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Abstract—The combination of the Internet of Things and the
Edge Computing gives many opportunities to support innovative
applications close to end users. Numerous devices present in both
infrastructures can collect data upon which various processing
activities can be performed. However, the quality of the outcomes
may be jeopardized by the presence of outliers. In this paper, we
argue on a novel model for outliers detection by elaborating on
a ‘soft’ approach. Our mechanism is built upon the concepts of
candidate and confirmed outliers. Any data object that deviates
from the population is confirmed as an outlier only after the study
of its sequence of magnitude values as new data are incorporated
into our decision making model. We adopt the combination of a
sliding with a landmark window model when a candidate outlier
is detected to expand the sequence of data objects taken into
consideration. The proposed model is fast and efficient as exposed
by our experimental evaluation while a comparative assessment
reveals its pros and cons.

Index Terms—Internet of Things, Edge Computing, Data
Management, Outliers Detection, Sliding Window, Landmark
Window

I. INTRODUCTION

The current advent of the Internet of Things (IoT) and Edge
Computing (EC) opens up the path for the presence of numer-
ous devices around users defining the new form of Pervasive
Computing (PC). PC can be seen as the aggregation of the two
aforementioned vast infrastructures. The numerous devices are
capable of collecting data and performing simple processing
activities. They also have the capability of communicating
each other as well as with the Cloud back end to transfer
data and the produced knowledge. The ambient intelligence
can be supported by innovative applications built upon the
collected data. Every node can participate in the envisioned
data processing that is usually performed upon data streams.
If we consider the nodes present at the EC, we can easily detect
the ability of executing processing tasks over the formulated
geo-distributed datasets reported by a high number of IoT
devices.

The aforementioned tasks can demand for simple or more
complex processing activities ranging from the delivery of
statistical information upon the present datasets (e.g., mean,
deviation, median) to the conclusion of machine learning
models (e.g., regression coefficients, clustering, training of a
neural network). When a request is set, the ‘baseline’ model
is to launch it across the network and search the information

that end users/applications are interested in [35]. Obviously,
the baseline model is prone to an increased network overhead
while involving nodes that may not own the appropriate data to
efficiently respond to the desired tasks. A number of research
efforts propose techniques for the optimal tasks/queries alloca-
tion into a number of processing nodes, e.g., [13], [21], [22],
[27], [28], [29]. Another challenge is to secure the accuracy
and the consistency of datasets at high levels in order to avoid
jeopardizing the quality of the outcomes. Accuracy is one of
the metrics that depict the quality of data [11]. Accuracy can
be jeopardized by the presence of outliers as those objects
do not match to the remaining objects present in the dataset.
Outliers may lead to heavy fluctuations in the underlying
data with clear negative consequences in the results of any
processing activity. For instance, outliers can intensively affect
the mean of data which is a critical statistical metric for many
tasks.

In this paper, we study a novel model for outliers detection
covering a gap in the respective literature. The vast majority of
the relevant efforts in the domain adopt a ‘one-shot’ decision
making, i.e., when an outlier is detected, the decision is
confirmed and final. No additional processing is adopted in
the subsequent steps of the decision making. We focus on
a mechanism that applies tolerance in the detection process
being mainly oriented to support data streams applications.
Every outlier data is not directly confirmed as an anomaly in
the dataset but we apply a temporal management to deliver a
set of candidate outliers. Such candidates are confirmed upon
the new data that arrive into the system. The confirmation of
outliers is based on a landmark window expanded to incorpo-
rate more data into our process. We have to notice that, through
this approach, we try to avoid scenarios where data objects
can be detected as outliers but as new data arrive this decision
could be faulty. For instance, at the beginning of a new pattern,
the initial data in the new sequence may be seen as outliers but
this is not valid in the upcoming steps. The proposed approach
is simple and adopts time series management techniques in
order to detect the patterns in the ‘behaviour’ of data objects.
We elaborate on the detection of change points in the discussed
time series and support our mechanism with the appropriate
formulations. For speeding up the envisioned processing to
able to support real time applications, we rely on non para-



metric methods that are capable of exposing the statistics of
data objects in the minimum time and do not require a training
phase. The following list reports on the contributions of our
paper: (i) we elaborate on a monitoring mechanism for outliers
detection upon multivariate data streams; (ii) we define the
concepts of ‘candidate’ and ‘confirmed’ outliers based on a
landmark window; (iii) we provide a set of theoretical models
and heuristics to detect outliers; (iv) we adopt the concept
of the temporal management of data objects for detecting
outliers (a data object may be an outlier for a specific window
but not if more data arrive). Hence, we do not exclude data
from the upcoming processing especially in cases where new
data patterns are identified; (v) we experimentally evaluate the
proposed model and compare it with other models found in
the literature.

The paper is organized as follows. We report on the related
work in Section II and present the basic information around
our problem in Section III. The description of the proposed
approach is performed in Section IV. In Section V, we discuss
the outcomes of the adopted experimental evaluation and
conclude this paper in Section VI by giving some of the
envisioned future research plans.

II. RELATED WORK

The detection of outliers is a significant research subject
as their presence in data may jeopardize the quality of any
processing activity upon them. The target of any outlier de-
tection method is to identify data objects that deviate from the
distribution of the group. Such objects dictate an ‘abnormal’
behaviour compared to the majority of objects in the dataset.
Outliers can be identified upon univariate or multivariate data
and can be easily supported by statistical methods [15]. For
instance, the Mahalanobis distance can offer a statistical view
on the correlation of multivariate vectors being based on their
covariance matrix. Such correlations can be also adopted to
impute data in combination with outliers detection for creating
efficient models that manage distributed data streams [17],
[18]. Other statistical measures can be found in the Cook’s
distance [12], the leverage model [10], the χ2 metric (it
detects deviations from the multidimensional normality) and
an extended version of the Mahalanobis distance [34]. In [4],
the interested reader can find a comparison of outlier detection
methods.

The authors of [38] identify the top-k objects that have the
highest distance from the population, i.e., to their k nearest
neighbours. In [2], the proposed model relies on the average
distance to the k nearest neighbours of each data object. In
[32], the authors extend the work presented in [3] and focus on
multi-query and micro-cluster distance-based outlier detection.
In [42], the authors propose the Relative Density-based Outlier
Score (RDOS) algorithm for outliers detection based on the
density of objects. For estimating this density, the paper adopts
the Kernel Density Estimation (KDE) method. The authors of
[43] discuss a semi-supervised model for outliers detection.
focusing on data streams. In [37], an algorithm for the implicit
outliers detection is proposed. The technique relies on the

the density of the data objects and a distance approximation
methodology to limit the time required to deliver the final
responses. The authors of [20] focus on a clustering approach,
i.e., they elaborate on the size of a cluster of outliers that
is significantly smaller than other clusters of ‘normal’ data
objects. In [14], the authors study the combination of deep
belief networks and one-class support vector machine (1SVM).
This results a hybrid model that manages to identify outliers
in high-dimensional large-scale unlabeled datasets.

In [40], the authors propose a model for handling uncer-
tainty in the management of outliers adopting a probabilistic
approach. The problem is formulated as a top-k distance-based
outlier detection upon uncertain data objects. Another proba-
bilistic approach is proposed by [1]. The target is to calculate
the probability of having a data object in a sub-space located
in a region which has a density over a pre-defined threshold. In
[6], the interested reader can find an uncertainty management
model that proposes a maximal-frequent-pattern-based outlier
detection method. In the respective literature, we can also find
the adoption of Fuzzy logic which is the appropriate theory
to manage the uncertainty present in the discussed problem.
One relevant effort deals with fuzzy regression models [19]
that try to detect the fuzzy dependencies of data objects. In
[9], the interested reader can find a fuzzy inference system for
outliers detection. This system is compared against a statistical
approach to reveal the pros and cons. An hybrid model
combining Fuzzy Logic and Neural Networks is described
in [44]. The paper exposes a Fuzzy min-max neural network
adopted to identify outliers in a dataset.

An outliers detection method can be adopted by a system
that targets to maintain the accuracy of datasets at high levels.
With the term accuracy, we denote the minimum deviation of
data around the mean and limited fluctuations [26]. Outliers
should be detected when we focus on a distributed system
where multiple nodes cooperate to execute tasks. Usually,
nodes exchange data synopses for informing their peers about
the local datasets [16], [25], [30]. Data migration or replication
may be demanded to formulate the datasets upon which the
envisioned processing will be performed. The data allocation
problem is critical if we want to achieve a fast solution to
administrate data streams. Data allocation methods should
be combined with outliers detection models to secure the
minimum acceptable data quality before any processing takes
place [31]. Data replication mainly deals with the minimization
of the latency in the provision of responses and the support
of fault tolerant systems. Any replication action targets to
have data stored at multiple locations in order to avoid
migration that is negatively affecting the network overhead.
Data replication is a technique usually utilized in Wireless
Sensor Networks (WSNs) [33]. The significant is that any
outliers detection scheme should take into consideration the
distributed nature of data being collected by different sources.
In any case, one can perform a selective replication under
constraints to avoid the transfer of high volumes of data
in the network [41]. Outliers detection and data replication
should be carefully designed when data hosts are characterized



by limited resources (e.g., energy) [5]. In any case, both
techniques are part of the pre-processing phase where data
are prepared to be the subject of further processing [8].

III. PRELIMINARIES & HIGH LEVEL DESCRIPTION OF THE
PROPOSED SCHEME

Our setup involves a set of processing nodes (e.g., EC
nodes) N =

{
n1, n2, . . . , n|N |

}
that are the owners of

distributed multivariate datasets. In these datasets, a number
of vectors are stored, i.e., x = 〈x1, x2, . . . , xM 〉 (M is the
number of dimensions). Data vectors x are reported by devices
responsible to collect them from their environment (e.g., IoT
devices). Without loss of generality, we assume that data
vectors arrive at discrete time instances t ∈ T being stored
locally for further processing. The target is to detect outlier
vectors based on their distance from the population, i.e., the
local dataset. We consider that the detected outliers are evicted
from the local dataset if they are confirmed as dictated by the
proposed model.

We rely on a combination of a sliding window and a
landmark window approach. Initially, we identify potential
outliers, i.e., x̃1, x̃2, . . . in the last W observations (sliding
window). We nominate this set as the ‘candidate’ outliers
annotated for further investigation. When, in a sliding window,
we get a number of candidate outliers, we also alter our
processing and adopt a landmark window to incorporate more
data objects into our processing. The maximum size of the
landmark window is ξ ·W (e.g., ξ = 2). Based on the landmark
window, we are able to identify the status of each candidate
outlier and conclude the confirmed outliers x1,x2, . . . that will
be evicted by the local dataset. With this approach, we try to
be aligned with data seasonality or scenarios where a new
pattern is initiated by the streams. Hence, we postpone the
confirmation of an outlier before it is evicted by the local
dataset and, thus, its participation in any local processing.
Some objects may not be outliers after the arrival of additional
data. For instance, new data may lead to new patterns or
new sub-spaces that were not visible in the current monitored
window.

We rely on a distance based outliers detection technique,
i.e., we elaborate on the distance of xt from the population
DW = {xt} , t = 1, 2, . . . ,W . It should be noticed that our
model can be combined with any outlier detection scheme.
For instance, we could rely on a statistical model, the nearest
neighbours scheme, a machine learning mechanisms and so on
and so forth. The distance from the population is calculated
over the mean of the k highest distances defined upon the
group of data objects. Let the distance of §t from DW be
dt = f(xt,DW ) where f(·) is a function (described later)
that quantifies the difference from the population. We propose
the use of a specific function that gives us the opportunity
to adopt a ‘soft’ approach in the delivery of the discussed
distance and support our temporal tolerance mechanism. In
the proposed model, we elaborate on the monitoring of dt in
the landmark window for data objects arriving at t ∈ [W+1, ξ·
W ]. In the aforementioned interval, two actions are performed:

(i) the detection of candidate outliers; (ii) the confirmation
of every candidate outlier in the expanded window. This is
a continuous process that keeps track of the sliding as well
as the landmark windows. Outliers may change their status
from ‘candidate’ to ‘confirmed’ if the trend of their distance
from DW still remains at high levels or increases over time.
Otherwise, xt is considered as a ‘normal’ data object and is
selected to participate in the local dataset and the envisioned
processing activities.

IV. OUTLIERS DETECTION BASED ON LANDMARK
WINDOWS

The Magnitude of Outliers. Assume that x̃t is detected as
a candidate outlier in the sliding window [(ω−1)·W+1, ω·W ]
(ω ∈ {1, 2, . . .}). We define the concept of the magnitude
of the candidate outlier x̃t based on its distance to DW as
represented by dt. We consider that the ‘fuzzy’ notion of the
magnitude of each outlier is measured by a sigmoid function,
i.e., λ = 1

1+e(−αx+β)
where α & β are smoothing parameters.

When dt exceeds a threshold (as defined by the realization of
the aforementioned sigmoid function), the magnitude of the
outlier indication for x̃t is very high (close to unity). When dt
indicates that x̃t is close to the population, λ becomes very low
and gets values close to zero. λ is recorded to assist us in the
confirmation of x̃t as an outlier while altering the processing
by moving from the sliding window scheme to the landmark
window model.

When the adoption of the landmark window is decided
(this means that we detect the presence of candidate outliers
in the sliding window), we increase the size of the window
W by adding a small amount of discrete time instances, i.e.,
w = a · t with a being a small positive number. Upon these
time instances, we record and monitor the realization of λ for
x̃t, however, taking into consideration an increased number of
data objects into our calculations. This means that we perform
again the calculations for exposing the distance of candidate
outliers from the population. The discussed processing is
performed in parallel with the monitoring for detecting new
candidate outliers as the sliding window is updated. Adopting
the aforementioned approach, we generate a time series of λ
values for each candidate outlier as follows: λ1, λ2, . . . , λy
for time steps W + w,W + 2 · w,W + 3 · w, . . . ,W + y · w
where y =

⌈
(ξ−1)·W

w

⌉
. The trend of the magnitude λ plays a

significant role in the final decision on if x̃t will be finally
annotated as a confirmed outlier or not. In Figure 1, we
can see some example patterns for λ. The magnitude can
be altered as new data objects arrive and participate into our
processing. For instance, assume that our outliers detection
scheme is based on a clustering approach. x̃t is considered as
the object with a high distance from the ‘normal’ clusters. As
new data objects are observed, we can incrementally update
the detected clusters and update the corresponding centroids
accordingly. This means that the distance of x̃t from the
clusters can increase if the new data objects are located at
the ‘opposite’ side in the data space compared to x̃t, decrease
if new data objects are located at ‘same direction’ in the data



space compared to x̃t and so on and so forth. x̃t can also
represent the beginning of a new cluster and the new data
objects may be located around it. The proposed model tries
to detect the trend of the magnitude, then, to conclude to the
final annotation of x̃t.

Fig. 1: Some example patterns for λ

Trend Analysis & Magnitude of Outliers. As our focus
is on a streaming environment, we avoid adopting parametric
methods that require training and rely on fast techniques
to quickly elaborate on the magnitude of outliers and its
trend. Our non parametric trend analysis is applied upon
λ realizations as the landmark window is expanded subject
to the presence of candidate outliers. We try to catch the
variability in the magnitude of the candidate outliers that may
be due to many factors like seasonal cycles, variations in
the incoming data, natural evolution of new patterns and so
on and so forth. In our model, for trend analysis, we adopt
an ensemble scheme upon the widely known Mann-Kendall
metric or Mann-Kendall test (MKM) [24], [36] and the Sen’s
slope (SS) [39].

The MKM is adopted to indicate if there are trends in a time
series sequence, i.e., {λi} , i = 1, 2, . . . , y. Our target is to
expose the temporal variation of the magnitude of a candidate
outlier x̃t. It is a non parametric method which makes it useful
to be applied in a streaming environment and limit the need
for complex methodologies. Its rationale is located around the
idea to perform a statistical processing upon the observed
data and not on random variables. It pays attention on the
sign of the difference between the observed data and previous
measurements and compares every later-measured data with
previous observations in pairs. For instance, if we focus
on the W magnitude values, the method requires W (W−1)

2
comparisons upon pair of observations. The complexity of
the process is O(W 2); in general W is low compared to the
total number of the recorded observations, thus, the proposed
processing can be adopted for streams management. The
significant is that the adopted method is not affected by
missing values and is not based on any assumption about the
distribution of data. Moreover, the MKM metric is invariant
to transformations (e.g., logs) enhancing its applicability in
multiple application domains. The MKM is realized upon the
following equation: S =

∑W+h·w−1
i=1

∑W+h·w
j=i+1 sign(λj − λi)

where h is the number of added slots to the landmark window
which depicts the total number of λ realizations incorporated
into the MKM calculations. Additionally, sign(λj − λi) is
considered equal to unity if λj > λi, equal to zero if λj = λi
and equal to -1 when λj < λi. Upon S, we can define the
parameter Z realized as follows: Z = S−1

var(S) if S > 0,

Z = 0 if S = 0 and Z = S+1
var(S) if S < 0 where

var(S) =
S·(q−1)·(2q+5)−

∑q′
i=1 tp·(tp−1)·(2tp+5)

18 , q = W+k·w,
tp is the ties of the pth value and q′ is the number of ties.
Finally, if Z is positive, we can conclude an increasing trend
and the opposite stands when Z is negative. When testing
two sided trends, the null hypothesis of no trend is rejected is
|Z| > Zφ/2 with φ being the significance level.

The SS is also non parametric method being calculated as
the median of all the slopes estimated between sequential data
of the time series. The following equation holds true: SS =
median

[
∆λ
∆t

]
where ∆λ is the difference between sequential

λ realizations and ∆t depicts the change in time. When SS >
0, we identify an increasing trend and the opposite stands for
SS < 0.

We rely on a simple and fast, however, efficient technique
to aggregate S & SS and support our decision about the
trend of the magnitude λ. The easy scenario is met when
both techniques agree upon the trend of λ (increasing or
decreasing trend). In case of an disagreement, we consider a
‘strict’ boolean model which relies on a conjunctive form. This
means that disagreements are solve by deciding a ‘neutral’
view for λ. If the final outcome indicates an increasing trend,
we update the status of x̃t and retrieve it as a confirmed outlier
xt having it rejected from any further processing. If the tread
is detected as decreasing or neutral and dt < θ (θ is a pre-
defined threshold indicating a low distance with the remaining
population), x̃t is accepted as a normal value.

V. EXPERIMENTAL EVALUATION

Simulation Setup and Performance Metrics. We report
on the experimental evaluation of the proposed model based
on a custom simulator built in Java (an individual Java class is
adopted to realize our simulator). The simulator performs the
processing of two real datasets where a number of outliers
are detected and applies the proposed approach to reveal
if it is capable of identifying the reported outliers. In our
experiments, we rely on the following datasets (they depict
multivariate data) [23] : (i) Dataset 1. The ionosphere dataset
has 32 numeric dimensions and 351 instances where 126
outliers (35.9%) are detected. Inliers are good radar signals
showing evidence of some kind of structure in the ionosphere
while outliers are bad radar data for which signals pass
through the radar; (ii) Dataset 2. The Wisconsin Prognostic
Breast Cancer (WPBC) dataset has 33 numerical dimensions
and 198 instances where 47 outliers (23.74%) are detected.
Our evaluation targets to show if the proposed model is
capable to identify the already reported outliers adopting the
sliding/landmark window models. Actually, our results will
reveal how many already identified outliers are confirmed as
new data are taken into consideration. We have to notice
that, compared to other ‘legacy’ outlier detection methods,
the proposed approach does deal with the entire dataset (the
total number of vectors)in the envisioned calculations but with
the aforementioned sliding/landmark window approaches. The
performance is evaluated upon a set of metrics dealing with



the accuracy of the detection, the precision, the recall and the
curve known as the Receiver Operating Characteristic (ROC)
[7]. Accuracy ε is defined as the number of correct detections
out of the total number of the identified outliers into the above
described datasets, i.e., ε = |Od|

|O| where Od is the set of the
detected outliers as decided by our model and |O| is the set of
the reported outliers in the above described datasets. Precision
is defined as the the fraction of the correctly detected outliers,
i.e., v = TP

TP+FP where TP are the correctly detected outliers
and FP are objects that should not be detected as outliers.
Recall is defined as the fraction of the detected outliers that
are successfully retrieved compared to the true outliers present
in the dataset, i.e., r = TP

TP+FN where FN is the number
of outlier objects that are not detected by our model. The
F-measure is a combination of v and r defined as follows:
φ = 2 · v·rv+r . Finally, the ROC curve is obtained by plotting all
possible combinations of true positive rates and false positive
rates. The curve can be depicted by a single value known as
the area under the ROC curve (ROC AUC) [7]. This value can
be seen as the mean of the recall upon the top-ranked objects
(in the list of the potential outliers). We have to notice that,
in our model, we adopt a ‘binary’ scheme, i.e., an object is
an outlier or not, thus, the score for each object is realized to
unity or zero. In our simulations, we consider W ∈ {5, 10},
W ∈ {2, 3, 4, 5}, α = β = 2, w = 3 and ξ = 2.5.

Experimental Evaluation. We report on the performance
of the proposed system concerning the above described metrics
ε, φ & ρ. In Figure 2, we present our results for the Dataset
1. We observe that an increased number of neighbours taken
into consideration to depict the distance of a data object
with the population (the k highest distances) positively affects
the performance of our model. As k increases, the adopted
metrics reach very close to the optimal value. In particular,
the accuracy ε stays close to unity exhibiting the ability
of the proposed solution to successfully detect the reported
outliers. The same observation stands for φ which depicts the
capability of our scheme to keep the precision and the recall
close to the maximum value, thus, false positives and false
negatives events are minimized. The area under the ROC also
is concluded at high values which represents the optimality
in the delivery of the true positive and false positive rates.
All the above discussion refers in the experimental scenario
where W = 5. Obviously, a limited number of values taken
into consideration in our calculations in combination with the
landmark window approach leads to the best performance.
When W = 10 (see Figure 2 - right), we observe a similar
performance, however, the outcomes are lower than in the
previously presented experimental scenario (especially for
kleq4 and φ, ρ metrics). This outcome is due to the lower
number of confirmed outliers by our model compared to the
case where W = 5. Recall that the sliding window W is
expanded when we switch to the landmark window model
and more data are taken into consideration into the envisioned
calculations. Hence, a sub-set of candidate outliers are not
finally confirmed and are incorporated into the dataset. This

aspect reveals the new approach that our model proposes in the
outlier detection domain. The discussed values can be part of
the upcoming processing as their distance from the population,
for the specific window, does not excuse their eviction from
the local dataset. We have to remind that our decision making
does not consider the entire dataset to detect outliers, thus, an
object may not be an outlier based on data seasonality but it
could be an outlier if considered compared to entire stream.
If we focus on other models and the analysis described in [7]
for the same dataset, we can detect that other efforts achieve
the maximum φ in the interval [0.75, 0.88] while ρ is realized
in the interval [0.82, 0.96] 1. We observe that the proposed
model outperforms other relevant mechanisms especially for
an increased k.

Fig. 2: Performance outcomes for Dataset 1

In Figure 3, we present our results for the Dataset 2. We
observe a similar performance as in the experimentation upon
the Dataset 1 with slightly lower results for the envisioned met-
rics. In any case, the discussed evaluation outcomes confirm
our previously presented observations. Other relevant models,
evaluated in [7] for the same dataset, achieve the maximum φ
in the interval [0.38, 0.44] while ρ is realized in the interval
[0.46, 0.58] 2. We observe that the proposed model clearly
outperforms these efforts for various realizations of k.

Fig. 3: Performance outcomes for Dataset 2

1www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/literature/Ionosphere/
2www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/literature/WPBC/



We also focus on the time required to perform the proposed
calculations and proceed with the confirmation of outliers. For
the Dataset 1, the proposed model needs (in average) 0.097
and 0.287 ms for W = 5 and W = 10, respectively. For the
Dataset 2, our model requires (in average) 0.102 and 0.277
ms for W = 5 and W = 10, respectively. We easily discern
the ability of our model to support real time applications
as the throughput reaches the management of [3484, 10309]
multivariate data objects per second (approximately). This is
very significant when we focus on very dynamic environments
where it is imperative to conclude the final decision making
in limited time.

VI. CONCLUSIONS & FUTURE WORK

We propose the use of a model that, based on a ‘soft’
approach, decides the presence of outliers in a dataset. We
focus on streaming environments and a sequential scheme
for delivering the final decision. We define the concepts of
candidate and confirmed outliers as well as the magnitude of
the difference of an outlier from the remaining population. Our
temporal management process builds upon the combination of
a sliding with a landmark window to expand the observations
taken into consideration before we conclude a confirmed
outlier. The proposed technique is experimentally evaluated
and its advantages and disadvantages are revealed. Its speed
for delivering the final outcome is due to the adoption of non
parametric models that can derive the trend of the magnitude
of potential outliers in the minimum time. The comparative
assessment positions our technique in the respective literature.
Our future plans involve the adoption of a scheme based on
Fuzzy Logic and machine learning to be able to expose more
complex trends and connections between data objects.
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