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Abstract

Modelling the small-area spatio-temporal dynamics of the Covid-19 pandemic
is of major public health importance, because it allows health agencies to bet-
ter understand how and why the virus spreads. However, in Scotland during
the first wave of the pandemic testing capacity was severely limited, meaning
that large numbers of infected people were not formally diagnosed as having
the virus. As a result, data on confirmed cases are unlikely to represent the
true infection rates, and due to the small numbers of positive tests these data
are not available at the small-area level for confidentiality reasons. There-
fore to estimate the small-area dynamics in Covid-19 incidence this paper
analyses the spatio-temporal trends in telehealth data relating to Covid-19,
because during the first wave of the pandemic the public were advised to
call the national telehealth provider NHS 24 if they experienced symptoms
of the virus. Specifically, we propose a multivariate spatio-temporal correla-
tion model for modelling the proportions of calls classified as either relating
to Covid-19 directly or having related symptoms, and provide software for
fitting the model in a Bayesian setting using Markov chain Monte Carlo sim-
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ulation. The model was developed in partnership with the national health
agency Public Health Scotland, and here we use it to analyse the spatio-
temporal dynamics of the first wave of the Covid-19 pandemic in Scotland
between March and July 2020, specifically focusing on the spatial variation
in the peak and the end of the first wave.

Keywords: Covid-19 pandemic, Gaussian Markov random field models,
Scotland, Telehealth data.

1. Introduction1

Covid-19 represents the biggest public health challenge in decades, and was2

declared a global pandemic by the World Health Organisation on 11th March3

2020. The disease originated in the city of Wuhan in the People’s Republic of4

China in December 2019, and reached the USA and Europe towards the end5

of January 2020. The first European epicentre for Covid-19 was in northern6

Italy in February 2020, and in Scotland, the focus of this paper, the first con-7

firmed case occurred on the 2nd March 2020 (Public Health Scotland, https:8

//www.opendata.nhs.scot/dataset/covid-19-in-scotland). Since then9

Covid-19 has spread across the world causing global health and economic10

devastation, and as of 30th March 2021 there have been over 127 million11

cases worldwide with over 2.7 milion people sadly dying from the disease12

(Johns Hopkins Coronavirus Resource Centre, https://coronavirus.jhu.13

edu/map.html).14

Unsurprisingly, modelling the spread and dynamics of the Covid-19 pan-15

demic has become a research priority, and there is a quickly growing research16

literature in this area. This literature has focused on a range of important17

epidemiological topics, including: (i) predicting the spread of the pandemic18

and its impacts on healthcare systems (Remuzzi and Remuzzi, 2020); (ii)19

identifying the factors that make people more at risk of displaying severe20

symptoms (Conticini et al., 2020, Wu et al., 2020 and Konstantinoudis et al.,21

2021); (iii) identifying the wider health impacts of the pandemic (Douglas22

et al., 2020); and (iv) developing surveillance systems for identifying the23

spatio-temporal dynamics in disease incidence (Dong et al., 2020). Develop-24

ing a small-area surveillance system for monitoring the spatio-temporal trend25

in Covid-19 incidence is a vital tool in the fight against the virus, because26

it allows public health agencies to monitor its spread and identify hot-spots27

with high incidence, as well as providing vital clues as to how and why the28
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virus spreads more easily in certain areas.29

The focus of this study is Covid-19 surveillance in Scotland, which is30

currently in its second wave of infection since September 2020. During this31

second wave the spatio-temporal spread of the pandemic can be measured32

using data on positive tests at the small-area scale, which is due to Scot-33

land having a wide-spread testing programme during this period. This34

programme allows any member of the public to book a test at https:35

//www.gov.uk/get-coronavirus-test, and well over 15,000 tests are con-36

ducted each day. However, during the first wave of the pandemic between37

March and July 2020 Covid-19 testing capacity was strictly limited to priority38

groups, because there was a lack of infrastructure to allow large-scale test-39

ing. For example, in March 2020 only 350 tests could be conducted each day40

(https://www.gov.scot/publications/foi-202000084813/), which rose41

to 1,900 in April 2020. Therefore in this first wave the public were not able42

to access a diagnostic test to determine if they had the virus unless a test43

was recommended by a doctor. Instead, anyone experiencing symptoms was44

advised to phone the national telehealth service NHS 24 for medical advice,45

and was then asked to self-isolate at home. As a result data on confirmed46

Covid-19 cases will not provide a detailed picture of the spatio-temporal47

spread of the virus during this first wave, because only a very small fraction48

of the actual cases were confirmed by a positive test.49

Due to this massive under-reporting the aim of this paper is to use proxy50

indicators of disease incidence to quantify the small-area spatio-temporal51

dynamics of the Covid-19 pandemic in Scotland during its first wave of in-52

fections. Specifically, we aim to estimate both Scotland-wide and small-area53

temporal trends in disease incidence, focusing on both the peak and the end54

of this first wave. As people with symptoms during this first wave were ad-55

vised to phone NHS 24 for medical advice, we model data on the numbers56

of NHS 24 calls categorised as Covid-19 or having related symptoms at the57

small-area scale on a weekly basis. The model we developed was run by58

analysts in Public Health Scotland (PHS) on this proxy measure of disease59

incidence on a weekly basis during the first wave of the pandemic, allowing60

them to better understand the spread of the virus and target public health61

interventions appropriately at areas likely to exhibit the greatest risks.62

Our model is a multivariate binomial spatio-temporal random effects63

model, with inference in a Bayesian setting using Markov chain Monte Carlo64

(MCMC) simulation. It jointly models the spatio-temporal variation in the65

numbers of calls to NHS 24 directly categorised as Covid-19, as well as those66
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calls categorised with related symptoms such as fever and difficulty breath-67

ing, the latter ensuring that potential local outbreaks are not missed due to68

calls being misclassified. In developing this model the key methodological69

challenge we address is the complex multivariate spatio-temporal structure70

of the data, which means we need to capture spatial, temporal and between71

call type correlations.72

The development of multivariate space-time (MVST) models for disease73

risk modelling is a relatively new advance, with Carroll et al. (2017) and Law-74

son et al. (2017) proposing innovative mixture models, Quick et al. (2017)75

proposing a fully MVST Gaussian Markov Random Field (GMRF, Rue and76

Held, 2005) model, while Jack et al. (2019) combine separate simpler multi-77

variate spatial and multivariate temporal processes. The model we propose78

here is most similar to that proposed by Quick et al. (2017), because it uses79

a Gaussian Markov Random Field prior distribution applied to a set of ran-80

dom effects to model the multivariate spatio-temporal correlations inherent81

in the data. Our model extends that of Quick et al. (2017) by considering82

first and second order temporal autoregressive dependence structures, as well83

as allowing for varying strengths of spatial correlation via the Leroux spa-84

tial correlation model (Leroux et al., 2000). The NHS 24 telehealth data for85

the first wave of the pandemic that we analyse are described in Section 2,86

while our multivariate spatio-temporal model is presented in Section 3. Our87

surveillance model is applied to the Scottish telehealth data in Section 4,88

while Section 5 concludes the paper.89

2. Covid-19 telehealth data in Scotland90

2.1. NHS 24 and the study region91

NHS 24 (https://www.NHS24.scot/) is Scotland’s national telehealth ser-92

vice, and gives the public phone access to non-emergency medical advice93

24 hours a day and 7 days a week when their regular primary health care94

providers are closed. NHS 24 deals with around 1.5 million calls per year and95

serves a population of around 5.4 million people, and at peak demand answers96

around 14,500 calls over the course of a weekend. Data were obtained from97

Public Health Scotland (PHS, https://publichealthscotland.scot/) on98

the weekly numbers of calls to NHS 24 for Covid-19 and other similar con-99

ditions during the first wave of the pandemic, which spanned N = 22 weeks00

from the week beginning 2nd March 2020 to the week beginning 27th July01

2020 inclusive. A weekly temporal scale was used because it smooths out the02
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large amount of noise in the daily data caused by small numbers of calls and03

known day of the week effects, the latter including the fact that there are04

more calls during the weekends when doctors surgeries are closed.05

The data have been aggregated to the 444 postcode districts (PD) within06

Scotland, and a shapefile containing the spatial boundary information for07

these PDs was obtained from the National Records for Scotland (https:08

//www.nrscotland.gov.uk). This spatial boundary information did not in-09

clude 8 of the PDs in the data set, but as these PDs only accounted for10

44 NHS 24 calls out of a total of 524,036 calls they were removed from the11

study region. After removing these PDs there were 1005 instances (PD and12

week combinations) with no NHS 24 calls at all, which were spread relatively13

evenly across the 22 weeks with between 34 and 56 instances each week.14

Therefore, to ensure a rectangular data set for analysis, only the K = 32815

PDs having at least 1 NHS 24 call (about any illness) per week were retained16

in the study region. The PDs removed from the data only accounted for17

0.7% of the total calls to NHS 24, and were mostly sparsely populated rural18

or industrial / commercial areas.19

2.2. Data available20

For the kth PD and tth week the data comprise the following counts of the21

numbers of calls to NHS 24: (i) Nkt - the total number of calls to NHS 24; (ii)22

Ykt1 - the number of calls classified as Covid-19; and (iii) Ykt2 - the number23

of calls classified as Simple Estimate 1 (hereafter SE1), which is a set of24

symptoms potentially related to Covid-19 including cold, flu, coughs, fever25

and difficulty breathing. The latter is modelled here to ensure that potential26

local outbreaks are not missed due to a misclassification of calls. The clas-27

sification for Covid-19 was only initially available from 14th April onwards,28

but was back-predicted to 2nd March using a prediction model developed by29

PHS to allow trends to be modelled over the peak of the first wave of the30

pandemic. The prediction model was developed using NHS 24 call data from31

mid April to the end of May relating to respiratory and gastrointestinal syn-32

dromes plus the patients age. The prediction performance of this model had33

a specificity of 96% and a sensitivity of 75%, with an area under the curve34

(AUC) of 0.88. Therefore to ensure the Covid-19 series covers the peak of35

the first wave of the pandemic, we treat these predictions as observed data.36
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2.3. Limitations with the data37

As discussed in the introduction wide-scale testing of Covid-19 was not avail-38

able during the first wave of the pandemic, and the public were instead39

advised to phone NHS 24 if they developed Covid-like symptoms. These40

considerations motivate our use of the NHS 24 data as a proxy measure of41

disease incidence, but one must be cognisant of the issues that arise with42

these data not relating to laboratory confirmed cases. The main issue is43

misclassification of calls, because a person phoning NHS 24 with Covid-like44

symptoms does not mean they actually have the virus. Furthermore, the45

NHS 24 call handler may misdiagnose the patients symptoms, and hence46

wrongly classify them as having or not having Covid-19. This potential for47

misclassification is why we jointly model calls classified as Covid-19 and SE1,48

and examine the similarities and differences in the spatio-temporal dynamics49

of both classifications. Furthermore, each NHS 24 call can actually have mul-50

tiple classifications, and as expected there is substantial overlap in the calls51

classified as Covid-19 and SE1. In fact, the total number of calls classified52

as Covid-19 or SE1 is sometimes greater than the total number of calls, i.e53

Ykt1+Ykt2 > Nkt, particularly where Nkt is small. Thus in the next section we54

model these two classifications as a correlated multivariate binomial process55

rather than with a multinomial distribution.56

A further potential issue with using the NHS 24 data as a proxy measure57

of disease incidence is that an individual may call NHS 24 more than once58

during a week, either for different or for the same reason. Hence the data59

we model relate to the numbers of calls to NHS 24 rather than the number60

of individuals who call NHS 24. However, the number of individuals who61

call NHS 24 multiple times for Covid-like symptoms within a week should be62

low, because the NHS 24 call handlers are trained to provide expert medical63

advice, precluding the need for multiple calls by the same individual. Thus64

despite these limitations the NHS 24 data provide the most comprehensive,65

if imperfect, data source for quantifying the spatio-temporal dynamics of the66

first wave of the Covid-19 pandemic across Scotland, which is why we model67

them here.68

2.4. Exploratory analysis69

The correlations between the proportions of calls, θ̂ktj = Yktj/Nkt, classified as70

Covid-19 (j = 1) and SE1 (j = 2) across all PDs for each week range between71

0.60 and 0.94, suggesting there is a strong relationship between them. This72

is further evidenced by the top panel (A) of Figure 1, which displays the73
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temporal trends in these raw proportions. In the figure jittering has been74

added to the week beginning (horizontal) dimension to improve the visibility75

of the points, and the proportions for Covid-19 are in red while those for SE176

are in blue. The trend line in each case has been estimated using generalised77

additive model (GAM) smoothing. The figure shows a number of key points,78

the first of which is large amounts of noise in the data arising from small79

numbers of calls in some PDs, with sample proportions equal to 0 or 1 in80

6.4% (Covid-19) and 7.4% (SE1) of week and PD combinations respectively.81

Secondly, the temporal trends are broadly similar for Covid-19 and SE1,82

showing a rise in the proportions from the 2nd March, a peak around 23rd83

March, a decrease until 1st June, and a generally steady state since then.84

Thirdly, the figure shows that the dominant classification seems to change85

around the week beginning 6th April, with more calls classified as SE1 before86

that date and more Covid-19 calls after that date. This may be an artifact of87

the prediction model used to back-predict the Covid-19 classification before88

14th April, or alternatively it may be that as the pandemic became more89

prevalent from late March onwards people might be more likely to mention90

Covid-19 directly when they called NHS 24.91

The median lag-1 temporal autocorrelation coefficients across the K =92

328 PDs are respectively 0.54 (Covid-19) and 0.70 (SE1), which suggests93

these data are likely to exhibit temporal autocorrelation as expected. The94

raw proportions also exhibit spatial autocorrelation, which was quantified95

for each week and call classification using Moran’s I (Moran, 1950) statistics96

and a corresponding Monte-Carlo p-value to test the null hypothesis of no97

spatial autocorrelation. The computation of Moran’s I statistic requires an98

adjacency or neighbourhood structure between the K PDs to be specified,99

and details of its construction that accounts for the fact that PDs with no00

NHS 24 calls have been removed is given in the model specification in Section01

3.2. From these Moran’s I tests 41% (Covid-19) and 23% (SE1) of these02

weekly p-values were significant at the 5% level, suggesting that despite the03

noise in these raw proportions, spatial autocorrelation is likely to be present04

in the data.05

2.5. Aims of the analysis06

Thus as the data exhibit spatio-temporal and between call type correlations07

contaminated by noise due to small numbers, a multivariate spatio-temporal08

smoothing model is proposed in the next section to estimate the underlying09
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Figure 1: Scatterplots showing the temporal trends in the proportions of calls to NHS 24
that were related to Covid-19 (red) and SE1 (blue) for all PDs as points, with generalised
additive model smoothed trend lines superimposed. The points have been jittered in the
Week Beginning (horizontal) direction to improve their visibility. Panel (A) relates to
the sample proportions and panel (B) to the estimated proportions from the final model
(AR(2) Intrinsic CAR model with D = 7).
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trends in these data. Specifically, our 2 underlying goals when modelling10

these data are to:11

(a) Estimate the Scotland-wide spatio-temporal trend in disease incidence12

across the first wave of the pandemic.13

(b) Estimate the spatial variation in this overall trend, particularly the14

extent of the spatial variation in when each PD in Scotland reached its15

peak and the end of its first pandemic wave.16

3. Methodology17

This section proposes a new multivariate spatio-temporal (MVST) model for18

estimating the spatio-temporal trends in the proportions of NHS 24 calls19

classified as either Covid-19 or having related symptoms (SE1). The model20

is fitted in a Bayesian setting using MCMC simulation, using a combination21

of Gibbs sampling and Metropolis-Hastings steps. Software to implement the22

model in R is available in the CARBayesST package (Lee et al., 2018), which23

allows others to apply the MVST models considered here to their own data.24

3.1. Level 1 - Data likelihood model25

Let Yktj denote the number of calls to NHS 24 in the kth PD (k = 1, . . . , K)26

during the tth week (t = 1, . . . , N) for the jth outcome (j = 1, . . . , J), where27

for our data j = 1 is Covid-19 and j = 2 is SE1. Additionally, let Nkt denote28

the total number of NHS 24 calls in the kth PD and tth week. Then as the29

two outcomes (call classifications) are not disjoint as described in Section 2,30

a multinomial model is not appropriate for these data. Instead, we model31

these data as conditionally independent binomial distributions, where the32

spatio-temporal and between outcome (auto) correlations are modelled by33

random effects at the second level of the model hierarchy. The first level of34

the hierarchical model is given by:35

Yktj ∼ Binomial(Nkt, θktj) (1)

ln

(
θktj

1− θktj

)
= βj + φktj.

Here, θktj is the true unknown proportion of calls (or probability that a36

single call) to NHS 24 in PD k during week t that is due to outcome j, and the37
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spatio-temporal variation in the estimated {θ̂ktj} provides a proxy measure of38

the incidence of the virus in the absence of comprehensive testing data. We39

do not include any covariates in our model for two reasons, the first of which40

is that our aim is to estimate the spatio-temporal trends in {θktj} via the41

random effects {φktj}, rather than explaining what factors are associated with42

these trends. Secondly, up-to-date temporally varying covariate information43

is not available on a weekly basis, meaning that it would not be available44

to include in the model. The intercept terms βj are outcome specific, which45

allows the two call types to have different average proportions over all PD46

and time period combinations. We assign weakly informative independent47

Gaussian prior distributions given by βj ∼ N(0, 100, 000) to these outcome48

specific intercept terms, which allow the data to play the dominant role in49

estimating their values.50

3.2. Level 2 - Multivariate spatio-temporal random effects model51

The remaining term in (1) {φktj} are random effects, which are the mecha-52

nism for estimating the smooth multivariate spatio-temporal trends in {θktj}53

for all outcomes. As such, the prior distribution for these random effects54

must induce (auto)correlations in time, space and between outcomes. The55

entire set of random effects are denoted by φ = (φ1, . . . ,φN), where φt =56

(φ1t, . . . ,φKt) denotes the set of K × J random effects at time t, while57

φkt = (φkt1, . . . , φtkJ) denotes the subset of these effects at the kth PD for58

all J outcomes. As mentioned earlier MVST models are in their infancy for59

areal unit data, and we follow the general approach of Quick et al. (2017)60

and propose a zero-mean multivariate Gaussian Markov random field (Rue61

and Held, 2005) model for φ. The general form of the model is given by62

φ ∼ N
(
0,
[
D(α)⊗Q(W, ρ)⊗Σ−1

]−1
)
, (2)

where ⊗ denotes a Kronecker product. The precision matrix is given by63

P(α, ρ,Σ) = D(α) ⊗ Q(W, ρ) ⊗ Σ−1, where D(α)N×N controls the tem-64

poral autocorrelations, Q(W, ρ)K×K controls the spatial autocorrelations65

and ΣJ×J captures the between outcome correlations. The precision ma-66

trix P(α, ρ,Σ) is sparse because both [D(α),Q(W, ρ)] are sparse as they67

are built from specific cases of GMRFs (described below), which enables68

computationally efficient Bayesian inference by making use of their triplet69

form representation. As the model is defined in terms of its precision matrix70

10

Jo
ur

na
l P

re
-p

ro
of



2

2

2

1
)
ii

) .

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Journal Pre-proof
P(α, ρ,Σ) rather than its covariance matrix, multivariate Gaussian theory71

gives the following partial (auto)correlations for (φktj, φrsi) conditional on72

the remaining random effects φ−ktj,rsi:73

Corr(φktj, φrsi|φ−ktj,rsi) =
−D(α)tsQ(W, ρ)kr

(
Σ−1

)
ji√

(D(α)ttQ(W, ρ)kk)
(
Σ−1

)
jj

(
D(α)ssQ(W, ρ)rr

(
Σ−

(3)
In what follows we now discuss the three components of the precision74

matrix in turn.75

3.2.1. Between outcome correlation76

The between outcome covariance matrix Σ is not assigned a specific struc-77

ture, and is instead assigned the following conjugate Inverse-Wishart prior78

distribution79

Σ ∼ Inverse-Wishart(d,Ω). (4)

The hyperparameters are set at (d = J + 1,Ω = 0.01I) where I is the80

identity matrix, and are chosen to ensure it is only weakly informative.81

3.2.2. Spatial autocorrelation82

Spatial autocorrelation is modelled by a conditional autoregressive (CAR)83

prior, which is a special case of a GMRF. The prior requires the specification84

of a K ×K neighbourhood or adjacency matrix W = (wkr) that quantifies85

the spatial closeness between each pair of PDs. Here we adopt a binary86

specification where wkr = 1 if PDs (k, r) are spatially close together, and87

wkr = 0 otherwise, with wkk = 0 ∀ k. The most common approach in the88

literature is to specify W via the border sharing rule, that is wkr = 1 if areas89

(k, r) share a common border and wkr = 0 otherwise. However our study90

region has numerous islands, as well as additionally a number of mainland91

PDs with no NHS 24 calls that have therefore been removed. As a result this92

border sharing specification leads to a corresponding graph with 15 separate93

unconnected components, one main one containing most of the areas, 7 small94

components containing between 2 and 8 areas, and 7 additional isolates with95

no neighbours at all.96

Therefore to obtain a neighbourhood structure with all the PDs in a single97

connected component we use the D-nearest neighbours rule (after removing98
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the PDs with no NHS 24 calls), which first represents the location of each99

PD by its centroid (central point). Then based on these centroids it specifies00

wkr = 1 if the rth PD is one of the D nearest PDs to the kth PD, and wkr = 001

otherwise. This leads to an asymmetric W matrix, which is made symmetric02

for the purposes of fitting the model by if wkr = 1 and wrk = 0 then setting03

wrk = 1. In the analysis in the next section we consider D = 3, 5, 7 to assess04

the sensitivity of our results to this choice. Further details on specifying05

neighbourhood matrices can be found in Bivand et al. (2013). Based on W06

we model the spatial autocorrelation via the CAR prior proposed by Leroux07

et al. (2000), which corresponds to the following spatial precision matrix08

Q(W, ρ) = ρ(diag[W1]−W) + (1− ρ)I. (5)

Here (1, I) are a K × 1 vector of ones and the K ×K identity matrix re-09

spectively, while diag[W1] denotes a diagonal matrix with diagonal elements10

W × 1, so that the kth diagonal element is given by
∑K

i=1wki. This spec-11

ification models (φktj, φrtj) as partially spatially autocorrelated if wkr = 112

and conditionally independent if wkr = 0, which can be seen from (3) and13

the fact that for k 6= r Q(W, ρ)kr = −ρwkr. This also illustrates that ρ is14

a global spatial dependence parameter, with a value of 0 corresponding to15

spatial independence. In contrast, if ρ = 1 the model captures strong spatial16

autocorrelation and simplifies to the intrinsic CAR model proposed by Besag17

et al. (1991), and this simplification was used to capture spatial correlation18

by Quick et al. (2017) within an MVST setting. We specify a non-informative19

uniform prior on the unit interval for ρ, i.e. ρ ∼ Uniform(0, 1), which pro-20

vides equal prior weight for all allowable values of ρ and allows the data to21

play the dominant role in estimating its value.22

3.2.3. Temporal autocorrelation23

Temporal autocorrelation is modelled using either first order or second or-24

der autoregressive processes, which are both special cases of a GMRF. This25

extends the work of Quick et al. (2017) who only consider the first order26

case. The joint distribution for φ from (2) in each case can be decomposed27

as described below.28

29

A - First-order autoregressive process30

For a first-order autoregressive process the joint prior distribution f(φ) can31

be decomposed as32
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f(φ) = f(φ1)
N∏

t=2

f(φt|φt−1) (6)

= N
(
φ1

∣∣∣0,
[
Q(W, ρ)⊗Σ−1

]−1
) N∏

t=2

N
(
φt

∣∣∣αφt−1,
[
Q(W, ρ)⊗Σ−1

]−1
)

which is combined with the improper non-informative prior f(α) ∝ 1.33

This specification corresponds to a tridiagonal matrix for D(α) with entries34

D(α)t,t =

{
1 + α2 for t = 1, . . . , N − 1
1 for t = N

,

D(α)t,t−1 = −α for t = 2, . . . , N.

Thus from (3) it is clear that (φktj, φksj) are conditionally independent if35

s /∈ {t− 1, t, t+ 1}.36

37

B - Second-order autoregressive process38

For a second-order autoregressive process the joint prior distribution f(φ)39

can be decomposed as40

f(φ) = f(φ1)f(φ2)
N∏

t=3

f(φt|φt−1,φt−2) (7)

= N
(
φ1

∣∣∣0,
[
Q(W, ρ)⊗Σ−1

]−1
)

N
(
φ2

∣∣∣0,
[
Q(W, ρ)⊗Σ−1

]−1
)

×
N∏

t=3

N
(
φt

∣∣∣α1φt−1 + α2φt−2,
[
Q(W, ρ)⊗Σ−1

]−1
)
,

which is combined with the improper non-informative prior f(α1, α2) ∝ 1.41

This specification corresponds to the following sparse matrix for D(α) with42
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non-zero entries43

D(α)t,t =





1 + α2
2 for t = 1

1 + α2
1 + α2

2 for t = 2, . . . , N − 2
1 + α2

1 for t = N − 1
1 for t = N

,

D(α)t,t−1 =





α1α2 for t = 2
α1α2 − α1 for t = 3, . . . , N − 1
−α1 for t = N

,

D(α)t,t−2 = −α2 for t = 3, . . . , N.

Thus from (3) it is clear that (φktj, φksj) are conditionally independent if44

s /∈ {t− 2, t− 1, t, t+ 1, t+ 2}.45

4. Spatio-temporal dynamics of Covid-19 in Scotland46

This section presents the results of fitting the MVST models to the Covid-47

19 telehealth data in Scotland during the first wave of the pandemic. In48

modelling these data our aims are to: (a) estimate the Scotland-wide spatio-49

temporal trend in disease incidence; and (b) estimate when each PD in Scot-50

land reached the peak and end of its first pandemic wave.51

4.1. Model fitting52

We fit 12 different models to the data that have varying spatio-temporal53

correlation structures, because it allows us to examine the sensitivity of the54

results to model choice. Specifically, we fit models with all possible com-55

binations of: (i) first and second order temporal autoregressive structures;56

(ii) spatial autocorrelation structures defined by the Leroux (given by (5))57

and intrinsic (where ρ = 1 in (5)) CAR models; and (iii) the neighbourhood58

matrix W defined by the D = 3, 5 and 7 nearest neighbours rule. The model59

with a temporal first order autoregressive process and the Intrinsic CAR60

structure is the closest to that proposed by Quick et al. (2017), while the61

models based on a second order autoregressive process and a Leroux CAR62

structure are the extensions considered here. In what follows AR(1) / AR(2)63

respectively denote models with first and second order temporal autoregres-64

sive structures, while (I, L) respectively denote models with intrinsic and65

Leroux CAR spatial structures.66

Inference for each of these 12 models is based on 3,000 MCMC samples67

generated from 3 independent Markov chains. Each chain was burnt in for68
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50,000 samples by which time convergence was assessed to have been reached,69

and then run for a further 300,000 samples which were thinned by 300 to70

greatly reduce their autocorrelation. Convergence was visually assessed using71

traceplots and numerically assessed using the Gelman-Rubin diagnostic, and72

for the latter none of the values of R̂ were above 1.1, which is suggested as a73

convergence criteria by Gelman et al. (2013).74

4.2. Model assessment75

A summary of the fit of each model to the data is presented in Table 1,76

which displays the deviance information criterion (DIC, Spiegelhalter et al.,77

2002), the effective number of independent parameters (p.d), and the log78

marginal predictive likelihood (LMPL, Geisser and Eddy, 1979). The DIC79

measures the overall fit of each model to the data, and the model with an80

intrinsic CAR spatial structure and a second order autoregressive temporal81

structure fits the data best as it minimises the DIC. However, the overall fits82

of all the models are relatively similar, as there is only a 0.8% difference be-83

tween the largest and smallest DIC values. The LMPL measures the predic-84

tive ability of each model and is calculated as LMPL=
∑

ktj ln[f(Yktj|Y−ktj)],85

where Y−ktj denotes all observations except for Yktj. The best fitting model is86

the one that maximises the LMPL, which is also achieved by the model with87

an intrinsic CAR spatial structure and a second order autoregressive tempo-88

ral structure. However, in common with the DIC the differences between the89

models by this measure are also small, being at most 1.3%90

The residuals from all models were assessed for the presence of any re-91

maining spatial autocorrelation using a Moran’s I permutation test sepa-92

rately for each year, and in all cases no significant autocorrelation remained.93

The presence of residual temporal autocorrelation was also checked for each94

model and PD, by determining whether the lag 1 autocorrelation coefficient95

was significantly different from zero at the 5% level. We based on our assess-96

ment on the lag one coefficient only because the data only contain N = 2297

time periods making estimation of higher lags less reliable, and also because98

the Moran’s I test is also only based on first order neighbours. The models99

with a second order autoregressive process adequately capture the temporal00

autocorrelation in the data, as in all cases only 5% of the sets of tempo-01

ral residuals contain significant (at the 5% level) autocorrelation at lag 1.02

In contrast, the corresponding percentages for the models with a first order03

autoregressive process are between 12% - 14%, suggesting that an AR(1)04
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Table 1: Summary of all models fitted to the data, including overall fit to the observed
data via the DIC, model complexity via the effective number of independent parameters
(p.d), and predicitve ability via the log marginal predictive likelihood (LMPL).

Quantity
W Spatio-temporal correlation model
matrix AR(1) - I AR(1) - L AR(2) - I AR(2) - L
D=3 68,424 68,461 62,276 68,313

DIC D=5 68,139 68,171 68,014 68,057
D=7 67,982 68,028 67,888 67,915
D=3 2,330 2,372 2,487 2,524

p.d D=5 2,579 2,612 2,689 2,720
D=7 2,735 2,757 2,802 2,834
D=3 -34,050 -34,065 -33,928 -33,941

LMPL D=5 -33,828 -33,842 -33,726 -33,739
D=7 -33,694 -33,722 -33,619 -33,631

temporal autocorrelation structure is not entirely sufficient for capturing the05

temporal autocorrelation in the data.06

Finally, the fitted values from each model were plotted against the ob-07

served values, and in all cases good agreement was seen with no large outliers08

suggesting a lack of fit for individual data points. The estimated proportions09

{θ̂ktj} were also relatively similar for all models, with for example the dif-10

ferences between the AR(1) Leroux CAR model with D = 3 and the AR(2)11

Intrinsic CAR model with D = 7 (the two most dissimilar models) ranging12

between -0.06 and 0.06 on the proportion scale for both Covid-19 and SE113

call classifications.14

4.3. Multivariate spatio-temporal correlation structures15

The spatio-temporal and between outcome correlations estimated by each16

model are summarised in Table 2, which presents point estimates (posterior17

medians) and 95% credible intervals for key model parameters. The table18

shows that the estimated proportions of calls classified as Covid-19 and SE119

have similar levels of spatio-temporal variation, as the posterior medians of20

(Σ11,Σ22) are similar for both models, albeit slightly larger for SE1 calls in21

all cases. The values of both (Σ11,Σ22) increase with increasing numbers22

of spatial neighbours D, which occurs because the conditional distribution23

of φkt|φ−kt has a covariance matrix including the elements of Σ divided by24

a function of
∑K

r=1wkr. Thus as the average number of neighbours (con-25
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trolled by D) increases the conditional variance is divided by a bigger num-26

ber, leading to the inflation of (Σ11,Σ22). The table also shows substantial27

between outcome (call classification) correlations, which are computed by28

(Σ12/
√

Σ11Σ22) and are very close to one for all models.29

The levels of spatial dependence estimated by the Leroux CAR models30

are high because the posterior medians for ρ are close to or equal to 1 for all31

models, which corresponds to the intrinsic CAR model (where ρ is fixed at32

1) for strong spatial dependence. Thus for these data there is little difference33

between the Intrinsic and Leroux CAR models, with the former having a34

better DIC due to it having a lower p.d as it does not need to estimate ρ.35

Substantial temporal dependence is also present in these data, because in36

the AR(1) and AR(2) models the respective 95% credible intervals for α and37

(α1, α2) are not close to zero which would represent temporal independence.38

4.4. (a) Scotland-wide spatio-temporal trend in the pandemic39

The remainder of this section presents the estimated spatio-temporal trend40

in the Covid-19 pandemic during its first wave in Scotland. All results relate41

to the AR(2) Intrinsic CAR model with D = 7, because this was shown to be42

the best model via both the DIC and LMPL metrics, as well as adequately43

capturing both the temporal and spatial correlations in the data.44

The estimated (posterior median) proportions of calls {θ̂kt1, θ̂kt2} to NHS45

24 classified as Covid-19 and SE1 are displayed in the bottom panel of Figure46

1, which has the same format as the top panel of the same figure, with Covid-47

19 in red and SE1 in blue. The estimated proportions exhibit much less noise48

than the raw proportions due to the spatio-temporal smoothing applied by49

the model, and the peak in the average proportions is 0.42 for Covid-19 and50

0.49 for SE1 in the week beginning 23rd March. The trends in the estimated51

proportions are shown by generalised additive model curves, and the curve52

for SE1 is unimodal and has a steeper ascent and descent compared to the53

Covid-19 curve.54

In contrast, the Covid-19 curve exhibits a second local maximum on55

the week beginning 13th April, and the very limited available data on con-56

firmed cases at a national level also suggests the existence of a double peak57

(for details see https://public.tableau.com/profile/phs.covid.19#!/58

vizhome/COVID-19DailyDashboard_15960160643010/Overview). This dou-59

ble peak in the confirmed cases occurs slightly later with around a 2 week60

lag compared to the NHS 24 calls, which is likely to be partially caused by61

testing and reporting delays as the testing infrastructure was less advanced62
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than it is now. The average (over Scotland) estimated proportions of calls63

classified as Covid-19 for the weeks beginning 15th June onwards are lower64

than the average for 2nd March (the first week of the data), suggesting that65

the majority of the first wave of the pandemic had come to an end by this66

point.67

The spatio-temporal trend in the Covid-19 classifications is summarised68

in Figure 2, which displays maps for the first and last week of the study as69

well as for the two peaks in the estimated proportions (23rd March and 13th70

April) highlighted above. The figure shows that most PDs have relatively71

low proportions of calls in the first and last weeks below 0.2, while most PDs72

have increased proportions between 0.3 and 0.6 during the two weeks of peak73

Covid-19 activity. The figure also shows that the proportions of NHS 24 calls74

classified as Covid-19 do not show a pronounced spatial trend for any of the75

weeks, and instead show pockets of higher proportions in different parts of76

the country.77

4.5. (b) PD specific temporal trends78

The previous section suggested that on average the first wave of the pandemic79

peaked in Scotland in the week beginning 23rd March, and had reduced back80

to baseline levels seen at the beginning of March by 15th June. However, our81

second motivating question is to assess whether the pandemic hit some parts82

of Scotland earlier than other parts. Our hypothesis is that the pandemic83

would be likely to affect more connected urban areas before it affected more84

remote rural ones, due to the former’s greater levels of population density85

(and hence mixing) and easier access to travel via proximity to airports.86

To assess this Figure 3 displays maps for each PD displaying: (A) the87

week that θ̂kt1 was at its highest, which represents the peak of its first wave;88

and (B) the first week after this peak that θ̂kt1 was smaller than its value in89

the first week (i.e. smaller than θ̂k11), which approximately represents the90

end of its first wave of infection. The maps relate to Covid-19 rather than the91

SE1 classification, because the previous section highlighted that the double92

peak observed in the Covid-19 trend (see Figure 1) resembles the limited93

testing data at a national level more closely than the single peak from the94

SE1 trend.95

The figure shows that 62% of the PDs exhibited their peak in Covid-96

related calls during the week beginning 23rd March, with the 7% of the97

PDs that exhibited their peak two weeks earlier mainly being located around98

the largest city of Glasgow. In contrast, those PDs exhibiting later peaks99
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Figure 2: Maps displaying the proportions of NHS 24 calls classified as Covid-19 in four
weeks of the pandemic.
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(coloured red on the map) are mainly rural areas, with 20% of the PDs00

peaking in the week beginning 13th April. These PDs with later peaks are01

mostly in the more remote northern parts of Scotland that are away from02

the main cities. The right panel of Figure 3 displays the first week that03

the Covid-19 related calls were below their March 2nd levels, and a bimodal04

pattern is evident with 31% of PDs achieving this by 25th May while 40% met05

this by 15th June. In addition, 4% of the PDs had not seen their Covid-1906

related calls drop below the 2nd March levels by the end of July, suggesting07

that in some areas the first wave of the pandemic had not yet finished by08

the end of our study. Finally, there is no clear urban-rural divide in these09

approximate end times of the first wave of the pandemic, which suggest that10

whilst urban areas were mainly affected first, they did not necessarily see the11

end of the wave first.12

5. Discussion13

This paper has developed a multivariate spatio-temporal model for quantify-14

ing the spread of Covid-19 in Scotland during the first wave of the pandemic,15

which was a period with limited testing capacity resulting in large numbers of16

infected people whose disease status was not confirmed by a diagnostic test.17

As a result we quantified the spatio-temporal dynamics of Covid-19 spread18

using proxy data from the national telehealth service NHS 24, who members19

of the public were advised to call if they experienced symptoms. The model20

estimates the joint spatio-temporal trends in the proportions of calls to NHS21

24 classified as either Covid-19 directly or as having related symptoms (called22

SE1), and a simplification of the model using only the Covid-19 classification23

was run on a weekly basis by Public Health Scotland during the first wave of24

the pandemic as new data became available to monitor the likely locations25

of new outbreaks.26

Modelling the spatio-temporal dynamics in the NHS 24 data allows us27

to study the spread of the pandemic at a small-area scale, albeit with a28

proxy measure of infection rates. However, as previously discussed testing29

capacity was severely limited in this initial stage of the pandemic, and hence30

data on confirmed cases would also only be a proxy measure of the true31

infection rates. Additionally, due to the small numbers of positive tests in32

this phase of the pandemic, small-area testing data are not available for33

confidentiality reasons, making it impossible to study the spread of the virus34

at the small-area scale using confirmed case data. Thus while telehealth data35
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Figure 3: Maps displaying for each PD the weeks when the estimated proportions for the
Covid-19 classification: (A) peaked; and (B) were below their 2nd March levels signifying
the end of the first wave.
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are imperfect as discussed above, we have illustrated the value of modelling36

them in early stage pandemic situations where reliable confirmed testing data37

are not available.38

The paper has presented a number of findings from our data analysis, the39

first being that the first wave of the pandemic peaked in Scotland in the week40

beginning 23rd March, with a smaller peak 3 weeks later on 13th April. The41

23rd March was the peak of the pandemic for 65% of the PDs, while the 19%42

of the PDs that peaked later than 13th April were largely rural areas in the43

north and west of Scotland. By the end of July all but 4% of the PDs had44

NHS 24 call levels for Covid-19 below the levels observed at the beginning of45

March when the first confirmed case was recorded (2nd March) in Scotland,46

suggesting that the first wave of the pandemic was coming to an end by this47

point.48

Our other main finding is the differential temporal trends in the Covid-1949

and SE1 classifications, with the latter exhibiting a single peak and having a50

steeper decline in proportions after the pandemic peak. This steeper descent51

in its proportions may be because as the pandemic became more prevalent52

from late March onwards people might be more likely to mention Covid-1953

directly when they called NHS 24, hence the proportions of calls attributed54

to SE1 declined to lower levels than those attributed to Covid-19.55

The overarching aim of this paper was to estimate the key dynamics of the56

Covid-19 pandemic at a high spatio-temporal resolution in a retrospective57

manner, which is why no predictive modelling of the proportions of calls58

classified as Covid-19 or SE1 into the future was undertaken. However, the59

temporally autoregressive nature of the models would make such prediction60

straightforward via (6) or (7), and both the proportions {θk,T+1,j} and counts61

{Yk,T+1,j} could be predicted in this way, although for the latter {Nk,T+1,j}62

would also need to be predicted. Thus an area of future work will be to utilise63

these MVST models to predict disease burden into the future, to allow NHS64

managers to predict the amount of health care resources (e.g. hospital beds)65

needed in the future.66

Another area of future work would be to continue the development of67

spatio-temporal modelling tools for telehealth data, because it has clear fu-68

ture applications that extend beyond the early stage pandemic setting con-69

sidered here. Other examples include the routine monitoring of ordinary70

seasonal flu and outbreaks of Norovirus, which would give the NHS better71

information on the likely prevalence of these diseases and where and when72

outbreaks are likely to occur, thus allowing targeted action to be taken in a73
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timely manner.74
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