are

132 4-motifs in this graph. (C) Histograms of graph motif counts can be used to create a signature or fingerprint for graphs that can then be compared between

cases. Here, we see the histogram of all n-motifs in the graph used for (A,B).

FIGURE 8 | Clustering provides another measure of connectivity and structure

in a graph based on how nodes are locally connected; remember, here “local”

refers to directly connected nodes in the graph and not, necessarily, physically

located neurons. (A) Based the number of closed (blue) and open (green)

triplets, the clustering coefficient can be calculated locally for every node. (B)

Local clustering coefficients for nodes range from zero (white) to one (blue) and

may vary a lot from the global (mean) clustering coefficient. Nodes with a high

clustering coefficient may be involved in general aspects of information transfer

and thus form an apex for clustering.

these motifs to be the building block of more complex patterns
of connectivity within graphs (Shen-Orr et al., 2002). Indeed, the
type and frequency of certain motifs (Figure 7C) can even be
used for tasks such as graph comparison (Milenković and Pržulj,
2008) and graph classification (Huan et al., 2003).

Perhaps the most fundamental motif is that of the triangle
(see Figure 7A), a series of three nodes where an edge is present
between all the nodes. A similar motif comprised of four nodes
is highlighted in Figure 7B. The study of motifs in graphs has
proved popular in fMRI studies where distributions of motifs
have been used to separate clinical cases (e.g., Jiao et al., 2014;
Morgan et al., 2018).

In Wanner and Friedrich (2020), the authors used motif
analysis in a directed representation of mitral cell and
interneuron functional connectivity in the olfactory bulb of
zebrafish larvae. They found that motifs with reciprocal edges
were over-represented and mediate inhibition between neurons
with similar tuning. The resultant suppression of redundancy,

inferred from theoretical models and tested through selective
manipulations of simulations, was necessary and sufficient to
reproduce a fundamental computation known as “whitening.”

4.5. Graph Clustering Coefficient
A further measure of local connectivity within a graph is that
of the clustering coefficient. At the level of individual nodes,
the clustering coefficient gives a measure of how connected
that node’s neighbourhood is within itself. For example, in
Figure 8B, the nodes coloured in white have a low local clustering
coefficient as their neighbourhoods are not densely connected.
More concretely, for a given node v, the clustering coefficient
determines the fraction of one-hop neighbours of v which are
themselves connected via an edge,

Cv =
number of closed triplets

number of all triplets
, (8)

where triplets refers to all possible combinations of three of
neighbours of v, both open and closed (Newman, 2010). An
example of a closed and open triplet in a graph is illustrated in
Figure 8A.

To produce a single metric representing the overall level of
connectivity within a graph, the global clustering coefficient is
used CG. This is simply the mean local clustering coefficient over
all nodes and can be computed as:

CG =
1

N

∑

v∈V

Cv. (9)

Clustering of a neuronal graph can be used to show
differences in the functional organisation of network with graphs
of high average clustering coefficient thought to be better at
local information integration and robust to disruption. For
example, Burgstaller et al. (2019) showed that the clustering
coefficient of whole-brain graphs in wild type fish and a
depression-like mutant (grs357) differ and, importantly this can
be restored with the application of anti-depressant drugs. This
change in local connectivity imply that depression increases local
brain segregation reducing local information transfer efficiency.
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FIGURE 9 | Community detection provides global clustering that can be either

non-overlapping or overlapping depending on the algorithm used. (A)

Non-overlapping communities assign each node to a community (blue or

green) based on the choice of metric, often relating to number of connections.

Such community detection algorithms could identify physical regions of the

brain. (B) Over-lapping communities can assign a node to more than one

community (black nodes) if they contribute to multiple communities. Such

community detection algorithms could identify communication pathways

through a network.

4.6. Graph Communities
Community detection in graphs is a large area of interest within

the literature and could be an entire review within itself. As such,

we will outline the major concepts here and direct interested
readers toward more in-depth reviews on community detection
such as Fortunato (2010) and Yang et al. (2016).

Fundamentally, one can view communities as partitions
or clusters of nodes within a graph, where the clusters
typically contain densely connected nodes, with a few sparse
inter-community links also being present. These global
communities differ from the local, more pattern-focussed, graph
motifs previously discussed. Community structures relate to
specialisations within networks, e.g., a social media graph might
see community structures relating to shared hobbies or interests.
In graphs of brains, high-levels of community structure could
indicate functional specialisation (Bullmore and Sporns, 2009).

Community detection algorithms can broadly be split into
those which produce overlapping communities and those that
result in non-overlapping communities (Ding et al., 2016). In
a non-overlapping community each node belongs to only one
community and, as such, could be used to separate a neuronal
graph into distinct regions, e.g., regions of the brain or layers of
the tectum. This is demonstrated in Figure 9A, where nodes in
the graph belong to exactly one community. In an overlapping
community, nodes may belong to multiple communities and, as
such, could be used to identify neural circuits or assemblies where
neurons may contribute to multiple pathways (Xie et al., 2013).
This can be seen in Figure 9B, where the nodes coloured in black
belong to both communities.

One of the most frequently used approaches for non-
overlapping community detection in graphs is that of spectral
clustering (Wang and Davidson, 2010). Here the eigenvectors
and eigenvalues of the graph Laplacian matrix are used to detect

connectivity based communities. The distribution of eigenvalues
is indicative of the total number of clusters within the graph, and
the eigenvectors indicate how to partition the nodes into their
respective clusters (Nascimento and De Carvalho, 2011).

Many approaches for determining communities exploit the
concept of modularity to produce their results (Devi and
Poovammal, 2016). As this concept is frequently explored in
conjunction with biological networks, it is explored in greater
depth in the following section.

4.6.1. Graph Modularity
Strongly linked to the concept ofmeasuring community structure
within a graph, is the idea of modularity. The modularity
of a graph is a more fundamental measure of the strength
of interconnectivity between communities (or modules as
they are commonly known in the modularity literature) of
nodes (Newman, 2006). Whilst there are different measures of
modularity, the majority of them aim to partition a graph in such
a way that the intra-community edges are maximised, whilst the
number of inter-community edges are minimised (Bordier et al.,
2017). Interestingly, it has been observed that many biological
networks, including networks taken from animal brains, display
a high degree of modularity (Hartwell et al., 1999), perhaps
indicative of functional circuits of neurons within the brain.

Modules in a graph confer robustness to networks whilst
allowing for specialised processing. In the mouse auditory cortex
it has been shown that neuronal graphs exhibit hierarchically
modular structures (Betzel et al., 2019).

In zebrafish, brains of “depressed” fish (grs357 mutants)
show an increased modularity compared to wild-type, which
could be restored with anti-depressant drugs (Burgstaller et al.,
2019). The combination of reduced clustering coefficient (see
above) but increased modularity implies that, functionally, the
brain is much less structured and organised in the disease
case with more isolated communities of networks and reduced
long-range communication. In Khakhalin (2019), the author
used modularity, amongst other metrics, to compare looming-
selective networks in the Xenopus tectum through development
and with a range of computational models.

By using spectral clustering and maximising a modularity
metric it is also possible to extract ensembles of strongly
connections neurons, i.e., neuronal subgraphs. In Khakhalin
(2019), the author did this for neurons in the optic tectum
of xenopus tadpoles responding to looming stimuli. They
showed that although the number of neuronal subgraphs did
not significantly vary at different developmental stages, these
neuronal subgraphs were spatially localised and became more
distinct throughout development. This shows reorganisation and
refinement of looming-selective neuronal subgraphs within the
optic tectum, possibly representing the weakening of functional
connections not required for this type of neural computation.

4.7. One Metric to Rule Them All?
Many of these commonly used metrics relate to “clustering,”
“connectivity,” and “organisation” of the graph structure. One
question the reader might ask, is “If there are so many measures
of connectivity, which one do I pick?” or, later in the analysis
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process, “Why do different clustering/community algorithms
give me markedly different results?” In truth, a change in one
particular metric could be due to a variety of changes in the
underlying graph (Cheng et al., 2019). As such, the answer to
both of those questions depends on the hypothesis, experiment
and assumptions for that particular scenario.

Scientists who are interested in exploring neuronal graphs
for calcium imaging are in luck—not only is there a large body
of technical mathematical literature on the subject of graphs
(e.g., Newman, 2018), but there is also a significant body of
more accessible, applied graph theory literature (see Fornito
et al., 2016; Vecchio et al., 2017; Sporns, 2018; Farahani et al.,
2019 for neuroscience-related reviews). This applied literature
relates the mathematical graph theory concepts to specific real
world features of networks; however, it is important to remember
that these real world meanings may not map one-to-one to the
biology behind neuronal graphs, even from as closely a related
field as fMRI studies.

In fact, making links between graph theory analysis and real-
world biological meaning requires considerable understanding of
both the mathematics, experiment and neuroscience.

There are two ways the community can address
this problem:

1. By working closely with graph theorists on projects to
develop modified-algorithms that probe specific hypotheses
and/or utilise a priori biological knowledge to reveal new
information, and

2. By embedding graph theory and network science experts into
groups developing and using calcium imaging techniques.

Both of these approaches create an ongoing dialogue that ensures
the appropriate approaches are used and that no underlying
assumptions are broken.

Additionally, many of these metrics are best used in a
comparative fashion with other real experiments or with in silico
controls, i.e., computationally created networks lacking true,
information processing organisation.

5. GRAPH MODELS OF NEURONS

Exploiting graph theory to analyse neuronal graphs enables
quantitative comparison between different sample groups, e.g.,
drug vs. no drug, by comparing metrics between graphs.
Probabilistic modelling of random graphs also enables the
comparison of real world neuronal graphs to an in silico control.
In silico controls allow scientists to compare neuronal graphs
with random graphs that have similar properties, e.g., edge,
degree distribution, etc., but lack any controlled organisation.
Such comparisons can be used to (a) confirm that properties of
neuronal graphs are statistically significant; (b) provide a baseline
from which different experiments can be compared; and (c)
be used to guide the formation on new computational models
that lead to a better understanding of neural mechanisms of
computation (e.g., Schroeder et al., 2019).

Comparisons between the topological structure of random
graphs and real graphs has been used in the study of many

complex networks across diverse disciplines. In this section,
we will introduce three well-established random graph models,
which all display different topological structures and thus have
different uses and limitations.

5.1. Random Networks—The Erdös-Rényi
Model
In the Erdös-Rényi (ER) model (Erdös and Rényi, 1959; Gilbert,
1959), a graph G with NV nodes is constructed by connecting
pairs of nodes, e.g., {u, v}, randomly with probability p. The
creation of every edge, Eu,v, is independent from all other edges,
i.e., each edge is randomly added regardless of other edges that
have or have not been created (Figure 10A).

The ER model generate homogenous, random graphs
(Figure 10D); however, they assume that edges are independent,
which is not true in biological systems. Unlike neuronal graphs,
ER graphs do not display local clustering of nodes nor do
they show small-world properties seen in many real-world and
biological systems, as shown in the zebrafish (Avitan et al., 2017;
Burgstaller et al., 2019; Figure 10G).

In fMRI data, ER graphs and functional brain networks have
been compared using graph metrics and modelled temporal
dynamics. Bayrak et al. (2016) showed that functional brain
networks from fMRI show different topological properties to
density-matched ER graphs. Further, they showed that modelling
BOLD activity on both real and ER graphs showed dissimilar
results, indicating the importance of network organisation on
dynamic signalling. Thus ER graphs are good random graphs but
don’t accurately represent many graphs found in the real world
(Leskovec et al., 2005).

5.2. Small-World Networks—The
Watts-Strogatz Model
The Watts-Strogatz (WS) model (Watts and Strogatz, 1998) was
designed to generate random graphs whilst accounting for, and
replicating, features seen in real-world systems. Specifically, the
WS model was designed to maintain the low average shortest
path lengths of the ER model whilst increasing local clustering
coefficient (compared to the ER model).

In the WS model, a ring lattice graph G (An example of
such a graph is highlighted in Figure 11) with NV nodes, where
each node is connected to its k nearest neighbour nodes only, is
generated. For each node, each of it’s existing edges is rewired
(randomly) with probability β (Figure 10B).

WS graphs are heterogeneous and vary in randomness, based
on parameters, usually with high modularity (Figure 10E). WS
graphs show “small-world” properties, where nodes that are not
neighbours are connected by a short path (c.f. Six Degrees of
Kevin Bacon, Figure 10H).

Many real networks show small-world topologies. In
neuroscience, small-world networks are an attractive model as
their local clustering allows for highly localised processing while
their low average shortest path lengths also allows for distributed
processing (Bassett and Bullmore, 2016). This balance of local
and distributed information processing allows small-world
networks to be highly efficient for minimal wiring cost.
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FIGURE 10 | Random graphs, which can be used as in silico models or controls, can be generated in different ways giving the graphs different properties.

Pseudocode showing the processes used to create Erdös-Rényi (A), Watts-Strogatz (B) and Barabási-Albert (C) model graphs. (D–F) Example graphs with NV = 30

showing clearly different organisations for different generation models. (G–I) Probability distributions of node degree over graphs generated with NV = 10, 000

showing lower average degree and increased tails in both the Watts-Strogatz (H) and Barabási-Albert (I) models.

5.2.1. Measuring Small-Worldness
It is possible to measure how “small-world” a graph is by
comparing the graph clustering and path lengths of that graph
to that of an equivalent but randomly generated graph. Most
simply one can calculate the small-coefficient σ (also known
as the small-world quotient, Davis et al., 2003; Uzzi and Spiro,
2005),

σ =

CG
CR

lG
lR

, (10)

where C and l are the clustering coefficient and average shortest
path length of graph G and random graph R (Kogut and Walker,
2001). Graphs where σ > 1 are small-world. However, the small-
coefficient is influenced by the size of the graph in question (Neal,
2017). Because of this, the small-coefficient is not good for
comparing different graphs.

Alternatively, one can use the small-world measures ω or ω′,
the latter of which provides a measure between 0 and 1. A 0

FIGURE 11 | A 4-Regular Ring Lattice on a 6 node graph. The blue edges

connected to node 1 show why this graph is 4-regular graph—all nodes have

exactly 4 edges connecting them to their 4 closet neighbours.

small-world measure indicates a graph is as “unsmall-worldly”
as can be (given the graph size, degree, etc.), whereas 1 indicates
a graph is as small-worldly as possible. The small world measure
relates the properties of graph G to an equivalent lattice graph
ℓ (completely ordered and non-random) and random graph
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R (Telesford et al., 2011),

ω =
lR

lG
−

CG

Cℓ

, ω′ = 1− |ω| . (11)

The small-world measure is good for comparing two graphs with
similar properties; however, the range of results depends on other
constraints on the graph, e.g., density, degree distribution and
more, and so two graphs that differ on these constraints may both
have ω′ = 1 but may not be equally close to a theoretical ideal of
a small world network (Neal, 2017).

An alternative measure was proposed by Neal (2015)—the
small world index (SWI), defined as

SWI =
lG − lℓ

lR − lℓ
×

CG − CR

Cℓ − CR
. (12)

Like ω, SWI ranges between 0 and 1 where 1 indicates a graph
with theoretically ideal small-world characteristics given other
constraints on the graph (as with ω above). Of these three
metrics the SWI most closely matches the WS definition of a
small-world graph.

A similar metric, the small world propensity, was proposed
by Muldoon et al. (2016), defined as

φ = 1−

√

12
C + 12

l

2
, (13)

where 1C =
Cℓ−CG
Cℓ−CR

and 1l = lG−lR
lℓ−lR

. Both 1C and 1ℓ are

bounded between 0 and 1.
Like the SWI, φ ranges between 0 and 1 where 1 indicates

a graph with high small-world characteristics. The small world
propensity was designed to provide an unbiased assessment of
small world structure in brain networks regardless of graph
density. The small world propensity can be extended for weighted
graphs and both the weighted and unweighted variants can be
used to generate model graphs.

Due to the computational constraints of large, whole-brain
networks, a simplified version of small-worldliness was measured
in Burgstaller et al. (2019), where the authors showed a
significant difference in small-worldliness in brains of wild-type
and “depressed” zebrafish (grs357 mutants) exposed to different
antidepressant drugs.

It’s worth noting that Muldoon et al. (2016) showed that the
weighted whole-C. elegans neuronal graph did not show a high
small-world propensity. The authors argue that this could be
as the whole-animal neuronal graph does not just represent the
head and that the organism is evolutionary simple compared
to other model organisms. The authors recommend stringent
examination of small-world feature across scale, physiology and
evolutionary scales.

5.3. Scale-Free Networks—The
Barabási-Albert Model
As the average shortest path length becomes smaller these small-
world networks can begin to show scale-free properties. In a
scale-free network, the degree distribution follows a power law,

i.e., P(k) ∼ k−γ . Scale-free networks have a small number
of very connected nodes (large degree) and a large number of
less connected nodes (small degree), creating a long right-tailed
degree distribution (Clauset et al., 2009; Figure 10I).

The Barabási-Albert (BA) model (Albert and Barabási, 2002)
was designed to generate random graphs with a scale-free
(power-law) degree distribution. Specifically, the BA model
incorporates a preferential attachment mechanism to generate
graphs that share properties with many real-world networks,
possibly including networks of neurons (Smedler et al., 2014;
Avitan et al., 2017; Figure 10C).

In the BA model, a small graph of m nodes is created. Nodes
are then added one at a time until the total number of nodesNV is
reached. After each new node is added, an edge is created between
the new node and an existing node i with probability ki/6k, i.e.,
new edges are preferentially created with existing nodes with high
degree (ki).

BA graphs are heterogeneous, with a small number of
nodes having a relatively high number of connections (high
degree), whilst the majority of nodes have a low degree. This
process naturally results in a high clustering coefficients and
hub-like nodes (Figure 10F).

In Avitan et al. (2017), the authors suggest that the network
topology in the zebrafish optic tectum is scale-free and show
that the degree distribution fits a power law. In their research,
neural assemblies in the optic tectum stay scale-free throughout
development and despite other changes in network topology due
to dark-rearing.

Scale-free topologies have been used to predict the existence
of hub nodes in neuronal assemblies of the hippocampus
in mice and rats (Bonifazi et al., 2009). They showed
hippocampal neuronal networks to follow a scale-free
topology and demonstrated the existence of hub neurons
that, using morphophysiological analyses, proved to be
GABAergic interneurons.

However, there is a growing body of evidence that this
type of graph is less common in real world systems (Broido
and Clauset, 2019). Indeed, changing the threshold used
to generate a neuronal graph can influence the degree
distribution significantly, as shown in zebrafish whole-brain
calcium imaging (Burgstaller et al., 2019) and neuronal cell
cultures (Smedler et al., 2014). We would like to suggest
caution in the interpretation of graphs as scale-free and suggest
researchers follow the rigorous protocols suggested by Broido
and Clauset (2019).

5.3.1. A Critique of Scale-Free Graphs
Before moving onto the identification of scale-free networks,
it is worth considering the cautionary tales present in recent
literature. Since the original observations made by Barabási
that many empirical networks demonstrate scale-free degree
distributions (Barabási and Albert, 1999), numerous other
researchers have also measured the property in everything from
citation to road networks (Kalapala et al., 2006).

However, there has been a growing body of work
demonstrating that the scale-free property might not be as
prevalent in the real world as first imagined. For example,
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BOX 2 | Identifying Scale-Free Graphs.

The question of how to recognise data that obeys a power law is a tricky one.

A statistically rigorous set of statistical techniques was proposed by Clauset

et al. (2009), in which they also showed a number of real world data that had

been miss-ascribed as scale-free.

1. First, we define our model degree distribution as,

P(k) ∼
k−α

ζ (α, kmin)
, where ζ (α, kmin) =

∞
∑

n=0

(n+ kmin)
−α . (14)

We then estimate the power law model parameters α and kmin. kmin is the
minimum number degree for which the power law applies and α is the

scaling parameter. Data that follows an ideal power law across the whole

domain will have kmin = 1.

2. In order to determine the lower bound kmin we compare the real data with

the model above kmin using the Kolmogorov-Smirnov (KV) statistic. To

calculate exactly the scaling parameter α we can use discrete maximum

likelihood estimators. However, for ease of evaluation we can also

approximate α where a discrete distribution, like degree distribution, is

treated as a continuous distribution rounded to the nearest integer.

3. Next we calculate the goodness-of-fit between the data and the model.

This is achieved by generating the a large number of synthetic datasets

that follow the determined power law model. We then measure the KV

statistic between the model and our synthetic data and compare this to

the KV statistic between the model and our real data. The p-value is then

the fraction of times that KVsynthetic is greater than KVreal . A p-value above
0.1 indicates that the power law is plausible, whilst a value below p below

0.1 indicates that the model should be rejected.

4. Finally, we compare the data to other models, e.g., exponential, Poisson

or Yule distributions through likelihood ratio tests; techniques such as

cross-validation or Bayesian approaches could also be used.

work by Broido and Clauset (2019) has shown that in nearly
one thousand empirical network datasets, constructed from
data across a broad range of scientific disciplines, only a tiny
fraction are actually scale-free (when using a strict definition
of the property). The paper calls into question the universality
of the scale-free topologies, with biological networks being one
of the network classes to display the least number of scale-free
examples. These ideas are not new, and earlier work has also
argued against the prevalence of scale-free networks in the real
world (Jones and Handcock, 2003). Conversely it has also been
argued that the concept of scale-free networks can still be useful,
even in light of these new discoveries (Holme, 2019).

As such, the question of how to recognise data that obeys
a power law is a tricky one. Box 2 summarises the statistically
rigorous process recommended by Clauset et al. (2009) for the
case of a graph with degree distribution that may or may not
follow a power law.

5.4. Machine Learning Generated Networks
The recent advances in machine learning on graphs, specifically
the family of Graph Neural Network (GNN) models (Hamilton
et al., 2017), has resulted in new methods for generating random
graphs based on a set of input training graphs. Whilst there have,
thus far, been limited possibilities for applications in biology,

we briefly review some of the more prominent approaches and
encourage readers to investigate further.

A family of neural-based generative models entitled auto-
encoders have been adapted to generate random graphs. Auto-
encoders are a type of artificial neural network which learn a
low dimensional representation of input data, which is used to
then reconstruct the original data (Hinton and Salakhutdinov,
2006). They are frequently combined with techniques from
variational inference to create Variational Auto-Encoders (VAE),
which improves the reconstruction and interpretability of the
model (Kingma and Welling, 2014). Recent graph generation
approaches, such as GraphVAE (Simonovsky and Komodakis,
2018), Junction Tree VAE (Jin et al., 2018), and others (Ma et al.,
2018; Zhang et al., 2019), all produce a model which is trained
on a given set of input graphs and can then generate random
synthetic examples which have a similar topological structure to
the input set.

Using an alternative approach and underlying model,
GraphRNN (You et al., 2018) exploits Recurrent Neural
Networks (RNN), a type of model designed for sequential tasks
(Hochreiter and Schmidhuber, 1997), for graph generation.
GraphRNN again learns to produce graphs matching the
topologies of a set of input graphs, but this time by learning
to decompose the graph generation problem into a sequence of
node and edge placements.

6. GRAPH ANALYSIS TOOLS

There are a wide range of tools for visualising and quantifying
graphs. In this section, we briefly introduce a few open-source
projects that may be useful for researchers who wish to explore
graph theory in their work.

First, it’s important to understand the possible challenges
that one might face dealing with large graphs of complex data.
Consider a zebrafish whole-brain calcium imaging experiment,
one dataset might contain up to 100.000 neurons, so a graph
of the whole brain would have 100.000 nodes. If a graph was
then created with weighted edges between all nodes (a total
of 10,000,000,000 edges) then the adjacency matrix alone, i.e.,
without any additional information such as position in the brain,
would take 80GB. Graph visualisation or analysis tools may
require the loading of all or most of this data in the computer
memory (RAM), thus a powerful computer is required.

This problem may be overcome by considering a subset of
nodes or of edges, andmany tasks can be programmed to account
for memory or processing concerns.

6.1. Graph Visualisation and Analysis
Software
Graph visualisation (or graph drawing) has been a large area
of research in it’s own right and a wide range of software and
programming packages exist for calculating graph layouts and
visualising massive graph data.

Two notable open-source tools are Cytoscape (Shannon et al.,
2003) and Gephi (Bastian et al., 2009). Cytoscape was designed
for visualising molecular networks in omics studies. Cytoscape
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has a wide range of visualisation tools including fast rendering
and easy live navigating of large graphs. Plug-ins are available to
enable graph filtering, identification of clusters, and other tasks.

Gephi is designed for a more general audience and has been
used in research from social networks through digital humanities
and in journalism. Like Cytoscape, Gephi is able to carry out real-
time visualisation and exploration of large graphs, and has built-
in tools to calculate a variety of metrics. Gephi is also supported
by community-built plug-ins.

6.2. Programming With Graphs
In many cases it may be beneficial to work with neuronal graphs
within existing pipelines and programming environments. There
are many tools available for different programming languages
that provide graph visualisation and analysis functions. Several
notable Python modules exist that are open-source, are well-
documented and easy to use.

NetworkX (Hagberg et al., 2008) is perhaps the most well-
known and has a more gentle learning curve than the others.
Many of the metrics we’ve described in this paper are built-
in to NetworkX, along with a variety input/output options,
visualisation tools and random graph generators. Importantly,
NetworkX is well-documented and still in active development.
However, NetworkX is designed, primarily, for small graphs and
the many-edged, massive nature of some neuronal graphs may
prove a challenge.

Other well-documented Python modules for the analysis
of massive graphs are graph-tool (Peixoto, 2017) and
NetworKit (Staudt et al., 2016). Aware of the computational
challenges of processing large graphs, graph-tool makes use
of the increased performance available by using algorithms
implemented in C++ however, they keep the usability of a
Python front-end. Similarly, NetworKit uses a combination
of C++, parallelisation and heuristic algorithms to deal with
computational expensive problems in a fast and parallel manner.
Lastly, iGraph (Csardi and Nepusz, 2006) provides a collection
of network analysis tools available in Python, Mathematica, R
and C with an emphasis on analysing large graphs. As such, all
of these packages can provide an alternative (or complement) to
NetworkX for analysing and visualising large graphs in Python.

However, as graphs continue to grow in both complexity and
size, there is an increasing need to scale graph computation
from one machine to many. Parallel computation packages,
such as Apache Spark (Zaharia et al., 2012), have greatly
reduced many of the complexities traditionally associated with
parallel programming, whilst also offering a python interface
for ease of use. Apache Spark offers a selection of graph
specific frameworks, such as GraphX (Gonzalez et al., 2014)

and GraphFrames (Dave et al., 2016), which include implicit
algorithms to extract many of themetrics discussed in themetrics
section in parallel across a compute cluster. Unfortunately, for
any metric not included by default, one must be coded in
accordance with Spark’s parallel programming model, still a
non-trivial task.

Additionally, exploiting GPU technologies may bring massive
changes in the speed of processing and the maximum graph
sizes that can be handled. Again, these currently require
custom algorithms; however, recently a new package has been
released that begin to address this problem - Rapids cuGraph
(RAPIDS Team, 2018).

7. CONCLUDING REMARKS

We hope that the reader can see the power of using
neuronal graphs to explore network organisation as opposed
to considering only population statistics. In particular we
hope that the reader appreciates that the metrics presented
in this paper are only the tip of the iceberg and that any
interested researcher should identify and build collaborations
with graph theorists and network scientists to ensure that
the right metric is used to answer the question of interest
(see Vicens and Bourne, 2007; Knapp et al., 2015 for best
practice). Further, we hope the reader recognises that, with
the use of graph models, it is possible to compare against in
silico controls for null hypothesis testing in order to ensure
robust and statistically rigorous conclusions are drawn. We
greatly look forward to the coming years and seeing more
and novel applications of graph theory in calcium imaging,
and can see neuronal graphs becoming a powerful tool that
helps to both answer biological questions and pose new
biological hypotheses. We strongly predict that graph theory
analysis on calcium imaging will lead to important new
insights that allow neuroscientists to understand and model
computational networks.
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