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Abstract 1 

Comprehensive analyses of transport phenomena and thermodynamics of complex 2 

multiphysics systems are laborious and computationally intensive. Yet, such analyses are often 3 

required during the design of thermal and process equipment. As a remedy, this paper puts 4 

forward a novel approach to the prediction of transport behaviours of multiphysics systems, 5 

offering significant reductions in the computational time and cost. This is based on machine 6 

learning techniques that utilise the data generated by computational fluid dynamics for training 7 

purposes. The physical system under investigation includes a stagnation-point flow of a hybrid 8 

nanofluid (Cu−Al2O3/Water) over a blunt object embedded in porous media. The problem 9 

further involves mixed convection, entropy generation, local thermal non-equilibrium and non-10 

linear thermal radiation within the porous medium. The SVR (Support Machine Vector) model 11 

is employed to approximate velocity, temperature, Nusselt number and shear-stress as well as 12 

entropy generation and Bejan number functions. Further, PSO meta-heuristic algorithm is 13 

applied to propose correlations for Nusselt number and shear stress. The effects of Nusselt 14 

number, temperature fields and shear stress on the surface of the blunt-body as well as thermal 15 

and frictional entropy generation are analysed over a wide range of parameters. Further, it is 16 

shown that the generated correlations allow a quantitative evaluation of the contribution of a 17 

large number of variables to Nusselt number and shear stress. This makes the combined 18 

computational and artificial intelligence (AI) approach most suitable for design purposes.  19 

Keywords: Support Vector Regression; Particle Swarm Optimization; Artificial Intelligence; 20 

Hybrid Nanofluid; Porous Media. 21 
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𝑘( permeability of the porous 

medium (𝑚%) 

𝜀 porosity 

𝑘∗ the mean absorption 

coefficient, 

𝜇 dynamic viscosity (𝑁. 𝑠.𝑚0%) 

𝑚 Shape factor 𝜐 kinematic viscosity (𝑚%. 𝑠0() 
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𝜎∗ Stefan–Boltzman constant 

𝑁𝑢 Nusselt number 𝜙(, 𝜙% Solid volume fraction of 

nanoparticles of nanoparticles 1 

and 2. 

𝑝 fluid pressure 𝑃𝑎 𝜑 angular coordinate 

𝑃 non-dimensional fluid pressure  Subscripts 

𝑃/ The initial fluid pressure 𝑃𝑎 ∞ far field 

𝑃𝑟 Prandtl number 𝑓 base fluid 

𝑃𝑆𝑂 Particle Swarm Optimization 𝑛𝑓 nanofluid 

𝑞= heat flow at the wall (𝑊.𝑚0%) ℎ𝑛𝑓 nano-solid-particles 



𝑞< Thermal radiation (𝑊.𝑚0%) 𝑠 Solid 

  𝑤 condition on the surface of the 

cylinder 

	1 

1. Introduction 2 

Conventional analysis of heat transfer (HT) involves development of numerical or theoretical 3 

models of the systems followed by examination of the effects of pertinent parameters on the 4 

rate of HT. Although this approach has been applied to many problems successfully, it 5 

performs best for limited number of parameters. Of course, the existing computational tools do 6 

allow consideration of complex problems with multi-physics. However, interpretation of the 7 

computational results and the incurred computational cost introduce significant drawbacks. As 8 

a result there has been a tendency to avoid analyzing the problems in which several physical 9 

mechanisms can simultaneously affect transport processes. In engineering practice, however, 10 

such situations are frequently encountered. Here, a novel predictive tool based on 11 

computational fluid dynamics and artificial intelligence is presented. The tool is capable of 12 

predicting the complex behaviors of transport and thermodynamic systems with only a small 13 

fraction of the corresponding computational cost. 14 

The system under investigation simultaneously utilises a few methods of HT enhancement 15 

including stagnation flow, porous media and nano-fluid. In the following, the literature on the 16 

combinations of these methods are briefly reviewed. Much attention has been paid to HT in 17 

porous media of industrial applications such as heat exchangers, reactors, burners, dryers and 18 

furnaces [1-3]. Further, applying nanofluids in the HT equipment is an effective method of HT 19 

enhancement [4-6]. Nanoparticles could improve the thermal conductivity of the base fluid [7, 20 

8] and the contact surface area between solid and liquid is increased due to the existence of 21 

porous media [9]. These two factors significantly influence the efficiency of HT processes [10, 22 



11]. Further, if the fluid flows around the quiescent zone, it can be called the stagnation-point 1 

flow (SPF) [12]. SPF of nanofluids is observed in various circumstances like stretching or 2 

shrinking surfaces, sheets, cylinders and rotating disks [13-16]. Sajjadi et al. utilised multi-3 

walled carbon nanotubes–iron oxide/water nanofluid to numerically investigate the effect of 4 

nanoparticles on the rate of natural convection HT in porous media. Lattice Boltzmann 5 

procedure was applied as a solution strategy to study the effects of porosity, nanoparticle 6 

volume fraction, Hartmann number, Rayleigh number and Darcy number. The HT rate and the 7 

Nusselt number improved by enhancing the Darcy number, porosity, Rayleigh number and 8 

adding nanoparticles. However, the Hartmann number demonstrated an inverse trend and 9 

caused a decrease in Nusselt number [17]. In another study, Hayat et al. [18] simulated the 10 

impinging flow in the porous medium around a stretching plate to investigate both HT and flow 11 

characteristics using homotopy analysis method. 12 

A report of simultaneous effects of suction and blowing SPF on the radiative HT of a shrinking 13 

sheet was published by Bhattacharyya and Layek [19]. The wall temperature showed increment 14 

by suction intensification. Manh et al. [20] numerically carried out a study about convection 15 

and radiation HT of a hybrid nanomaterial in a porous tank. These authors considered the effect 16 

of the Lorentz force in their simulation and showed that the HT augmented in the presence of 17 

radiation and increasing the Hartmann number decreased the Nusselt number. In another study, 18 

they modeled a hybrid Fe3O4/MWCNT (multi-walled carbon nanotubes) nanofluid flow 19 

through a porous medium including radiation and magnetic field [21]. 20 

Natural convection HT of the Al2O3-Cu-water as a hybrid nanofluid in a porous cavity was 21 

analysed by Mehryan et al. [22] interestingly, they showed that increasing the volume fractions 22 

of nanoparticles led to a reduction in HT. This suppression was attributed to the kind of porous 23 

medium employed in this study. Ashraf et al. [23] performed an analysis of a convection HT 24 

of a 3D Maxwell fluid radiative flow over a stretching sheet. They demonstrated the effects of 25 



various parameters on the physical quantities in their results. Zhang et al. analytically examined 1 

the effects of three different nanoparticles Cu, Ag and Al2O3 in water flow over a flat plate 2 

affected by magnetic field and radiative HT [24]. 3 

A hybrid nanofluid flow in a double-porous layers of a T-shaped porous medium was 4 

numerically analysed by Mehryan et al. [25] and its natural convection HT under the influence 5 

of a magnetic field was investigated using finite element method and non-equilibrium model. 6 

Higher intensities of the magnetic field and values of thermal conductivity ratio and lowering 7 

the solid-liquid interface convection parameter resulted in augmentation of HT. Makinde and 8 

Mishra [26] examined the radiation of a SPF with nanoparticles through a stretching surface. 9 

The base fluid (water) viscosity was considered to be variable. The effects of different 10 

parameters were studied to obtain their influences on the Nusselt and Sherwood numbers, skin 11 

friction, temperature, velocity and concentration of nanofluid. A cylindrical surface subjected 12 

to catalytic reaction was the case study of Alizadeh et al. [27] to investigate the convective HT 13 

of impinging flow. Their results illustrated the variations of velocity and concentration profiles 14 

and Sherwood and Nusselt numbers. They demonstrated the specific influence of Dufour and 15 

Soret effects and thermal non-equilibrium on the boundary layers and the values of 16 

dimensionless Nusselt and Sherwood numbers. 17 

Aminian et al. presented an investigation of forced convection effects of a hybrid nanofluid 18 

containing Al2O3–CuO–water over a cylindrical porous media. Hartmann and Darcy numbers 19 

were the two basic parameters that dramatically influenced the HT enhancement in the porous 20 

medium [28]. In another study, Abbas et al. [29] scrutinized the convective/radiative HT of a 21 

Casson flow near the stagnation point of a stretching/shrinking sheet. One of the main features 22 

of this research was inclusion of temperature dependent chemical reaction. Sheri and 23 

Shamshuddin [30] discussed the free convection and magnetohydrodynamics analysis of a 24 

micropolar flow with transient chemical reaction over the vertical porous plate. The important 25 



point of their study was consideration of magnetic field, radiative HT and dissipation effects. 1 

A stretching cylinder surrounded by a porous media with SA-Al2O3 and SA-Cu non-Newtonian 2 

Casson fluids flowing through it was analytically modelled by Tlili et al. to check the chemical 3 

reaction and thermal radiation effects. Their results revealed that increasing the thermal slip, 4 

Reynolds number, volume fraction of nanoparticles and magnetic field intensity would reduce 5 

the Nusselt number and HT rate [31]. Muhammad et al. [32] performed an analysis of a 6 

Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge 7 

with motile microorganisms. In another study, Akbarzadeh et al. [33] scrutinized the 8 

Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows 9 

in solar heaters by corrugated absorber plates. Alizadeh et al. [34] analysed the entropy 10 

generation (EG) and HT of a flow around a cylinder embedded in porous materials. The specific 11 

characteristics of their research were thermal non-equilibrium, magnetohydrodynamics and 12 

mixed radiation/radiation HT in the porous medium. 13 

The literature survey shows that although there exist attempts to examine multiphysics 14 

problems, comprehensiveness analysis is still very hard to achieve. This is due to the existence 15 

of multidimensional parametric space that requires very large number of simulations for proper 16 

coverage. To address this issue, a novel method of artificial neural network (ANN) has received 17 

more attention in recent years. It has been applied as an effective remedy in many multi-18 

functional engineering problems such as turbulence [35], porous media [36], multiphase flows 19 

[37] and for analysis, prediction and optimization. 20 

Artificial neural network has been previously utilised in some thermal systems such as heat 21 

exchangers, heat pumps, refrigeration and air-conditioning systems [38]. For instance, Ahmad 22 

et al. [39] studied the temperature distribution in a porous fin model using ANN. The heat 23 

generation and thermal conductivity were considered to be temperature dependent. The 24 

optimized sizing and material of the fins on the heat exchanger wall were the main results of 25 



this research. Abdollahi et al. investigated the variations of HT coefficient and pressure drop 1 

(PD) relevant to a channel fluid flow with internal grooves and curved deflectors installed on 2 

its surface. The ANN technique was applied for configuration of the deflectors to optimize the 3 

PD and HT rate [40]. In another study, the effect of 6 porous baffles in a shell and tube heat 4 

exchanger on the HT and PD was numerically analyzed by Mohammadi et al. with the aim of 5 

ANN. They represented the optimum conditions of the baffle cuts, porosity and permeability 6 

[41]. Abdollahi and Shams [42] utilized ANN method and genetic algorithm to optimize the 7 

best shape and angle of vortex generator and the nanoparticles volume fraction of a flow in a 8 

rectangular channel. For prediction of capillary pressure and permeability data of a multi-phase 9 

flow in a porous media, Liu et al. trained ANN method. They proposed two network structures 10 

for prediction of petro-physical properties [43]. Uysal and Korkmaz developed an ANN model 11 

to estimate the EG and HT of a fluid flow through a mini-channel. The hybrid Ag/MgO 12 

nanoparticles in the base fluid of water was considered as a nanofluid [44]. It follows that 13 

different types of ANNs such as Support Vector Regression (SVR) can be considered as a 14 

reliable and reasonable approach for prediction of the results in problems that are encountered 15 

with various and a large number of non-linear interconnected parameters. 16 

The predictive capabilities offered by ANN could be employed to save the computational 17 

burden incurred in the analysis of complex problems. As an example, in this work, the transport 18 

of heat and thermodynamic irreversibility in a nanofluid flow over a blunt body embedded in 19 

porous media are investigated. The study includes development and use of a machine learning 20 

tool trained by the computationally generated data.  21 

2. Mathematical modelling  22 

2.1.Problem statement  23 

A schematic configuration of the flow and heat transfer problem in this study is illustrated in 24 

Fig. 1. This is involved in a nanofluid flow around an embedded cylinder in a porous medium 25 



under radial HT. A Newtonian, single phase, laminar and steady nanofluid flow is considered. 1 

Local thermal non-equilibrium condition is assumed for a cylinder with infinite length and a 2 

homogenous and isotropic porous medium. The non-axisymmetric characteristics of the flow 3 

past the cylinder is due to non-uniformity of transpiration. It is further assumed that the gravity 4 

applies along the axis of cylinder. Although, there is an external axisymmetric radial SPF 5 

around the cylinder. Non-linear effects could be considered small in the momentum transfer 6 

because of the moderate range of Reynolds number in pore-scale. Finally, the thermal 7 

dispersion effects and flow kinetic energy viscous dissipation are ignored due to constant 8 

specific heat, porosity, thermal conductivity and density. 9 

The solutions can be obtained by solving the governing equations as shown below. 10 

The continuity of mass [36]: 11 

𝜕(𝑟𝑢)
𝜕𝑟 + 𝑟

𝜕𝑤
𝜕𝑧 = 0 (1) 

The momentum equation in radial direction [36]: 12 

𝜌-./
𝜀0 -𝑢

𝜕𝑢
𝜕𝑟 + 𝑤

𝜕𝑢
𝜕𝑧. = 	−

𝜕𝑝
𝜕𝑟 +

𝜇-./
𝜀 3

𝜕0𝑢
𝜕𝑟0 +

1
𝑟
𝜕𝑢
𝜕𝑟 −

𝑢
𝑟0 +

𝜕0𝑢
𝜕𝑧05 −

𝜇-./
𝑘1

𝑢 (2) 

The axial direction momentum transport including buoyancy force [36]: 13 

𝜌-./
𝜀0 -𝑢

𝜕𝑤
𝜕𝑟 + 𝑤

𝜕𝑤
𝜕𝑧. = 	−

𝜕𝑝
𝜕𝑧 +

𝜇-./
𝜀 3

𝜕0𝑤
𝜕𝑟0 +

1
𝑟
𝜕𝑤
𝜕𝑟 +

𝜕0𝑤
𝜕𝑧05 ±

(𝜌𝛽)-./𝑔:𝑇-./ − 𝑇2< −
𝜇-./
𝑘1

 (3) 

The thermal energy transport in the porous medium is given by equations (4) and (5). 14 

The nanofluid phase energy equation [36]: 15 

𝑢
𝜕𝑇-./
𝜕𝑟 + 𝑤

𝜕𝑇-./
𝜕𝑧 =

𝑘-./
:𝜌𝐶3<-./

3
𝜕0𝑇-./
𝜕𝑟0 +

1
𝑟
𝜕𝑇-./
𝜕𝑟 +

𝜕0𝑇-./
𝜕𝑧0 5 +

ℎ4/	. 𝑎4/
:𝜌𝐶3<-./

:𝑇4 − 𝑇-./< 
(4) 

 

The solid phase thermal energy transport: 16 



𝑘4 3
𝜕0𝑇4
𝜕𝑟0 +

1
𝑟
𝜕𝑇4
𝜕𝑟 +

𝜕0𝑇4
𝜕𝑧0 5 − ℎ4/	. 𝑎4/:𝑇4 − 𝑇-./< −

1
𝑟
𝜕
𝜕𝑟
(𝑟. 𝑞5) = 0 (5) 

The radiative heat flux applying Rosseland approximation [34]: 1 

𝑞5 = −
4𝜎∗

3𝑘∗
𝜕𝑇46

𝜕𝑟  (6) 

Re-writing Eq.(5) leads to: 2 

𝑘4 3
𝜕0𝑇4
𝜕𝑟0 +

1
𝑟
𝜕𝑇4
𝜕𝑟 +

𝜕0𝑇4
𝜕𝑧0 5 − ℎ4/	. 𝑎4/:𝑇4 − 𝑇-./< +

1
𝑟
𝜕
𝜕𝑟 -𝑟.

16𝜎∗

3𝑘∗ 𝑇4
7 𝜕𝑇4
𝜕𝑟 . = 0 (7) 

In the previous studies, the term 𝑇46 in Eq. (6) is developed and linearized about the ambient 3 

temperature 𝑇2 [34-36]. However, a nonlinear form of thermal radiation has been taken into 4 

account in this work. In the above equations,𝑝,	𝑇, 𝜇./, 𝜌-./,𝑘-./and :𝜌𝐶3<-./are the pressure, 5 

temperature, kinematic viscosity, density, thermal conductivity and heat capacitance of the 6 

hybrid nanofluid, respectively. The parameters 	𝛽,𝑞5,	𝑔,𝑇2,𝑘∗ and 𝜎∗ also denote thermal 7 

expansion coefficient, radiative heat flux, gravitational acceleration, prescribed temperature at 8 

the wall, the mean absorption coefficient and Stefan–Boltzmann constant, respectively. These 9 

properties are computed inside the boundary layer and nearby the flow impingement point. 10 

The following conditions are applied for the hydrodynamic boundary conditions. 11 

𝑟 = 𝑎:					𝑤 = 0		,				𝑢 = 0 (8) 

	𝑟 = ∞:					𝑤 = 2𝑘J𝑧	,					𝑢 = −𝑘J 3𝑟 −
𝑎0

𝑟 5 (9) 

The no-slip conditions are assumed for the external surface of the cylinder based on Eq. (8), 12 

where Eq. (9) represents that as r→∞, the viscous flow solution approaches the potential flow 13 

solution [34, 36, 37].Integrating the continuity equation of − 1
5
8(5:)
85

= 8<
8=

 Constant = 2𝑘J𝑧 in 𝑟 and 14 

𝑧 directions verifies this matter.The boundary conditions of this integration are w=0 at z=0 and 15 

u=0 at r=a. 16 



Also, Eq. (10) demonstrates the boundary conditions of the energy balance equation in the 1 

porous region: 2 

𝑟 = 𝑎:					𝑇-./ = 𝑇< =	Constant 

							𝑇4 = 𝑇< =	Constant 

𝑟 = ∞:					𝑇-./ = 𝑇2 

																					𝑇4 = 𝑇2, 

(10) 

Where Tw and T∞ are the cylinder surface and free-stream temperatures. 3 

2.2 Hybrid nanofluid  4 

The hybrid nanofluid implemented in this study was achieved by taking the mixture of Cu 5 

nanoparticles into 0.1vol. of Al2O3/water. The boundary layer equations for this hybrid 6 

nanofluid were analysed by a special form of thermo physical properties. In this model, 𝜙1 is 7 

considered as the solid volume fraction of Al2O3 nanoparticle added to the base fluid and 𝜙0 8 

indicates the various solid volume fractions of Cu added to form the hybrid nanofluid namely 9 

Cu−Al2O3/Water. Table 1 represents these equations needed for the determination of the 10 

effective thermo-physical properties of the nanofluid and hybrid nanofluid [31]. Where 𝑚 = 3 11 

represents for the spherical nanoparticles. Furthermore, Table 2 depicts the thermo-physical 12 

properties of the nanoparticles and the base fluid at 25 °C. In addition, Table 3 shows different 13 

shapes of the nanoparticles along with shape factor and sphericity parameters. 14 

2.3 Self-similar solutions 15 

Similarity transformations of the governing Eqs. (1-7) were carried out based on Eq. (11) to 16 

obtain the dimensionless Eqs. (12) and (13). 17 



𝑢 = −
𝑘J. 𝑎
M𝜂

𝑓(𝜂)	,																			𝑤 = 2𝑘J𝑓	́(𝜂)𝑧	,										𝑝 = 𝜌/𝑘J0𝑎0𝑃 (11) 

where 𝜂 = R5
>
S
0
indicates the dimensionless radial variable.  1 

Substituting Eq. (11) into Eqs. (2), (3) and (4) gives: 2 

𝜀[𝜂𝑓	́	́	́ + 𝑓	́	́] + 𝑅𝑒. 𝐴1. 𝐴0[1 + 𝑓𝑓	́ − (𝑓	́)0] + 𝜀0. 𝜆[1 − 𝑓	́] ± 𝜀0. 𝐴?. 𝜆1. (𝜃< − 1)𝜃-./ = 0 (12) 

𝑃 − 𝑃@ = −
1
2𝜀0 3

𝑓0

𝜂 5 −
1

𝜀. 𝐴1. 𝐴0
[-
𝑓	́
𝑅𝑒. +

𝜆
𝑅𝑒\

𝑓
𝜂 𝑑𝜂

A

1
^ − 2 _

1
𝜀0 +

1
𝐴1. 𝐴0

𝜆
𝑅𝑒` R

𝑧
𝑎S

0
 (13) 

In which 𝑅𝑒 = BC .>!

0E"
is the free stream Reynolds number, 𝜆 = >!

6B#
denotes the reciprocal of Darcy 3 

number, the Grashof number is indicated by 𝐺𝑟 = F.G".>$.H%
1I.E"

!  and 𝜆1 = J5
KL!

= F.G".H%
1I.E"

!  shows the 4 

dimensionless mixed convection. The prime introduces the differentiation with respect to 𝜂. 5 

The boundary conditions for two above equations vary to the following forms with respect to 6 

Eqs. (8), (9), and (10): 7 

𝜂 = 1:										𝑓	́(1) = 0	,										𝑓(1) = 0 (14) 

𝜂 → ∞:										𝑓	́(∞) = 0 (15) 

where Eq. (4) can be non-dimensional. It is edusing the transformation of: 8 

𝜃(𝜂) =
𝑇(𝜂) − 𝑇2
𝑇< − 𝑇2

 (16) 

Thus, there is: 9 

𝑇(𝜂) = 𝑇2[1 + (𝜃< − 1)𝜃] (17) 

Eq. (18) is found as a result of substituting Eqs. (11) and (17) into Eq. (4) by the aim of 10 

neglecting the small dissipation terms. 11 



𝜂𝜃	́	́-./ + 𝜃c-./ + 𝑅𝑒. 𝑃𝑟.
𝐴7
𝐴6
. :𝑓. 𝜃	́-./< +

𝐵𝑖. 𝛾
𝐴7

:𝜃4 − 𝜃-./< = 0 (18) 

The parameter 𝜃< = H&
H%

demonstrates the temperature parameter, 	𝐵𝑖 = -'">'".>!

6B'
denotes the Biot 1 

number and 𝑅M = 1IN∗H%$

7B∗.B'
 stands for the radiative parameter. Hence, the thermal boundary 2 

conditions applied to the nanofluid phase can be expressed by the followings. 3 

𝜂 = 1:										𝜃-./(1) = 1 

𝜂 → ∞:										𝜃-./(∞) = 0 

(19a) 

(19b) 

Substituting Eqs. (11) and (17) into Eq. (7) provides: 4 

𝜂𝜃	́	́4 + 𝜃	́4 − 𝐵𝑖:𝜃4 − 𝜃-./< + 𝑅M .
𝜕
𝜕𝜂 g𝜂.

(1 + (𝜃< − 1)𝜃4)7. 𝜃c4h = 0 (20) 

Here, 𝛾 = B'
B"

 denotes the conductivity ratio.  5 

Thermal boundary conditions applied to the solid phase of the porous medium are introduced 6 

as: 7 

𝜂 = 1:										𝜃4(1) = 1 

𝜂 → ∞:										𝜃4(∞) = 0 

(21a) 

(21b) 

The constants of A1, A2, A3, A4 and A5 in Eqs. (12), (13), (18) and (20) can be calculated as: 8 

𝐴1 = (1 − 𝜙1)0.?(1 − 𝜙0)0.?     ,     𝐴0 = (1 − 𝜙0) _(1 − 𝜙1) + 𝜙1 -
O'#
O"
.` + 𝜙0 -

O'!
O"
. 

𝐴7 = (1 − 𝜙0) i(1 − 𝜙1) + 𝜙1
:𝜌. 𝐶3<4#
:𝜌. 𝐶3</

j + 𝜙0
:𝜌. 𝐶3<4!
:𝜌. 𝐶3</

 

𝐴6 =
𝑘4# + (𝑚 − 1)𝑘/ − (𝑚 − 1)𝜙1:𝑘/ − 𝑘4#<

𝑘4# + (𝑚 − 1)𝑘/ + 𝜙1:𝑘/ − 𝑘4#<
.
𝑘4! + (𝑚 − 1)𝑘P/ − (𝑚 − 1)𝜙0:𝑘P/ − 𝑘4!<

𝑘4! + (𝑚 − 1)𝑘P/ + 𝜙0:𝑘P/ − 𝑘4!<
 

(22) 

 



𝐴? = (1 − 𝜙0) [(1 − 𝜙1) + 𝜙1
(𝜌. 𝛽)4#
(𝜌. 𝛽)/

^ + 𝜙0
(𝜌. 𝛽)4!
(𝜌. 𝛽)/

 

An implicit and iterative tri-diagonal finite-difference scheme was employed for numerical 1 

solving of Eqs. (12), (18) and (20) by applying the boundary conditions (14), (15), (19) and 2 

(21). 3 

2.4 Shear stress and Nusselt number 4 

The following equation is suggested for shear-stress calculation on the cylinder external surface 5 

impinged by the nanofluid flow: 6 

𝜎 = 𝜇-./ _
𝜕𝑤
𝜕𝑟 `5Q>

 (23) 

Where 𝜇-./ is used as the hybrid nanofluid viscosity. The following equation is proposed for 7 

the shear stress over the surface of cylinder using a semi-similar solution according to Eq. (11). 8 

𝜎 = 𝜇-./
2
𝑎 g2𝑘

J𝑧𝑓	́	́(1)h ⇒
𝜎. 𝑎
4𝜇/𝑘J𝑧

=
1
𝐴1
𝑓	́
c
(1) (24) 

The following relations can be used to calculate the local HT coefficient and the rate of HT. 9 

ℎ =
𝑞<

𝑇< − 𝑇2
=
−𝑘-./ -

𝜕𝑇-./
𝜕𝑟 .

5Q>
𝑇< − 𝑇2

= −
2𝑘-./
𝑎

𝜕𝜃-./(1)
𝜕𝜂  

(25) 

𝑞< = −
2𝑘-./
𝑎

𝜕𝜃-./(1)
𝜕𝜂 (𝑇< − 𝑇2) 

(26) 

The Nusselt number is also shown as below: 10 

𝑁𝑢-./ =
ℎ. 𝑎
2𝑘/

= −
𝑘-./
𝑘/

𝜃-./c (1) = −𝐴7. 𝜃-./c (1) (27) 

2.5- Entropy generation (EG) 11 



In the porous region, the following equation is presented to evaluate the volumetric rate of the 1 

local EG [34]. 2 

�̇�	́	́	́FL. =
𝑘-./
𝑇-./0

3
𝜕𝑇-./
𝜕𝑟 5

0

+
𝑘4
𝑇40

[-
𝜕𝑇4
𝜕𝑟 .

0

+
16𝜎∗

3𝑘∗ 𝑇4
7 -
𝜕𝑇4
𝜕𝑟 .

0

^ + ℎ4/𝑎4/:𝑇4 − 𝑇-./< [
1
𝑇-./

−
1
𝑇4
^

+
2𝜇-./
𝑇2

[-
𝜕𝑢
𝜕𝑟.

0

+ R
𝑢
𝑟S

0
+ -

𝜕𝑤
𝜕𝑧.

0

+
1
2 -
𝜕𝑤
𝜕𝑟.

0

^ +
𝜇./
𝑘1𝑇2

[𝑢0 +𝑤0] 

 

 

 

(28) 

 

In which 𝑁J =
Ṙ	́	́	́)*+
Ṙ	́	́	́,

 and �̇�	́	́	́@ =
VB".(H&WH%)!E"

BC .>-.H%!
 define the characteristic EG rate. The dimensionless 3 

form of the local EG (NG) is defined as below through applying the similarly variables provided 4 

by Eqs. (11) and (28): 5 

𝑁J =
𝑅𝑒. 𝐴6. 𝜃<0

g1 + (𝜃< − 1)𝜃-./h
0 g𝜂𝜃	́-./

0 h

+
𝑅𝑒. 𝜃<0

𝛾. [1 + (𝜃< − 1)𝜃4]0
_𝜂𝜃	́40

+
𝑅M

(𝜃< − 1)0
𝜂[1 + (𝜃< − 1)𝜃4]7. [(𝜃< − 1). 𝜃	́4]0`

+ 𝐵𝑖. 𝑅𝑒
𝜃<0

(𝜃< − 1)
:𝜃4 − 𝜃-./<. [

1
1 + (𝜃< − 1)𝜃-./

−
1

1 + (𝜃< − 1)𝜃4
^

+
𝑅𝑒. 𝐵𝑟. 𝜃<
(𝜃< − 1)

1
𝐴1
o[𝜂𝑓	́	́0 + 4𝑓	́0 + -

𝑓
𝜂.

0

− 2
𝑓𝑓	́
𝜂 ^ + 𝜆 [-

𝑓
𝜂.

0

+ 4𝑓	́0^p 

(29) 

 

The Brinkman number is expressed as	𝐵𝑟 = X"(BC .>)!

B"(H&WH%)
 in the above relation. The ratio of EG by 6 

HT to the total EG is introduced as the dimensionless number of the Bejan number. It is defined 7 

as: 8 



𝐵𝑒 = i KL.Y-.Z&!

[1\(Z&W1)Z+"]
! g𝜂𝜃	́-./0 h + KL.Z&!

^.[1\(Z&W1)Z']!
q𝜂𝜃	́40 +

K.
(Z&W1)!

𝜂[1 + (𝜃< − 1)𝜃4]7. [(𝜃< −

1). 𝜃	́4]0rj/_KL.a5.Z&(Z&W1)
1
Y#
s_𝜂𝑓	́	́0 + 4𝑓	́0 + R/

A
S
0
− 2 //	́

A
` + 𝜆 _R/

A
S
0
+ 4𝑓	́0`t` 

(30) 

 

2.6 Grid independency and validation 1 

The grid independency was verified using various mesh densities of 	51 × 18,	102 × 36, 204 × 72, 2 

408 × 144 and 816 × 288 in the numerical solutions. Variations of three different parameters of 3 

the dimensionless velocity and temperature with the mesh density are shown in Fig. 2. As it is 4 

obvious, no considerable changes in the dimensionless velocity and temperature are observed 5 

for (𝜂, 𝜑) grid sizes of (204 × 72), (408 × 144) and (816 × 288). Therefore, the mesh size of 6 

(408 × 144) in 𝜂 − 𝜑 directions was selected and applied to the numerical model. In order to 7 

manage high gradients around the cylinder external surface, a non-uniform mesh was fulfilled 8 

in 𝜂-direction. Although, 𝜑		direction was meshed uniform. The computational region was 9 

extended over 𝜑b>c = 360°	 and 𝜂b>c = 15, wherein 𝜂b>c corresponding to 𝜂 → ∞. In all studied 10 

cases, the entire hydrodynamic and thermal boundary layers were considered for the 11 

computational domain. The computational mesh applied in this work is illustrated in Fig. 2. 12 

The error value of 10Wd was taken into account for the numerical solution convergence. The 13 

numerical error of the performed numerical scheme can be estimated as 𝑂(∆𝜂)0. The 14 

dimensionless velocity and temperature were compared with the literature results for the 15 

validation of the model, in which the flow pasts the infinitely large permeable cylinders with 16 

no transpiration were studied. The results of this comparison are illustrated in Fig. 3. This 17 

shows that the model results are in an excellent agreement with the literature data, which 18 

indicates the validation of the numerical simulations. 19 

3. Artificial Intelligence techniques 20 



In this section, the AI models used in this papers are introduced. It also explains how to use 1 

them to provide proposed equations to estimate Nusselt number and the dimensionless shear 2 

stress. 3 

3.1 SVR (Support Vector Regression) 4 

In this paper, the SVR which presented based on the Support Machine Vector model, is used 5 

for function approximation. SVR is an appropriate model to estimate nonlinear regression 6 

problems. The SVR model adjusts the minimum thickness curve to the data in such a way that 7 

the least error is created for the test data. In this regard, the 𝑀 data set shown in Eq. (31) 8 

includes 𝑥E input vectors and 𝑦E corresponding output. 9 

𝑀 = s
(𝑥e , 𝑦e)|	𝑖 = 1,2, … , 𝑛
			, 𝑥e ∈ 𝑅f	, 𝑦e ∈ 𝑅

t (31) 

𝑛 shows the number of the records in data sets. The goal of the regression analysis is to 10 

determine the function 𝑓(𝑥) in such a way that its estimated output has the least error compared 11 

to the desired output. The regression function can be introduced by the following equation in 12 

which 𝛿 is an uniform error with the distribution of	𝑁(0, 𝜎0). 13 

𝑦e = 𝑓(𝑥e) + 𝛿 (32) 

Firstly, the inputs are mapped in a non-linear manner to a high-dimensional 𝑓-space that is 14 

linearly dependent on the output. For this purpose, Eq. (33) is utilized in which 𝑤 and 𝑏 are the 15 

weight vector and the bias value, respectively. Also, the 𝜑(x) is the function that maps the inputs 16 

from the space 𝑅 to the space 𝑅f×-. 17 

𝑓(𝑥e) = 𝑤𝜑(𝑥e) + 𝑏|𝑤 ∈ 𝑅f×-, 𝑏 ∈ 𝑅 (33) 

A penalty function with Eq. (34) is defined for data that is outside the band. 18 



𝐿h:𝑦e , 𝑓(𝑥e)< = s
0																									|𝑦e − 𝑓(𝑥e)| ≤ 𝜀
|𝑦e − 𝑓(𝑥e)| − 𝜀							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

t (34) 

In SVR, the goal is to find the function 𝑓 in such a way that it deviates from the desired values 1 

by 𝜀 and is still linear. On the other hand, the empirical risk of the function 𝑓 is calculated by 2 

Eq. (35). 3 

𝑅Lb3[𝑓] =�𝐿h:𝑦e , 𝑓(𝑥e)<
.

1

 
(35) 

C is the constant coefficient of the risk function. For data whose the value |𝑦 − 𝑓(𝑥e)| are greater 4 

than 𝜀, 𝜉e\or 𝜉eW, which are violation values. They are calculated by Eqs. (36) and (37). 5 

𝜉e\ = 𝑦 − 𝑓(𝑥e) − 𝜀 (36) 

 6 

𝜉eW = 𝜀 − 𝑦 − 𝑓(𝑥e) (37) 

The penalty function is calculated using the violation values with Eq. (38). 7 

𝐿h:𝑦e , 𝑓(𝑥e)< = 𝜉e\ + 𝜉eW (38) 

Finally, the objective function for estimating the 𝑓 function is calculated by Eq. (39): 8 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1
2
‖𝑤‖0 + 𝐶�(𝜉e\ + 𝜉eW)

.

eQ1

 
(39) 

S.t.  ∀𝑖 

−𝑦e + 𝑓(𝑥e) + 𝜀 + 𝜉e\ ≥ 0 

𝑦e − 𝑓(𝑥e) + 𝜀 + 𝜉eW ≥ 0 

𝜉e\, 𝜉eW ≥ 0 

(40) 

 



To create the dual equation of Eq. (39), the Lagrange coefficients are calculated for each of the 1 

constraints, and then a simplification is performed. If 𝛼e\and 𝛼eWare the coefficients of the first 2 

and second constraints of Eq. (39), respectively, the following equation is presented as 3 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1
2��(𝛼e\ − 𝛼eW):𝛼i\ − 𝛼iW< < 𝜑(𝑥e) ∙ 𝜑:𝑥i< >

.

iQ1

.

eQ1

−�(𝛼e\ − 𝛼eW)𝑦e

.

eQ1

+ 𝜀�(𝛼e\ + 𝛼eW)
.

eQ1

 

S. t. ��
(𝛼e\ − 𝛼eW)

.

eQ1

= 0

𝛼\. 𝛼W ∈ [0, 𝐶]
� 

(41) 

 

For nonlinear problems, the Inner product of the two functions 𝜑(𝑥e) and 𝜑:𝑥i< is replaced by 4 

the Gaussian kernel function provided in Eq. (42). 5 

𝐾:𝑥e , 𝑥i< = exp3−
∥ 𝑥e − 𝑥i ∥0

2𝜎0 5 (42) 

Finally, the function 𝑓 is calculated by Eq. (43). 6 

𝑓(𝑥) =�(𝛼e\ − 𝛼eW)𝐾(𝑥e , 𝑥)
.

eQ1

+ 𝑏 
(43) 

In Eq. (43), 𝑏 is calculated by following equation. 𝑆𝑉 is a support vector as 7 

𝑏 =
1
𝑛 � � �𝑦e − � :𝛼i\ − 𝛼iW<𝐾:𝑥e , 𝑥i<

c/∈Rk

− 𝜀�
@lm0

1ln

+ � �𝑦e − � :𝛼i\ − 𝛼iW<𝐾:𝑥e , 𝑥i<
c/∈Rk

+ 𝜀�
@lm0

2ln

  

(44) 

 

3.2 PSO (Particle Swarm Optimization) 8 



The PSO as an evolutionary and metaheuristic algorithm is among the most powerful tools of 1 

artificial intelligence to solve optimization. PSO is used to work out many applications in 2 

various branches of science and engineering in duration. 3 

In PSO, a number of particles are used to search the solution space. In order to have an optimum 4 

solution, particles move in the search spaces. Each particle has its own velocity and position. 5 

Also, each one remember the position called the personal best, in which it had the best result 6 

so far. Particle motion changes according to the information they exchange with each other. 7 

Particles know the position of the best solution they have found so far as the global best, based 8 

on the information they send to each other [45]. 9 

The PSO algorithm including several iterations to find sub-optimum solution of a problem. In 10 

the iteration 𝑡, each particle has to move to a new position based on the following equation: 11 

𝑉(𝑡) = 𝐶@ × 𝑉(𝑡 − 1) + 𝐶1 × 𝑟𝑎𝑛𝑑 × :𝑃𝑏𝑒𝑠𝑡 − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡 − 1)<

+ 𝐶0 × 𝑟𝑎𝑛𝑑 × :𝐺𝑏𝑒𝑠𝑡 − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡 − 1)< 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡) = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡 − 1) + 𝑉(𝑡) 

(45) 

 

𝑉(𝑡) and 𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡) are the velocity and position of the particle in the ith iteration, respectively. 12 

𝐶e are coefficients used to calculate the particle velocity. 𝐶@ is usually equal to one, 𝐶1 and 𝐶0 is 13 

about two. 𝑟𝑎𝑛𝑑 is a function that generate a random number between zero and one. 𝑃𝑏𝑒𝑠𝑡 14 

and 𝐺𝑏𝑒𝑠𝑡 are personal best and global best, respectively. 15 

3.3 Estimating the Nusselt number and dimensionless shear stress 16 

In this study, precise correlations are presented for the estimation of the Nusselt and Sherwood 17 

number. For each one, the following steps have been performed as: 18 

• A list of the input parameters is prepared.  19 

• The input parameters are prioritized using the MRMR (Minimum redundancy 20 

maximum relevance) algorithm [46, 47]. In this algorithm, one input parameter is 21 



chosen in each step. The parameter is selected according to maximizing the amount of 1 

mutual information with the output parameter and minimizing it with the parameters 2 

that have been selected before. 3 

• The prioritized parameters are fed into SVR model to estimate output parameter, which 4 

is the Nusselt or Sherwood. Estimation accuracy of the Nusselt and Sherwood numbers 5 

due to increase in the number of inputs can be analysed based on Figs. 4 and 5. In each 6 

of the figures, the number of the input parameters is displayed on the horizontal axis 7 

and the Mean Absolute Error (MAE) value calculated from the SVR model for 8 

estimation is shown on the vertical axis. 9 

The MAE is calculated by following equation: 10 

𝑀𝐴𝐸 =
∑ |𝑇e − 𝑂e|.
eQ1

𝑛 , (46) 

where 𝑛 indicates the number of points evaluated and 𝑂e and 𝑇e depict the estimated and desired 11 

values, respectively. The proposed correlations can be applied in other similar problems to this 12 

study [46, 47]. 13 

According to the results as shown in Figs. 4 and 5, it can be pointed out that increasing the 14 

number of the features from more than a number cannot significantly improve the estimation 15 

of the output parameters. For example, the six first prioritized parameters are enough to 16 

estimate Nusselt value. 17 

• Afterward, the following general equation has been proposed as: 18 

𝑌 =	𝑎@ + 𝑎1¤𝑋eo0
p

eQ1

 
(47) 

𝑎@ and 𝑎1 are the coefficients. 𝑌 is Nusselt or Sherwood output parameter. 𝑋e is the i-th input 19 

parameter. 𝑃e is the power of input parameter 𝑋e. 𝐾 is the number of input parameters. The 20 



values of coefficients and powers are calculated using the PSO algorithm.The results of this 1 

experiment are shown in Tables 4-6. 2 

The proposed equations were trained using the outputs of the numerical simulations. The 3 

number of the input parameters leads to various equations for the estimation of Nusselt and 4 

Sherwood numbers according to the prioritization of the features. The parameters related to 5 

Nusselt number estimation and correlations are summarized in Tables 7 and 8. Further, the 6 

parameters of Sherwood number estimation and correlation is depicted in Tables 9 and 10, 7 

which are more accurate due to the addition of the more parameters to the proposed 8 

correlations. The values of mean absolute error (MAE) indicate the criterion of correlations 9 

accuracy against true values of numerical simulations. 10 

4. Result and discussions 11 

The computational model developed in Sect. 2 was used to generate simulation data for several 12 

test cases. These were fed to the AI tool as described in Sect. 3 and the predictions obtained 13 

from this tool are presented in this section.  14 

4.1.Thermohydraulics  15 

Fig. 6 shows the surface plots of the dimensionless fluid temperature varying with different 16 

parameters. As it is obvious in Fig. 6a, Reynolds number increases result in a significant 17 

reduction of the dimensionless temperature for a given concentration of nanoparticles. 18 

Considering the definition of the dimensionless temperature (Eq. 16), this indicates that as 19 

Reynolds number increases the temperature at the probing point (see Table 2) approaches that 20 

of the free stream. This may initially sound counterintuitive, as a higher flow velocity usually 21 

causes a larger rates of HT and therefore should result in increasing the flow temperature 22 

towards the wall temperature. However, it is worthy that the thickness of the thermal boundary 23 

layer is affected by increases in the Reynolds number. Therefore, for a fixed point (as in this 24 

case), higher fluid velocity pushes the probing point to the top of the thermal boundary layer 25 



in which the temperature is lower and thus the dimensionless temperature is smaller. Fig. 6a 1 

further shows that higher values of nanoparticles concentrations leads to higher dimensionless 2 

temperature. This is in agreement with the previous studies reported [34-36]. Higher 3 

concentrations of nanofluid enhances the fluid thermal conductivity and thus boosts the HT 4 

and results in augmentation of the nanofluid temperature close the wall. 5 

Fig. 6b shows that the variation of the dimensionless fluid temperature with Prandtl and Biot 6 

number is monotonic. However, this is not the case in Fig. 6c, in which the variation of the 7 

dimensionless fluid temperature with the radiation and mixed convection parameters have been 8 

shown for two different intensities of the magnetic field.  Clearly, different patterns can be 9 

recognised depending upon the combination of parameters. For example, although at low 10 

Reynolds numbers, the dimensionless fluid temperature is increased with increase in mixed 11 

convection parameter, higher values of Reynolds number show the reversed trend. Fig. 6c 12 

shows that the relation between the dimensionless temperature of fluid and Biot number is non-13 

monotonic. This provides a clear evidence on the complexity of thermal systems where the 14 

influencing parameters grow in number. This, in turn, reflects the practical difficulties 15 

associated with the conventional analyses and the major advantage that the current machine 16 

learning approach can offer. 17 

The variations of dimensionless temperature of the porous medium solid phase, 𝜃1 is illustrated 18 

in Fig. 7. Fig. 7a reveals that the variations of 𝜃1 with Re number is rather minimal, regardless 19 

of the value of dimensionless wall temperature. However, according to Fig. 7a, the wall 20 

temperature parameter and 𝜃1 can either increase or decrease with the radiation parameter. Fig. 21 

7b confirms a gradual increase in 𝜃1 as the concentrations of nanoparticles increases. This is 22 

due to the improvement of HT rate by addition of more nanoparticles and is in keeping with 23 

the result reported previously [48, 49].Further, increases in Reynolds number appear to boost 24 



the value of 𝜃1. Once again, this can be related to the influence of the flow velocity and 1 

Reynolds number upon the rate of HT [34-36]. 2 

Dependency of Nusselt number on a few parameters is depicted by Fig. 8. For a fixed Reynolds 3 

number, as the concentration of nanoparticles increases, there appears to be a linear growth in 4 

the value of Nusselt number. Further, as expected, increases in Reynolds number results in 5 

higher values of Nusselt number. As already discussed, this leads to large dimensionless 6 

temperatures for the fluid and porous solid phase. In the current problem, several quantities can 7 

impact Nusselt number and the graphical approaches such as that in Fig. 8 may lack 8 

comprehensiveness. For this reason, the AI tool developed in this work was used to generate a 9 

series of correlations (see Tables 8 and 10). These describe the mathematical relations between 10 

an increasing number of variables and the Nusselt number. 11 

The shear stress over the cylinder external surface is relevant to the fluid dynamics of the 12 

problem. Nonetheless, the presence of the mixed convection relates fluid dynamics to HT and 13 

hence, all parameters influencing HT can affect the shear stress. This highly complicates the 14 

problem and makes the conventional analysis method quite lengthy and cumbersome. Fig. 9 15 

shows that changes in the concentration of nanoparticles can have a considerable effect on the 16 

shear stress. The effect of the concentration of nanoparticles upon the temperature of nanofluids 17 

was already demonstrated (see Fig. 6). Given the dependency of momentum transport upon 18 

fluid temperature (see Eq. 3), it is unsurprising that concentration of nanoparticles can influence 19 

the shear stress on the cylinder. According to Fig. 9, increasing the nanoparticles concentration 20 

of results in reinforcement of the dimensionless shear stress. Further, as expected, higher values 21 

of Re number (flow velocity) render larger shear stress (Fig. 9b). Tables 7 and 8 present the 22 

developed correlations amongst the dimensionless shear stress and a number of pertinent 23 

parameters. It is clear that by increasing the number of considered parameters accuracy of the 24 

correlation increases and the mean absolute error drops.  25 



4.2.Entropy generation (EG) 1 

Fig. 10 depicts variation of EG number, 𝑁> , with a few parameters. Fig. 10a demonstrates that 2 

amplification of permeability parameter (reduction of the permeability of the porous medium) 3 

increases the EG. It is also obvious that the value of EG number increases at higher Re numbers. 4 

Both of these trends are related to the augmentation of frictional entropy. As these effects are 5 

already well-understood they are not further discussed here. Fig. 10b also shows that 6 

enhancement in the concentration of nanoparticles results in stronger generation of entropy. 7 

This could be primarily attributed to the increases in the viscosity of nanofluid at higher 8 

concentration of nanoparticles, which intensifies the frictional EG. This figure further shows 9 

that, although to a limited extent, the radiation parameter can have a non-monotonic effect upon 10 

the generation of entropy. 11 

Total generation of entropy involves the thermal and frictional components. Often, the relative 12 

importance of thermal EG is examined through analysis of Bejan number. Fig. 11 shows the 13 

outcome of such analysis, in which the same settings as Fig. 10 have been used. Fig. 11a 14 

illustrates that for large values of Brinkman number, the behaviour of Bejan number is in 15 

qualitative agreement with that of EG number in Fig. 10. However, in the limit of small 16 

Brinkman numbers a different trend is observed, in which the value of Bejan number declines 17 

at a higher Re number. Small Brinkman numbers can be viewed as a large difference between 18 

the wall and free stream temperatures, which lead to a strong potential for HT. For such case, 19 

the thermal EG is significant and thus parameters affecting HT could influence Bejan number 20 

as well. Reynolds number increment results in the intensification of the rate of HT and the 21 

relaxation of the local temperature gradients. This reduces the thermal EG, and results in the 22 

decline of Bejan number (see Fig. 10a). According to Fig. 11b, there is a non-trivial relation 23 

between Bejan number and Biot number, in which Bejan number is decreased from a small to 24 

moderate value of Biot number. However, this trend is reversed at higher values of Bejan 25 



number. Further, the nanoparticles volumetric concentration enhancement results in a growth 1 

in Bejan number. This could be described by paying attentions to the relation between the 2 

concentrations of nanoparticles and the values of dimensionless temperatures (as shown in 3 

Figs. 6 and 7) and Nusselt number (Fig. 8). 4 

5. Conclusions 5 

An artificial intelligence-based predictive model was developed for fast and accurate 6 

estimations of transport and thermodynamic processes in configurations involving complex 7 

multiphysics. As an example, a hybrid nanofluid flow passing over a cylinder embedded in 8 

porous media was considered in this work. A computational model of the problem was first 9 

developed through employing a semi-similarity technique. This included mixed convection and 10 

non-linear thermal radiation along with local thermal non-equilibrium in the porous medium. 11 

The computational results were then used to train an artificial intelligence tool developed 12 

through using supervised learning methods. Predictions made by this tool were then rigorously 13 

compared and validated against the computational data. The validated predictive tool was 14 

subsequently used to estimate the behaviours of temperature fields, Nusselt and Bejan number 15 

and, shear stress over the cylinder. This resulted in a significant reduction in the computational 16 

time (over 90%). Since the problem involves a large number of variables, these behaviours 17 

were observed to be complicated and involved non-monotonic trends. However, by using the 18 

artificial intelligence predictive tool, accurate correlations were developed for the key 19 

quantities. The correlations were presented in the ascending degree of accuracy through a 20 

consideration of a progressively larger number of variables. It is argued that the developed 21 

predictive tool is an efficient and practical alternative to purely computational tools used for 22 

the design of process equipment. 23 

 24 
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Fig. 1. The schematic representation of a blunt object (cylinder) under stagnation-point 

flow of hybrid nanofluid inside a porous medium. 
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Fig. 2. Mesh independency analysis at	𝑅𝑒 = 10	, 𝜆 = 10	,			𝜆( = 1.0	, 𝑀 = 1.0	, 𝐵𝑖 =

0.1		, 𝑅' = 1.0	, 𝜃= = 1.2 
	2 
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Fig. 3. A comparison between the current simulations and those of Ref. [51] for very large 

porosity and permeability. 
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Fig. 4. Mean absolute error (MAE) for estimation of Nu for SVR model. 
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Fig. 5. Mean absolute error (MAE) for estimation of shear-stress for SVR model. 
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Fig. 6. Variation of the dimensionless fluid temperature with different pertinent variables.  
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Fig. 7. Variation of dimensionless solid temperature with different pertinent variables.  
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Fig. 8. Variation of average Nusselt number with different pertinent variables.  
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Fig. 9. Variation of dimensionless shear-stress with volumetric concentration of 

nanoparticles, Reynold number and mixed convection parameter.  
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Fig. 10. Variation of entropy generation number with volumetric concentration of 

nanoparticles, Biot number, Brinkman number, radiation parameter and Reynold number.   
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Fig. 11. Variation of Bejan number with the volumetric concentration of nanoparticles, 

Biot number, radiation parameter, permeability parameter and Reynolds number.  
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Table 1. Thermo-physical properties of nanofluid and hybrid nanofluid [61] 1 

Properties Nanofluid Hybrid Nanofluid 

Density 𝜌./ = 𝜌/ [(1 − 𝜙) + 𝜙 3
𝜌4
𝜌/
5^ 𝜌-./ = 𝜌/(1 − 𝜙0) [(1 − 𝜙1) + 𝜙1 3

𝜌4#
𝜌/
5^ + 𝜙0𝜌4! 

Heat capacity 

:𝜌. 𝐶3<./ = :𝜌. 𝐶3</ i(1 − 𝜙)

+ 𝜙
:𝜌. 𝐶3<4
:𝜌. 𝐶3</

j 

:𝜌. 𝐶3<-./ = :𝜌. 𝐶3</(1 − 𝜙0) i(1 − 𝜙1)

+ 𝜙1
:𝜌. 𝐶3<4#
:𝜌. 𝐶3</

j + 𝜙0:𝜌. 𝐶3<4! 

Viscosity 𝜇./ =
𝜇/

(1 − 𝜙)0.? 𝜇-./ =
𝜇/

(1 − 𝜙1)0.?(1 − 𝜙0)0.?
 

Thermal 

conductivity 

𝑘./
𝑘/

=
𝑘4 + (𝑚 − 1)𝑘/ − (𝑚 − 1)𝜙:𝑘/ − 𝑘4<

𝑘4 + (𝑚 − 1)𝑘/ + 𝜙:𝑘/ − 𝑘4<
 

𝑘-./
𝑘P/

=
𝑘4! + (𝑚 − 1)𝑘P/ − (𝑚 − 1)𝜙0:𝑘P/ − 𝑘4!<

𝑘4! + (𝑚 − 1)𝑘P/ + 𝜙0:𝑘P/ − 𝑘4!<
 

 

𝑘P/
𝑘/

=
𝑘4# + (𝑚 − 1)𝑘/ − (𝑚 − 1)𝜙1:𝑘/ − 𝑘4#<

𝑘4# + (𝑚 − 1)𝑘/ + 𝜙1:𝑘/ − 𝑘4#<
 

	2 

Table 2. Experimental values of density, specific heat and thermal conductivity for base fluid 3 

and nanoparticles [62] 4 

Property 
Water 

(f) 
Al2O3 Cu 

𝜌			(
𝑘𝑔
𝑚7) 997.0 3970 8933 

𝐶3			(
𝐽

𝑘𝑔. 𝐾) 4180 765 385 

𝑘			(
𝑊
𝑚.𝐾) 

0.6071 40 400 
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Table 3. The values of sphericity and shape factor of different shapes of nanoparticles [61] 1 

Geometrical 

appearance 
   

Shape of 

nanoparticles 
Bricks Cylinders Platelets 

Shape factor (m) 3.7 4.9 5.7 

Sphericity 0.81 0.62 0.52 
	2 

Table 4. The default numerical values of the parameters used in the analysis. 3 

Simulation 

parameters 

 

𝜂 

 

𝜆 

 

𝜀 

 

𝑅𝑒 

 

𝜙1 

 

𝐵𝑖 

 

𝐵𝑟 

 

𝜃< 

 

𝛾 

 

𝜙0 

 

𝑀 

 

𝑅M 

 

𝜆1 

 

 

 

1.45 

 

10 

 

0.9 

 

5.0 

 

0.02 

 

0.1 

 

2.0 

 

1.2 

 

1.5 

 

0.02 

 

3.0 

 

1.0 

 

1.0 

	4 

Table 5. The order of feature prioritisation applied to Nu 5 

Order of features 1 2 3 4 5 6 7 8 9 10 11 12 

Number of feature 𝑅𝑒 𝑃𝑟 𝜙1 𝜙0 𝐵𝑖 𝑀 𝑅M 𝜃< 𝜆1 𝜆 𝛾 𝐵𝑟 

	6 

Table 6. The order of feature prioritisation applied to  shear-stress 7 

Order 1 2 3 4 5 6 7 8 9 10 11 12 

Number of feature 𝜙1 𝜙0 𝑅𝑒 𝜆 𝑅M 𝜃< 𝑃𝑟 𝜆1 𝑀 𝐵𝑖 𝛾 𝐵𝑟 

 8 

Table 7. The variation range for the parameters included in the Nu correlations.  9 

effective 

parameters  

𝑅𝑒 𝑃𝑟 𝜙1, 𝜙0 𝐵𝑖 𝑀 𝑅M 

0.1 ≤ 𝑅𝑒

≤ 100 

0.1 ≤ 𝑃𝑟

≤ 7 

0 ≤ 𝜙1, 𝜙0
≤ 0.08 

0.1 ≤ 𝐵𝑖

≤ 1000 

3 ≤ 𝑀

≤ 5.7 

0 ≤ 𝑅M
≤ 40 

 10 

 11 

	12 



Table 8. Nu correlations 1 

 

Nusselt number correlation 

 

effective 

parameters 

Mean 

absolute 

error 
𝑁𝑢 = 	1.648 + 0.294 × 𝑅𝑒@.qd? 𝑅𝑒 0.7561 

𝑁𝑢 = 	1.648 + 0.294 × 𝑅𝑒@.qd? × 𝑃𝑟@.qd0 𝑅𝑒	, 𝑃𝑟 0.3046 

𝑁𝑢 = 	1.654 + 0.625 × 𝑅𝑒@.qdI × 𝑃𝑟@.qd7 × 𝜙1@.77@ 𝑅𝑒	, 𝑃𝑟, 𝜙1 0.2857 

𝑁𝑢 = 	1.678 + 1.451 × 𝑅𝑒@.qV@ × 𝑃𝑟@.qdd × 𝜙1@.770 × 𝜙0@.7d1 𝑅𝑒	, 𝑃𝑟, 𝜙1, 𝜙0 0.2572 

𝑁𝑢 = 	1.654 + 1.275 × 𝑅𝑒@.qdI × 𝑃𝑟@.qd7 × 𝜙1@.77@ × 𝜙0@.7IV × 𝐵𝑖@.@?V 𝑅𝑒	, 𝑃𝑟, 𝜙1, 𝜙0, 𝐵𝑖 0.2224 

𝑁𝑢 = 	1.655 + 0.910 × 𝑅𝑒@.qdI × 𝑃𝑟@.qd7 × 𝜙1@.77@ × 𝜙0@.66q × 𝐵𝑖@.@?V ×𝑀@.6@@ 𝑅𝑒	, 𝑃𝑟, 𝜙1, 𝜙0, 𝐵𝑖, M 0.2078 

	2 

Table 9. The variation range for the parameters included in the Nu correlations. 3 

effective 

parameters  

𝑅𝑒 𝜆 𝜙1, 𝜙0 𝑅M 𝜃< 𝑃𝑟 

0.1 ≤ 𝑅𝑒

≤ 100 

1 ≤ 𝜆 ≤ 5000 0 ≤ 𝜙1, 𝜙0 ≤ 0.08 0 ≤ 𝑅M ≤ 40 0.6 ≤ 𝜃<
≤ 3 

0.1 ≤ 𝑃𝑟

≤ 7 

Table 10. Shear-stress correlations 4 

Non-dimensional shear-stress correlations effective 

parameters 

Mean 

absolute 

error 
𝜎. 𝑎
4𝜇/𝑘J𝑧

= 	35.938 + 258 × 𝜙11.6dV 𝜙1 5.2640 

𝜎. 𝑎
4𝜇/𝑘J𝑧

= 	28.137 + 1873.14 × 𝜙1@.qIId × 𝜙01.@q17 𝜙1, 𝜙0 3.7247 

𝜎. 𝑎
4𝜇/𝑘J𝑧

= 	32.450 + 1165.62 × 𝜙11.0@@ × 𝜙01.7d? × 𝑅𝑒@.?q1 𝜙1, 𝜙0, 𝑅𝑒 2.3099 

𝜎. 𝑎
4𝜇/𝑘J𝑧

= 		39.502 + 1791.55 × 𝜙11.V0? × 𝜙01.q6I × 𝑅𝑒@.q × 𝜆@.71V 𝜙1, 𝜙0, 𝑅𝑒, 𝜆 1.5081 

𝜎. 𝑎
4𝜇/𝑘J𝑧

= 		35.835 + 1115.47 × 𝜙11.6d@ × 𝜙01.?V? × 𝑅𝑒@.d × 𝜆@.06? × 𝑅M7.0VI 𝜙1, 𝜙0, 𝑅𝑒, 𝜆	, 𝑅M 1.4822 

𝜎. 𝑎
4𝜇/𝑘J𝑧

= 		35.439

+ 1076.15 × 𝜙11.660 × 𝜙01.??d × 𝑅𝑒@.IV? × 𝜆@.06@ × 𝑅M1.?V1

× 𝜃<@.@@q 

𝜙1, 𝜙0, 𝑅𝑒, 𝜆	, 𝑅M	, 𝜃< 1.4817 



𝜎. 𝑎
4𝜇/𝑘J𝑧

= 		35.839

+ 1076.15 × 𝜙11.660 × 𝜙01.??d × 𝑅𝑒@.IV? × 𝜆@.06@ × 𝑅M1.6?V

× 𝜃<@.@@q × 𝑃𝑟@.@@@ 

𝜙1, 𝜙0, 𝑅𝑒, 𝜆	, 𝑅M , 𝜃< , 𝑃𝑟 1.4931 

	1 


