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Abstract

Modelling the small-area spatio-temporal dynamics of the Covid-19 pandemic
is of major public health importance, because it allows health agencies to bet-
ter understand how and why the virus spreads. However, in Scotland during
the first wave of the pandemic testing capacity was severely limited, meaning
that large numbers of infected people were not formally diagnosed as having
the virus. As a result, data on confirmed cases are unlikely to represent the
true infection rates, and due to the small numbers of positive tests these data
are not available at the small-area level for confidentiality reasons. There-
fore to estimate the small-area dynamics in Covid-19 incidence this paper
analyses the spatio-temporal trends in telehealth data relating to Covid-19,
because during the first wave of the pandemic the public were advised to
call the national telehealth provider NHS 24 if they experienced symptoms
of the virus. Specifically, we propose a multivariate spatio-temporal correla-
tion model for modelling the proportions of calls classified as either relating
to Covid-19 directly or having related symptoms, and provide software for
fitting the model in a Bayesian setting using Markov chain Monte Carlo sim-
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ulation. The model was developed in partnership with the national health
agency Public Health Scotland, and here we use it to analyse the spatio-
temporal dynamics of the first wave of the Covid-19 pandemic in Scotland
between March and July 2020, specifically focusing on the spatial variation
in the peak and the end of the first wave.

Keywords: Covid-19 pandemic, Gaussian Markov random field models,
Scotland, Telehealth data.

1. Introduction

Covid-19 represents the biggest public health challenge in decades, and was
declared a global pandemic by the World Health Organisation on 11th March
2020. The disease originated in the city of Wuhan in the People’s Republic of
China in December 2019, and reached the USA and Europe towards the end
of January 2020. The first European epicentre for Covid-19 was in northern
Italy in February 2020, and in Scotland, the focus of this paper, the first con-
firmed case occurred on the 2nd March 2020 (Public Health Scotland, https:
//www.opendata.nhs.scot/dataset/covid-19-in-scotland). Since then
Covid-19 has spread across the world causing global health and economic
devastation, and as of 30th March 2021 there have been over 127 million
cases worldwide with over 2.7 milion people sadly dying from the disease
(Johns Hopkins Coronavirus Resource Centre, https://coronavirus. jhu.
edu/map.html).

Unsurprisingly, modelling the spread and dynamics of the Covid-19 pan-
demic has become a research priority, and there is a quickly growing research
literature in this area. This literature has focused on a range of important
epidemiological topics, including: (i) predicting the spread of the pandemic
and its impacts on healthcare systems (Remuzzi and Remuzzi, 2020); (ii)
identifying the factors that make people more at risk of displaying severe
symptoms (Conticini et al., 2020, Wu et al., 2020 and Konstantinoudis et al.,
2021); (iii) identifying the wider health impacts of the pandemic (Douglas
et al., 2020); and (iv) developing surveillance systems for identifying the
spatio-temporal dynamics in disease incidence (Dong et al., 2020). Develop-
ing a small-area surveillance system for monitoring the spatio-temporal trend
in Covid-19 incidence is a vital tool in the fight against the virus, because
it allows public health agencies to monitor its spread and identify hot-spots
with high incidence, as well as providing vital clues as to how and why the
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virus spreads more easily in certain areas.

The focus of this study is Covid-19 surveillance in Scotland, which is
currently in its second wave of infection since September 2020. During this
second wave the spatio-temporal spread of the pandemic can be measured
using data on positive tests at the small-area scale, which is due to Scot-
land having a wide-spread testing programme during this period. This
programme allows any member of the public to book a test at https:
//www.gov.uk/get-coronavirus-test, and well over 15,000 tests are con-
ducted each day. However, during the first wave of the pandemic between
March and July 2020 Covid-19 testing capacity was strictly limited to priority
groups, because there was a lack of infrastructure to allow large-scale test-
ing. For example, in March 2020 only 350 tests could be conducted each day
(https://www.gov.scot/publications/foi-202000084813/), which rose
to 1,900 in April 2020. Therefore in this first wave the public were not able
to access a diagnostic test to determine if they had the virus unless a test
was recommended by a doctor. Instead, anyone experiencing symptoms was
advised to phone the national telehealth service NHS 24 for medical advice,
and was then asked to self-isolate at home. As a result data on confirmed
Covid-19 cases will not provide a detailed picture of the spatio-temporal
spread of the virus during this first wave, because only a very small fraction
of the actual cases were confirmed by a positive test.

Due to this massive under-reporting the aim of this paper is to use proxy
indicators of disease incidence to quantify the small-area spatio-temporal
dynamics of the Covid-19 pandemic in Scotland during its first wave of in-
fections. Specifically, we aim to estimate both Scotland-wide and small-area
temporal trends in disease incidence, focusing on both the peak and the end
of this first wave. As people with symptoms during this first wave were ad-
vised to phone NHS 24 for medical advice, we model data on the numbers
of NHS 24 calls categorised as Covid-19 or having related symptoms at the
small-area scale on a weekly basis. The model we developed was run by
analysts in Public Health Scotland (PHS) on this proxy measure of disease
incidence on a weekly basis during the first wave of the pandemic, allowing
them to better understand the spread of the virus and target public health
interventions appropriately at areas likely to exhibit the greatest risks.

Our model is a multivariate binomial spatio-temporal random effects
model, with inference in a Bayesian setting using Markov chain Monte Carlo
(MCMC) simulation. It jointly models the spatio-temporal variation in the
numbers of calls to NHS 24 directly categorised as Covid-19, as well as those
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calls categorised with related symptoms such as fever and difficulty breath-
ing, the latter ensuring that potential local outbreaks are not missed due to
calls being misclassified. In developing this model the key methodological
challenge we address is the complex multivariate spatio-temporal structure
of the data, which means we need to capture spatial, temporal and between
call type correlations.

The development of multivariate space-time (MVST) models for disease
risk modelling is a relatively new advance, with Carroll et al. (2017) and Law-
son et al. (2017) proposing innovative mixture models, Quick et al. (2017)
proposing a fully MVST Gaussian Markov Random Field (GMRF, Rue and
Held, 2005) model, while Jack et al. (2019) combine separate simpler multi-
variate spatial and multivariate temporal processes. The model we propose
here is most similar to that proposed by Quick et al. (2017), because it uses
a Gaussian Markov Random Field prior distribution applied to a set of ran-
dom effects to model the multivariate spatio-temporal correlations inherent
in the data. Our model extends that of Quick et al. (2017) by considering
first and second order temporal autoregressive dependence structures, as well
as allowing for varying strengths of spatial correlation via the Leroux spa-
tial correlation model (Leroux et al., 2000). The NHS 24 telehealth data for
the first wave of the pandemic that we analyse are described in Section 2,
while our multivariate spatio-temporal model is presented in Section 3. Our
surveillance model is applied to the Scottish telehealth data in Section 4,
while Section 5 concludes the paper.

2. Covid-19 telehealth data in Scotland

2.1. NHS 24 and the study region

NHS 24 (https://www.NHS24.scot/) is Scotland’s national telehealth ser-
vice, and gives the public phone access to non-emergency medical advice
24 hours a day and 7 days a week when their regular primary health care
providers are closed. NHS 24 deals with around 1.5 million calls per year and
serves a population of around 5.4 million people, and at peak demand answers
around 14,500 calls over the course of a weekend. Data were obtained from
Public Health Scotland (PHS, https://publichealthscotland.scot/) on
the weekly numbers of calls to NHS 24 for Covid-19 and other similar con-
ditions during the first wave of the pandemic, which spanned N = 22 weeks
from the week beginning 2nd March 2020 to the week beginning 27th July
2020 inclusive. A weekly temporal scale was used because it smooths out the

4
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large amount of noise in the daily data caused by small numbers of calls and
known day of the week effects, the latter including the fact that there are
more calls during the weekends when doctors surgeries are closed.

The data have been aggregated to the 444 postcode districts (PD) within
Scotland, and a shapefile containing the spatial boundary information for
these PDs was obtained from the National Records for Scotland (https:
//www.nrscotland.gov.uk). This spatial boundary information did not in-
clude 8 of the PDs in the data set, but as these PDs only accounted for
44 NHS 24 calls out of a total of 524,036 calls they were removed from the
study region. After removing these PDs there were 1005 instances (PD and
week combinations) with no NHS 24 calls at all, which were spread relatively
evenly across the 22 weeks with between 34 and 56 instances each week.
Therefore, to ensure a rectangular data set for analysis, only the K = 328
PDs having at least 1 NHS 24 call (about any illness) per week were retained
in the study region. The PDs removed from the data only accounted for
0.7% of the total calls to NHS 24, and were mostly sparsely populated rural
or industrial / commercial areas.

2.2. Data available

For the kth PD and tth week the data comprise the following counts of the
numbers of calls to NHS 24: (i) Ny, - the total number of calls to NHS 24; (ii)
Yit1 - the number of calls classified as Covid-19; and (iii) Yy - the number
of calls classified as Simple Estimate 1 (hereafter SE1), which is a set of
symptoms potentially related to Covid-19 including cold, flu, coughs, fever
and difficulty breathing. The latter is modelled here to ensure that potential
local outbreaks are not missed due to a misclassification of calls. The clas-
sification for Covid-19 was only initially available from 14th April onwards,
but was back-predicted to 2nd March using a prediction model developed by
PHS to allow trends to be modelled over the peak of the first wave of the
pandemic. The prediction model was developed using NHS 24 call data from
mid April to the end of May relating to respiratory and gastrointestinal syn-
dromes plus the patients age. The prediction performance of this model had
a specificity of 96% and a sensitivity of 75%, with an area under the curve
(AUC) of 0.88. Therefore to ensure the Covid-19 series covers the peak of
the first wave of the pandemic, we treat these predictions as observed data.
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2.3. Limitations with the data

As discussed in the introduction wide-scale testing of Covid-19 was not avail-
able during the first wave of the pandemic, and the public were instead
advised to phone NHS 24 if they developed Covid-like symptoms. These
considerations motivate our use of the NHS 24 data as a proxy measure of
disease incidence, but one must be cognisant of the issues that arise with
these data not relating to laboratory confirmed cases. The main issue is
misclassification of calls, because a person phoning NHS 24 with Covid-like
symptoms does not mean they actually have the virus. Furthermore, the
NHS 24 call handler may misdiagnose the patients symptoms, and hence
wrongly classify them as having or not having Covid-19. This potential for
misclassification is why we jointly model calls classified as Covid-19 and SE1,
and examine the similarities and differences in the spatio-temporal dynamics
of both classifications. Furthermore, each NHS 24 call can actually have mul-
tiple classifications, and as expected there is substantial overlap in the calls
classified as Covid-19 and SE1. In fact, the total number of calls classified
as Covid-19 or SE1 is sometimes greater than the total number of calls, i.e
Y1+ Yo > Ny, particularly where N, is small. Thus in the next section we
model these two classifications as a correlated multivariate binomial process
rather than with a multinomial distribution.

A further potential issue with using the NHS 24 data as a proxy measure
of disease incidence is that an individual may call NHS 24 more than once
during a week, either for different or for the same reason. Hence the data
we model relate to the numbers of calls to NHS 24 rather than the number
of individuals who call NHS 24. However, the number of individuals who
call NHS 24 multiple times for Covid-like symptoms within a week should be
low, because the NHS 24 call handlers are trained to provide expert medical
advice, precluding the need for multiple calls by the same individual. Thus
despite these limitations the NHS 24 data provide the most comprehensive,
if imperfect, data source for quantifying the spatio-temporal dynamics of the
first wave of the Covid-19 pandemic across Scotland, which is why we model
them here.

2.4. FExploratory analysis

The correlations between the proportions of calls, éktj = Yju; /N, classified as
Covid-19 (j = 1) and SE1 (j = 2) across all PDs for each week range between
0.60 and 0.94, suggesting there is a strong relationship between them. This
is further evidenced by the top panel (A) of Figure 1, which displays the

6
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temporal trends in these raw proportions. In the figure jittering has been
added to the week beginning (horizontal) dimension to improve the visibility
of the points, and the proportions for Covid-19 are in red while those for SE1
are in blue. The trend line in each case has been estimated using generalised
additive model (GAM) smoothing. The figure shows a number of key points,
the first of which is large amounts of noise in the data arising from small
numbers of calls in some PDs, with sample proportions equal to 0 or 1 in
6.4% (Covid-19) and 7.4% (SE1) of week and PD combinations respectively.
Secondly, the temporal trends are broadly similar for Covid-19 and SE1,
showing a rise in the proportions from the 2nd March, a peak around 23rd
March, a decrease until 1st June, and a generally steady state since then.
Thirdly, the figure shows that the dominant classification seems to change
around the week beginning 6th April, with more calls classified as SE1 before
that date and more Covid-19 calls after that date. This may be an artifact of
the prediction model used to back-predict the Covid-19 classification before
14th April, or alternatively it may be that as the pandemic became more
prevalent from late March onwards people might be more likely to mention
Covid-19 directly when they called NHS 24.

The median lag-1 temporal autocorrelation coefficients across the K =
328 PDs are respectively 0.54 (Covid-19) and 0.70 (SE1), which suggests
these data are likely to exhibit temporal autocorrelation as expected. The
raw proportions also exhibit spatial autocorrelation, which was quantified
for each week and call classification using Moran’s I (Moran, 1950) statistics
and a corresponding Monte-Carlo p-value to test the null hypothesis of no
spatial autocorrelation. The computation of Moran’s I statistic requires an
adjacency or neighbourhood structure between the K PDs to be specified,
and details of its construction that accounts for the fact that PDs with no
NHS 24 calls have been removed is given in the model specification in Section
3.2. From these Moran’s I tests 41% (Covid-19) and 23% (SE1) of these
weekly p-values were significant at the 5% level, suggesting that despite the
noise in these raw proportions, spatial autocorrelation is likely to be present
in the data.

2.5. Aims of the analysis

Thus as the data exhibit spatio-temporal and between call type correlations
contaminated by noise due to small numbers, a multivariate spatio-temporal
smoothing model is proposed in the next section to estimate the underlying
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additive model smoothed trend lines superimposed. The points have been jittered in the
Week Beginning (horizontal) direction to improve their visibility. Panel (A) relates to
the sample proportions and panel (B) to the estimated proportions from the final model
(AR(2) Intrinsic CAR model with D = 7).
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trends in these data. Specifically, our 2 underlying goals when modelling
these data are to:

(a) Estimate the Scotland-wide spatio-temporal trend in disease incidence
across the first wave of the pandemic.

(b) Estimate the spatial variation in this overall trend, particularly the
extent of the spatial variation in when each PD in Scotland reached its
peak and the end of its first pandemic wave.

3. Methodology

This section proposes a new multivariate spatio-temporal (MVST) model for
estimating the spatio-temporal trends in the proportions of NHS 24 calls
classified as either Covid-19 or having related symptoms (SE1). The model
is fitted in a Bayesian setting using MCMC simulation, using a combination
of Gibbs sampling and Metropolis-Hastings steps. Software to implement the
model in R is available in the CARBayesST package (Lee et al., 2018), which
allows others to apply the MVST models considered here to their own data.

8.1. Level 1 - Data likelihood model

Let Yj; denote the number of calls to NHS 24 in the k&th PD (k=1,..., K)
during the tth week (t = 1,..., N) for the jth outcome (j = 1,...,J), where
for our data j = 1 is Covid-19 and j = 2 is SE1. Additionally, let Ny, denote
the total number of NHS 24 calls in the kth PD and tth week. Then as the
two outcomes (call classifications) are not disjoint as described in Section 2,
a multinomial model is not appropriate for these data. Instead, we model
these data as conditionally independent binomial distributions, where the
spatio-temporal and between outcome (auto) correlations are modelled by
random effects at the second level of the model hierarchy. The first level of
the hierarchical model is given by:

Yi; ~ Binomial( Ny, Ox;) (1)
Ortj
In [ —Y = . .
" (1 - ekt) b+ Py

Here, 0, is the true unknown proportion of calls (or probability that a
single call) to NHS 24 in PD k during week ¢ that is due to outcome j, and the
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spatio-temporal variation in the estimated {éktj} provides a proxy measure of
the incidence of the virus in the absence of comprehensive testing data. We
do not include any covariates in our model for two reasons, the first of which
is that our aim is to estimate the spatio-temporal trends in {fy;} via the
random effects { ¢y }, rather than explaining what factors are associated with
these trends. Secondly, up-to-date temporally varying covariate information
is not available on a weekly basis, meaning that it would not be available
to include in the model. The intercept terms §; are outcome specific, which
allows the two call types to have different average proportions over all PD
and time period combinations. We assign weakly informative independent
Gaussian prior distributions given by 3; ~ N(0, 100, 000) to these outcome
specific intercept terms, which allow the data to play the dominant role in
estimating their values.

3.2. Level 2 - Multivariate spatio-temporal random. effects model

The remaining term in (1) {¢x;} are random effects, which are the mecha-
nism for estimating the smooth multivariate spatio-temporal trends in {6y,;}
for all outcomes. As such, the prior distribution for these random effects
must induce (auto)correlations in time, space and between outcomes. The
entire set of random effects are denoted by ¢ = (¢, ..., ¢y), where ¢, =
(dyss- - Pgy) denotes the set of K x J random effects at time ¢, while
G = (Oki1s - - -, Gurs) denotes the subset of these effects at the kth PD for
all J outcomes. As mentioned earlier MVST models are in their infancy for
areal unit data, and we follow the general approach of Quick et al. (2017)
and propose a zero-mean multivariate Gaussian Markov random field (Rue
and Held, 2005) model for ¢. The general form of the model is given by

¢ ~ N (0, [D(a) ® QW, p) @ 2—1]‘1) , 2)

where ® denotes a Kronecker product. The precision matrix is given by
P(a,p,X) = D(a) ® Q(W,p) ® 7!, where D(a)yyn controls the tem-
poral autocorrelations, Q(W, p)x«x controls the spatial autocorrelations
and X ;. captures the between outcome correlations. The precision ma-
trix P(a, p, ¥) is sparse because both [D(a), Q(W, p)] are sparse as they
are built from specific cases of GMRFs (described below), which enables
computationally efficient Bayesian inference by making use of their triplet
form representation. As the model is defined in terms of its precision matrix

10
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P(a, p, ¥) rather than its covariance matrix, multivariate Gaussian theory
gives the following partial (auto)correlations for (¢x:j, ¢rsi) conditional on
the remaining random effects ¢_; .

—D(a)sQ(W, p)ir (2-1)1‘@‘

Corr(Prej, Proil P_kijrsi) =

(3)
In what follows we now discuss the three components of the precision
matrix in turn.

3.2.1. Between outcome correlation

The between outcome covariance matrix 3 is not assigned a specific struc-
ture, and is instead assigned the following conjugate Inverse-Wishart prior
distribution

3 ~ Inverse-Wishart(d, €2). (4)

The hyperparameters are set at (d = J + 1,2 = 0.01I) where I is the
identity matrix, and are chosen to ensure it is only weakly informative.

3.2.2. Spatial autocorrelation
Spatial autocorrelation is modelled by a conditional autoregressive (CAR)
prior, which is a special case of a GMRF. The prior requires the specification
of a K x K neighbourhood or adjacency matrix W = (wy,) that quantifies
the spatial closeness between each pair of PDs. Here we adopt a binary
specification where wy, = 1 if PDs (k,r) are spatially close together, and
wyg = 0 otherwise, with wy, = 0 V k. The most common approach in the
literature is to specify W via the border sharing rule, that is wy, = 1 if areas
(k,7) share a common border and wy, = 0 otherwise. However our study
region has numerous islands, as well as additionally a number of mainland
PDs with no NHS 24 calls that have therefore been removed. As a result this
border sharing specification leads to a corresponding graph with 15 separate
unconnected components, one main one containing most of the areas, 7 small
components containing between 2 and 8 areas, and 7 additional isolates with
no neighbours at all.

Therefore to obtain a neighbourhood structure with all the PDs in a single
connected component we use the D-nearest neighbours rule (after removing

11
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the PDs with no NHS 24 calls), which first represents the location of each
PD by its centroid (central point). Then based on these centroids it specifies
wy, = 1 if the rth PD is one of the D nearest PDs to the kth PD, and wy, = 0
otherwise. This leads to an asymmetric W matrix, which is made symmetric
for the purposes of fitting the model by if wy, = 1 and w,, = 0 then setting
wyr = 1. In the analysis in the next section we consider D = 3,5, 7 to assess
the sensitivity of our results to this choice. Further details on specifying
neighbourhood matrices can be found in Bivand et al. (2013). Based on W
we model the spatial autocorrelation via the CAR prior proposed by Leroux
et al. (2000), which corresponds to the following spatial precision matrix

Q(W,p) = p(diaglW1] - W)+ (1 - p)L (5)

Here (1,I) are a K x 1 vector of ones and the i x K identity matrix re-
spectively, while diag[W1] denotes a diagonal matrix with diagonal elements
W x 1, so that the kth diagonal element is given by Zfil wgi. This spec-
ification models (¢xj, ¢ri;) as partially spatially autocorrelated if wy, = 1
and conditionally independent if wy, = 0, which can be seen from (3) and
the fact that for k # r Q(W, p)g, = —pwyg,. This also illustrates that p is
a global spatial dependence parameter, with a value of 0 corresponding to
spatial independence. In contrast, if p = 1 the model captures strong spatial
autocorrelation and simplifies to the intrinsic CAR model proposed by Besag
et al. (1991), and this simplification was used to capture spatial correlation
by Quick et al. (2017) within an MVST setting. We specify a non-informative
uniform prior on the unit interval for p, i.e. p ~ Uniform(0, 1), which pro-
vides equal prior weight for all allowable values of p and allows the data to
play the dominant role in estimating its value.

3.2.3. Temporal autocorrelation

Temporal autocorrelation is modelled using either first order or second or-
der autoregressive processes, which are both special cases of a GMRF. This
extends the work of Quick et al. (2017) who only consider the first order
case. The joint distribution for ¢ from (2) in each case can be decomposed
as described below.

A - First-order autoregressive process

For a first-order autoregressive process the joint prior distribution f(¢) can
be decomposed as

12



333

334

335

336

337

338

339

340

341

342

N

f@) = f@)]] (i) (6)

t=2

- N(o,

o.[aw.p) ez ) I[N (s

aP,_;. [Q(W,p) ® 271}71) )

which is combined with the improper non-informative prior f(«) o< 1.
This specification corresponds to a tridiagonal matrix for D(«) with entries

B 1+a?® fort=1,...,N —1
D(e)e: = { 1 fort =N ’
D(a)ii-1 = —a fort=2,... N.

Thus from (3) it is clear that (¢g;, ¢rs;) are conditionally independent if
se¢{t—1,tt+1}.

B - Second-order autoregressive process
For a second-order autoregressive process the joint prior distribution f(¢)
can be decomposed as

f@) = (@) f(d) [ /( @il 1. bis) (7)
= N(¢:]0. [QW.p) 2 277N ()0, [QW.p) 0 57 7)

N
X HN <¢t
t=3

which is combined with the improper non-informative prior f(ay, as) o< 1.
This specification corresponds to the following sparse matrix for D(a) with

1Py + a2y, [Q(Wa p) @ 2_1} _1> )
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non-zero entries

1+ 03 fort =1
) 1+ai+af fort=2,..., N-2

D(a)is = 1+a? fort=N—1

1 fort =N

e31e%) fort =2
D(a)i—1 = arag —op fort=3,...,.N—1 ,

—Qq fort=N
D(a)ii—2 = —ag fort=3,...,N.

Thus from (3) it is clear that (¢, ¢rs;) are conditionally independent if
sg{t—2,t—1,t,t+1,t+2}.

4. Spatio-temporal dynamics of Covid-19 in Scotland

This section presents the results of fitting the MVST models to the Covid-
19 telehealth data in Scotland during the first wave of the pandemic. In
modelling these data our aims are to: (a) estimate the Scotland-wide spatio-
temporal trend in disease incidence; and (b) estimate when each PD in Scot-
land reached the peak and end of its first pandemic wave.

4.1. Model fitting
We fit 12 different models to the data that have varying spatio-temporal
correlation structures, because it allows us to examine the sensitivity of the
results to model choice. Specifically, we fit models with all possible com-
binations of: (i) first and second order temporal autoregressive structures;
(ii) spatial autocorrelation structures defined by the Leroux (given by (5))
and intrinsic (where p = 1 in (5)) CAR models; and (iii) the neighbourhood
matrix W defined by the D = 3, 5 and 7 nearest neighbours rule. The model
with a temporal first order autoregressive process and the Intrinsic CAR
structure is the closest to that proposed by Quick et al. (2017), while the
models based on a second order autoregressive process and a Leroux CAR
structure are the extensions considered here. In what follows AR(1) / AR(2)
respectively denote models with first and second order temporal autoregres-
sive structures, while (I, L) respectively denote models with intrinsic and
Leroux CAR spatial structures.

Inference for each of these 12 models is based on 3,000 MCMC samples
generated from 3 independent Markov chains. Each chain was burnt in for
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50,000 samples by which time convergence was assessed to have been reached,
and then run for a further 300,000 samples which were thinned by 300 to
greatly reduce their autocorrelation. Convergence was visually assessed using
traceplots and numerically assessed using the Gelman-Rubin diagnostic, and
for the latter none of the values of R were above 1.1, which is suggested as a
convergence criteria by Gelman et al. (2013).

4.2. Model assessment

A summary of the fit of each model to the data is presented in Table 1,
which displays the deviance information criterion (DIC, Spiegelhalter et al.,
2002), the effective number of independent parameters (p.d), and the log
marginal predictive likelihood (LMPL, Geisser and Eddy, 1979). The DIC
measures the overall fit of each model to the data, and the model with an
intrinsic CAR spatial structure and a second order autoregressive temporal
structure fits the data best as it minimises the DIC. However, the overall fits
of all the models are relatively similar, as there is only a 0.8% difference be-
tween the largest and smallest DIC values. The LMPL measures the predic-
tive ability of each model and is calculated as LMPL= 3, - In[f (Yi; [ Y —kt5)],
where Y _j; denotes all observations except for Y,;. The best fitting model is
the one that maximises the LMPL, which is also achieved by the model with
an intrinsic CAR spatial structure and a second order autoregressive tempo-
ral structure. However, in comimon with the DIC the differences between the
models by this measure are also small, being at most 1.3%

The residuals from all models were assessed for the presence of any re-
maining spatial autocorrelation using a Moran’s I permutation test sepa-
rately for each year, and in all cases no significant autocorrelation remained.
The presence of residual temporal autocorrelation was also checked for each
model and PD, by determining whether the lag 1 autocorrelation coefficient
was significantly different from zero at the 5% level. We based on our assess-
ment on the lag one coefficient only because the data only contain N = 22
time periods making estimation of higher lags less reliable, and also because
the Moran’s T test is also only based on first order neighbours. The models
with a second order autoregressive process adequately capture the temporal
autocorrelation in the data, as in all cases only 5% of the sets of tempo-
ral residuals contain significant (at the 5% level) autocorrelation at lag 1.
In contrast, the corresponding percentages for the models with a first order
autoregressive process are between 12% - 14%, suggesting that an AR(1)
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Table 1: Summary of all models fitted to the data, including overall fit to the observed
data via the DIC, model complexity via the effective number of independent parameters
(p.d), and predicitve ability via the log marginal predictive likelihood (LMPL).

Spatio-temporal correlation model

W
Quantity . trix AR(1)-1 AR(1)-L AR(2)-1 AR(2)-L
D=3 68,424 68,461 62,276 68,313

DIC D=5 68,139 68,171 68,014 68,057
D=7 67,982 68,028 67.388 67,915

D=3 2,330 2,372 5,487 2,524

p.d D=5 2,579 2,612 2,689 2,720
D=7 2,735 2,757 2,802 2,834

D=3 34,050 34,065 -33.028  -33,941

LMPL D=5 33828 -33.842 33726 -33.739
D=7 33,604 -33.722  -33619  -33,631

temporal autocorrelation structure is not entirely sufficient for capturing the
temporal autocorrelation in the data.

Finally, the fitted values from each model were plotted against the ob-
served values, and in all cases good agreement was seen with no large outliers
suggesting a lack of fit for individual data points. The estimated proportions
{0r1;} were also relatively similar for all models, with for example the dif-
ferences between the AR(1) Leroux CAR model with D = 3 and the AR(2)
Intrinsic CAR model with D = 7 (the two most dissimilar models) ranging
between -0.06 and 0.06 on the proportion scale for both Covid-19 and SE1
call classifications.

4.3. Multivariate spatio-temporal correlation structures

The spatio-temporal and between outcome correlations estimated by each
model are summarised in Table 2, which presents point estimates (posterior
medians) and 95% credible intervals for key model parameters. The table
shows that the estimated proportions of calls classified as Covid-19 and SE1
have similar levels of spatio-temporal variation, as the posterior medians of
(311, X99) are similar for both models, albeit slightly larger for SE1 calls in
all cases. The values of both (311, ¥9;) increase with increasing numbers
of spatial neighbours D, which occurs because the conditional distribution
of ¢y,|p_;, has a covariance matrix including the elements of ¥ divided by
a function of 2?:1 wg,. Thus as the average number of neighbours (con-
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trolled by D) increases the conditional variance is divided by a bigger num-
ber, leading to the inflation of (X1, ¥22). The table also shows substantial
between outcome (call classification) correlations, which are computed by
(X12/v/211292) and are very close to one for all models.

The levels of spatial dependence estimated by the Leroux CAR models
are high because the posterior medians for p are close to or equal to 1 for all
models, which corresponds to the intrinsic CAR model (where p is fixed at
1) for strong spatial dependence. Thus for these data there is little difference
between the Intrinsic and Leroux CAR models, with the former having a
better DIC due to it having a lower p.d as it does not need to estimate p.
Substantial temporal dependence is also present in these data, because in
the AR(1) and AR(2) models the respective 95% credible intervals for o and
(o, ) are not close to zero which would represent temporal independence.

4.4. (a) Scotland-wide spatio-temporal trend in the pandemic

The remainder of this section presents the estimated spatio-temporal trend
in the Covid-19 pandemic during its first wave in Scotland. All results relate
to the AR(2) Intrinsic CAR model with D = 7, because this was shown to be
the best model via both the DIC and LMPL metrics, as well as adequately
capturing both the temporal and spatial correlations in the data.

The estimated (posterior median) proportions of calls {ék-tl, ém} to NHS
24 classified as Covid-19 and SE1 are displayed in the bottom panel of Figure
1, which has the same format as the top panel of the same figure, with Covid-
19 in red and SE1 in blue. The estimated proportions exhibit much less noise
than the raw proportions due to the spatio-temporal smoothing applied by
the model, and the peak in the average proportions is 0.42 for Covid-19 and
0.49 for SE1 in the week beginning 23rd March. The trends in the estimated
proportions are shown by generalised additive model curves, and the curve
for SE1 is unimodal and has a steeper ascent and descent compared to the
Covid-19 curve.

In contrast, the Covid-19 curve exhibits a second local maximum on
the week beginning 13th April, and the very limited available data on con-
firmed cases at a national level also suggests the existence of a double peak
(for details see https://public.tableau.com/profile/phs.covid.19#!/
vizhome/COVID-19DailyDashboard_15960160643010/0verview). This dou-
ble peak in the confirmed cases occurs slightly later with around a 2 week
lag compared to the NHS 24 calls, which is likely to be partially caused by
testing and reporting delays as the testing infrastructure was less advanced

17



;. " & L. o
MMMM.N AWMMNW MMN a Mmmm.w MWMWW m%.m 1, (4890 °T69°0) 0790 ©  (L89°0X '€8G°0) 8900 L=
B e oY | "z
M%M.N Amwm.% Mmm.m o %mm.m mwmmw Mmmw (0820 689°0) 2890 © (6620 *L89°0) 6890 ¢=d 0
. [4 . . N . 4 . . N
mmmm mmmmw mmmm o mmwmm mmmw MMMW o (2080 €12°0) 2920 © (0180 722°0) 0220 £=a
(000°T ‘666°0) 6660 - (000°T ‘666°0) 666°0 - L=
(000°T “666°0) 000°T - (00071 666°0) 000'T - = J
(000°T ‘000°T) 000'T - (000°T "000°T) 00T - e=q
(866°0 ‘€66°0) 9660 (666°0 ‘866°0) 6660 (L66°0 ‘€66°0) 966°0  (666°0 ‘866°0) 666°0 L=
(L66°0 ‘€66°0) S66°0 (666°0 ‘866°0) 866°0 (L6670 ‘€66°0) €66°0 (66670 ‘L66°0) 8660 ¢=q “RURN/TK
(966°0 ‘266°0) 766°0 (866°0 ‘966°0) L66°0 (966°0 ‘166°0) 7660 (866°0 "966°0) L66°0 e=q
(L£€°0 ‘TLT°0) 20E0 (92€°0 ‘292°0) €62°0 (L0€°0 ‘6€2°0) 2Lz 0 (P00 ‘|€T0) 1LT0 L=
(G0Z°0 ‘€91°0) €81°0 (861°0 ‘8GT°0) 8LT°0 (0ST°0 ‘OF1°0) 6ST°0  (8L1°0 ‘9¢T°0) LCT°0 = g
(680°0 ‘690°0) 6L0°0 (L80°0 ‘890°0) LL0°0 (7L0°0 ‘660°0) £90°0  (2L0°0 ‘¥S0°0) 290°0 e=(
(GT€°0 ‘€52°0) 2820 (61€°0 262°0) LST'0 (262°0 ‘0£2°0) 0920 (8620 ‘1€2°0) 6950 L=a
(261°0 ‘€ST°0) TLT'0 (C6T°0 ‘CCT°0) CLT'O (€21°0 ‘7€1°0) 2510 (LT°0 ‘TET0) TST°0 ¢=A g
(£80°0 ‘90°0) ¥2L0°0 ($80°0 ‘€90°0) ¥20°0 (02070 ‘2S0°0) 090°0  (890°0 ‘TS0°0) 650°0 ¢=a
T- (2)uv I-(2)uv T- (1)yav I-(Duv e Ajrpuenty
[epow uorje[ariod eroduwol-oryedg M :

"S[OPOU 1]} JO [Od WO sIojourered dOURIIRAOD O1[) I0J S[RAINUI J[(IPAID %G PUR SUeIpow Iouw)sod o) Jo Arewitung g o[qe],

18



463

464

466

467

468

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

486

487

488

490

491

492

493

494

495

496

497

498

499

than it is now. The average (over Scotland) estimated proportions of calls
classified as Covid-19 for the weeks beginning 15th June onwards are lower
than the average for 2nd March (the first week of the data), suggesting that
the majority of the first wave of the pandemic had come to an end by this
point.

The spatio-temporal trend in the Covid-19 classifications is summarised
in Figure 2, which displays maps for the first and last week of the study as
well as for the two peaks in the estimated proportions (23rd March and 13th
April) highlighted above. The figure shows that most PDs have relatively
low proportions of calls in the first and last weeks below 0.2, while most PDs
have increased proportions between 0.3 and 0.6 during the two weeks of peak
Covid-19 activity. The figure also shows that the proportions of NHS 24 calls
classified as Covid-19 do not show a pronounced spatial trend for any of the
weeks, and instead show pockets of higher proportions in different parts of
the country.

4.5. (b) PD specific temporal trends

The previous section suggested that on average the first wave of the pandemic
peaked in Scotland in the week beginning 23rd March, and had reduced back
to baseline levels seen at the beginning of March by 15tk June. However, our
second motivating question is to assess whether the pandemic hit some parts
of Scotland earlier than other parts. Our hypothesis is that the pandemic
would be likely to affect more connected urban areas before it affected more
remote rural ones, due to the former’s greater levels of population density
(and hence mixing) and easier access to travel via proximity to airports.

To assess this Figure 3 displays maps for each PD displaying: (A) the
week that Oy, was at its highest, which represents the peak of its first wave;
and (B) the first week after this peak that ékt]_ was smaller than its value in
the first week (i.e. smaller than ékll), which approximately represents the
end of its first wave of infection. The maps relate to Covid-19 rather than the
SE1 classification, because the previous section highlighted that the double
peak observed in the Covid-19 trend (see Figure 1) resembles the limited
testing data at a national level more closely than the single peak from the
SE1 trend.

The figure shows that 62% of the PDs exhibited their peak in Covid-
related calls during the week beginning 23rd March, with the 7% of the
PDs that exhibited their peak two weeks earlier mainly being located around
the largest city of Glasgow. In contrast, those PDs exhibiting later peaks
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(coloured red on the map) are mainly rural areas, with 20% of the PDs
peaking in the week beginning 13th April. These PDs with later peaks are
mostly in the more remote northern parts of Scotland that are away from
the main cities. The right panel of Figure 3 displays the first week that
the Covid-19 related calls were below their March 2nd levels, and a bimodal
pattern is evident with 31% of PDs achieving this by 25¢h May while 40% met
this by 15th June. In addition, 4% of the PDs had not seen their Covid-19
related calls drop below the 2nd March levels by the end of July, suggesting
that in some areas the first wave of the pandemic had not yet finished by
the end of our study. Finally, there is no clear urban-rural divide in these
approximate end times of the first wave of the pandemic, which suggest that
whilst urban areas were mainly affected first, they did not necessarily see the
end of the wave first.

5. Discussion

This paper has developed a multivariate spatio-temporal model for quantify-
ing the spread of Covid-19 in Scotland during the first wave of the pandemic,
which was a period with limited testing capacity resulting in large numbers of
infected people whose disease status was not confirmed by a diagnostic test.
As a result we quantified the spatio-temporal dynamics of Covid-19 spread
using proxy data from the national telehealth service NHS 24, who members
of the public were advised to call if they experienced symptoms. The model
estimates the joint spatio-temporal trends in the proportions of calls to NHS
24 classified as either Covid-19 directly or as having related symptoms (called
SE1), and a simplification of the model using only the Covid-19 classification
was run on a weekly basis by Public Health Scotland during the first wave of
the pandemic as new data became available to monitor the likely locations
of new outbreaks.

Modelling the spatio-temporal dynamics in the NHS 24 data allows us
to study the spread of the pandemic at a small-area scale, albeit with a
proxy measure of infection rates. However, as previously discussed testing
capacity was severely limited in this initial stage of the pandemic, and hence
data on confirmed cases would also only be a proxy measure of the true
infection rates. Additionally, due to the small numbers of positive tests in
this phase of the pandemic, small-area testing data are not available for
confidentiality reasons, making it impossible to study the spread of the virus
at the small-area scale using confirmed case data. Thus while telehealth data

21



Journal Pre-proof

(B)-End
2020-04-13
2020-04-20
2020-04-27
2020-05-04
2020-05-11

2020-05-18
2020-05-25
2020-06-01
2020-06-08
2020-06-15
2020-06-22
2020-06-29
2020-07-06
2020-07-13
2020-07-20
NA

ying for each PD the weeks when the estimated proportions for the
Covid- : (A) peaked; and (B) were below their 2nd March levels signifying

the e

22



536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

are imperfect as discussed above, we have illustrated the value of modelling
them in early stage pandemic situations where reliable confirmed testing data
are not available.

The paper has presented a number of findings from our data analysis, the
first being that the first wave of the pandemic peaked in Scotland in the week
beginning 23rd March, with a smaller peak 3 weeks later on 13th April. The
23rd March was the peak of the pandemic for 65% of the PDs, while the 19%
of the PDs that peaked later than 13th April were largely rural areas in the
north and west of Scotland. By the end of July all but 4% of the PDs had
NHS 24 call levels for Covid-19 below the levels observed at the beginning of
March when the first confirmed case was recorded (2nd March) in Scotland,
suggesting that the first wave of the pandemic was coming to an end by this
point.

Our other main finding is the differential temporal trends in the Covid-19
and SE1 classifications, with the latter exhibiting a single peak and having a
steeper decline in proportions after the pandemic peak. This steeper descent
in its proportions may be because as the pandemic became more prevalent
from late March onwards people might be more likely to mention Covid-19
directly when they called NHS 24, hence the proportions of calls attributed
to SE1 declined to lower levels than those attributed to Covid-19.

The overarching aim of this paper was to estimate the key dynamics of the
Covid-19 pandemic at a high spatio-temporal resolution in a retrospective
manner, which is why no predictive modelling of the proportions of calls
classified as Covid-19 or SE1 into the future was undertaken. However, the
temporally autoregressive nature of the models would make such prediction
straightforward via (6) or (7). and both the proportions {6y r+1 ;} and counts
{Yi 141} could be predicted in this way, although for the latter {Nj 741}
would also need to be predicted. Thus an area of future work will be to utilise
these MVST models to predict disease burden into the future, to allow NHS
managers to predict the amount of health care resources (e.g. hospital beds)
needed in the future.

Another area of future work would be to continue the development of
spatio-temporal modelling tools for telehealth data, because it has clear fu-
ture applications that extend beyond the early stage pandemic setting con-
sidered here. Other examples include the routine monitoring of ordinary
seasonal flu and outbreaks of Norovirus, which would give the NHS better
information on the likely prevalence of these diseases and where and when
outbreaks are likely to occur, thus allowing targeted action to be taken in a
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timely manner.
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