

Jodelka, O., Anagnostopoulos, C. and Kolomvatsos, K. (2021) Adaptive

Novelty Detection over Contextual Data Streams at the Edge using One-

class Classification. In: 12th International Conference on Information and

Communication Systems (ICICS 2021), Valencia, Spain (Virtual), 24-26

May 2021, pp. 213-219. ISBN

9781665433518 (doi:10.1109/ICICS52457.2021.9464585).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/237685/

Deposited on: 29 March 2021

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ICICS52457.2021.9464585
http://eprints.gla.ac.uk/227091/
http://eprints.gla.ac.uk/

Adaptive Novelty Detection over Contextual Data
Streams at the Edge using One-class Classification

Olga Jodelka1, Christos Anagnostopoulos1, Kostas Kolomvatsos2

1School of Computing Science, University of Glasgow, UK
2Department of Computer Science & Telecommunications, University of Thessaly, GR

2266755J@student.gla.ac.uk; christos.anagnostopoulos@glasgow.ac.uk; kostasks@uth.gr

Abstract—Online novelty detection is an emerging task in Edge
Computing trying to identify novel concepts in contextual data
streams which should be incorporated into models executed on
edge nodes. We introduce an unsupervised adaptive mechanism
for online novelty detection over data streams at the network edge
based on the One-class Support Vector Machine; an instance of
One-class Classification paradigm. Due to adjustable periodic
model retraining, our mechanism timely recognises novelties
and resource-efficiently adapts to data streams. Experimental
evaluation and comparative assessment showcase the effectiveness
and efficiency of our mechanism over real data-streams in
identifying novelty conditioned on the necessary model retraining.

Index Terms—Novelty detection; edge computing; contextual
data streams; one-class classification; adaptation.

I. INTRODUCTION

Novelty and anomaly detection have recently gained popu-
larity in Edge Computing environments. Despite that, the terms
novelty and anomaly/outliers are often confused or used inter-
changeably referred to identification of abnormal unexpected
phenomena found in captured data [12]. Yet, there are many
definitions of outliers and novelties in literature; ultimately,
[9] states that outlier is ‘an observation which deviates so
much from the other observations as to arouse suspicions
that it was generated by a different mechanism’. Novelties
could then be initially defined as abnormal observations which
with time form patterns, thus, no longer being abnormal.
However, [7] states definitions of anomaly/outlier and novelty
that distinguish between the terms: anomalies are described
as undesired patterns, whereas novelties are emerging new
concepts that should be incorporated to models. There are
arguments claiming that novelty detection is more challenging
since existing systems do not have enough knowledge about
what contributes as a novelty [12], [19]. Novelty detection
has various applications e.g., detecting broken environmental
sensors in edge computing [7], [6] and intrusion detection [13].
In Internet of Things (IoT), increasing amounts of data streams
gathered by edge nodes yielding issues of data quality [16],
[15], [8]; at the edge, novelty detection mechanisms should be
adopted to expand the knowledge on novel behaviours which
mitigates data quality issues.

Novelty detection in stream processing splits into offline
and online phase [7]. In offline phase, incremental statistical
training of the model occurs locally on edge nodes, while
real-time detection of new (previously unseen), unlabelled data

occurs online. Offline phase depends on the availability of data
labelling (supervised learning) or not (unsupervised learning)
[1]. In edge computing, nodes should detect novelties using
recent unlabelled data. We therefore focus on unsupervised
learning coping with adaptation and model retraining.

A contextual data stream on an edge node is as a mul-
tivariate time-series (sequence) of observations of random
variables captured sequentially in time [7]. In a node, data
are not static, thus, a locally trained model over the initial
data eventually becomes outdated with time. Newly incoming
data could be classified as outliers when, in fact, they are
novelties, i.e., data coming from different/unseen distributions
than the original one(s) occurred during training and forming
new valid patterns. This is also known as concept drift and
concept evolution, which should expand/adapt to the current
model. Evidently, to identify novelty on-line, it is deemed
appropriate to determine periodic (not necessarily in regularly
occurring intervals) retraining of the model over the recently
captured data on edge nodes.

II. RELATED WORK & CONTRIBUTION

Thorough analysis of novelty detection is provided in
[6] projected onto four perspectives: point difficulty, relative
frequency, clusterdness and feature relevance. [6] claimed
that model-based methods have marginal performance when
dealing with dynamic data streams. Despite of this, supervised-
based models, like Support Vector Machine (SVM), are widely
used in detection tasks given that human experts have pre-
labelled non-inlier data in training datasets, i.e., before train-
ing. Fundamentally, [17] introduced a paradigm that computes
a decision function distinguishing regions in data space with
different probability densities which can be the basis of
novelty detection under unsupervised learning, i.e, no pre-
labeling is required or is unavailable, which is not rare in
edge computing environments. Modifications of the seminal
SVM [5] rendered SVM-based models no longer to limit to
linear data spaces, which has proved their capacity to cope
with novelty identification only from knowledge extracted
from the data [17], [8]. One-class SVM (OCSVM) [17] is
a fundamental adaptation of SVM under the family of One-
class Classification, which autonomously learns a decision
boundary that achieves maximum separation between data
points and origin under unsupervised learning. There are
several OCSVM enhancements, e.g., [1] mitigating the impact

of known-in-advance outliers on the decision boundary as
opposed to inliers. Other OCSVM adaptations for novelty
detection rely on Iterative Weighted Recursive Least Squares
(IW-RLS) [3] and on deep belief network-based SVM [15].
The latter method is suitable for offline pre-labelling outlier
detection over humongous data transferred from WSNs.

The work reported so far focuses on either unsupervised
novelty detection on static data (i.e., no streaming data) or
improvements based on previously known/labelled outliers
typically operated over humongous static/at-rest data [13],
[15], [8]. However, direct adoption of those methods to
resource-constrained and dynamically data changing environ-
ments in edge nodes is not appropriate due to limited memory
and computational capacity for inferring novelty. Moreover,
supervised methods inherently require full availability of data
streams’ labelling which does not scale within edge computing
environments. Our work focuses on adaptive memory-footprint
controlled novelty identification over data streams in edge
nodes. Yet, learning from data streams imposes challenges; the
most common is concept drift. [7] formalises novelty detection
in data streams introducing the concept drift and concept evo-
lution challenges. Most decision-boundary algorithms become
ineffective when confronted with such challenges, notably,
concept drift itself makes it difficult to detect whether a new
one occurs. Fundamental methods coping with concept drifts
include ensemble of adaptive base-learners and windowing
techniques dealing with limited memory [10], which we
adopt in our paper. [7] and [2] proved that model retraining
paradigm is the most appropriate way to cope with these
issues concluding on certain limitations of current novelty
detection approaches: (i) the assumption that all data points
used to update a model are labelled. This is not applicable
in cases where limited memory is available and/or where the
most recent data are more important for model retraining than
the old ones; (ii) the assumption that every change in data
is considered as concept evolution. This fails to distinguish
between known concepts and new concepts; (iii) the fact
of ignoring recurrent concept drifts. This fails to recognize
multiple concept drifts, which is not so rare in data streams.
A sophisticated method for deciding on when to retrain an
unsupervised novelty detection model taking into account
resource constraints and inherent limitation (fundamentally
memory, space/time complexity, and unavailability of data
labelling) is required in edge computing.

Contribution: We rest on the One-class Classification
(OCC) OCSVM paradigm and depart to adaptive novelty iden-
tification by investigating a resource-aware OCSVM-based
mechanism. The fundamental differences lie on (i) adaptation
to data stream trends, (ii) importance of the most recent points
against oldest ones in a sliding-window framework, and (iii)
adjustable technique for deciding when to retrain the model
w.r.t. novelty detection rate and unnecessary model retraining.
Adaptation is a key to our mechanism adjusting the model
retraining frequency. Novelty identification is achieved by
increasing our confidence that a non-inlier is a point which
is completely new and can contribute to the capacity of the

current model to expand and/or adjust its boundaries. The
retraining decision is purely driven by the novelty rate and
judgment on recent unnecessary model retrainings. This is
evaluated against continuous retraining policies found in the
literature [19], thus, leading us to introduce a necessity rate
for model retaining showcased in evaluation Section IV-A
over a real edge computing setting with computing & sensing
nodes. Note: our mechanism is not tailored to specific OCSVM
variant; in fact, any OCC can be adopted, which is also
evidenced by adopting the variant in [19] for comparative
assessment purposes.

III. ADAPTIVE NOVELTY DETECTION AT THE EDGE

A. OCSVM Preliminaries & Methodology Fundamentals

OCSVM [17] separates all N unlabeled data points from
the origin (in feature space φ(x) ∈ F) and maximizes the
distance of this hyperplane to the origin. It learns a decision
function F (x) ∈ {1,−1} which captures data regions with
high probability density. F (x) = 1 in a small region capturing
inliers and F (x) = −1 elsewhere with optimization objective:

min
w,ξi,ρ

1

2
‖w‖2 +

1

νN

N∑
i=1

ξi − ρ (1)

s.t. w>φ(xi) ≥ ρ− ξi, ξi ≥ 0,∀i = 1, . . . , N, (2)

where ν indicates upper bound on the fraction of non-inliers
(points regarded as out-of-class) and lower bound on the
number of points referred to as Support Vectors (SVs) with:

F (x) =

m∑
i=1

aiK(xi,x)− ρ, (3)

with m < N SVs whose coefficients ai > 0. Fig. 2 shows the
decision boundary (learnt frontier) F (x). In contextual data
streams concepts do not stay constant. Since it is infeasible to
store all data on the node due to limited resources, we adopt
windowing techniques for storing the most recent data in a
sliding window of size W > 0.

Definition 1: Let a discrete time domain t ∈ T = {1, 2, . . .}.
A sliding window of size W > 0 is an ordered set of d-
dim. points ranked by their time indices {xt−W+1, . . . ,xt}.
By sliding the window at t+1, we discard oldest point xt−W+1

and insert the next one from the stream xt+1.
As only a part of data is observable at a time, we need

to retrain the novelty detection model every time horizon
H > 0. This periodically updates the model reflecting the
concept drifts. The ratio H

W plays significant role on how
the trained model includes some historical points (used in
previous retraining phases) and some new ones in the current
retraining phase. We introduce sliding window-based methods
that allow for retraining the model and investigate appropriate
adjustments of H . We locally train an OCSVM model at the
node using only the data residing in window W allowing the
model to draw a temporary decision boundary. Such boundary
is a non-linear function over the current SVs mt < W . The
amount mt of SVs affects the boundary shape and therefore

model’s detection capacity (theoretically, the expectation of
E[m] is controlled by the parameter ν). The node monitors
how mt changes with time reflecting adaptation to data
streams and compares with ν estimating storage complexity
O(m) and detection complexity O(m). New data are added to
the window whereas old data are removed reflecting potential
changes in concepts as well as allowing for forgetting outdated
concepts. In principle, our method decides when to retrain the
model influencing complexity and detection efficiency.

B. Continuous Model Adaptation

In the baseline Continuous Model Adaptation mechanism
(CMA) in Algorithm 1, we assume that each incoming point
potentially has an impact on the underlying concepts. After
training the OCSVM on the initial window W , we retrain
it over every single point (setting horizon H = 1). Hence,
every small change in the data is immediately identified and
the model is adjusted accordingly. A point xt is labelled as a
novelty (−1) or as inlier (1) by the current model F , which has
been trained at t−1. The consistent and continuous increase of
identified novelty and simultaneous lack of change of the inlier
detection rate, suggests that each incoming point is novel,
i.e., lies outside the decision boundary learnt by the model.
However, if the novelty counter ct remains constant (∆ct = 0)
and the inlier detection rate increases, it suggests that there is
no change in the underlying data. Regardless of the label of
xt given by F (trained at t− 1), we inject xt to the window
W and discard the oldest one. Although the label does not
affect whether a point is added to the window, it affects the
reasons for which it is done. If xt is an inlier, it should be
added to the window W as being part of the known concept
already represented by the current model. If xt is a novelty, it
implies that the underlying concepts are changing. Hence, the
point should be injected to the window W so that the model
reflects these changes and be able to adapt to them. The model
is then retrained at t obtaining new model F ′ and replacing
the previous one.

Given two versions of the trained model: F , trained at t−1
and F ′, trained at current time t, we compare the identification
labels of xt by model F and the retrained model F ′ to deter-
mine whether the retraining was necessary. If xt is considered
inlier by both models, it means that the underlying concepts
have not changed (i.e., the decision boundary learnt by both
models is the same), thus, the retraining was unnecessary. As
the re-training horizon affects model efficiency and availability
of computational resources, the node monitors the number of
unnecessary retrainings nt. However, it is unlikely that the
underlying concepts will change with each single point, which
suggests that the retraining frequency in CMA is expected
to be high, which motivated us to introduce an adjustable
mechanism.

C. Adjusted-Frequency Model Adaptation

The adjusted-Frequency Model Adaptation (FMA) mech-
anism is provided in Algorithm 2. Since model retraining
at every single point is computationally inefficient (due to

Algorithm 1 Continuous Model Adaptation (CMA).
Require: Sliding window W ; parameter ν

Train OCSVM over window W obtaining model F
for t = 1, . . . , do

Observe data point xt
if F (xt) == −1 then
ct ← ct−1 + 1; non-inlier/novelty

end if
Inject xt to window W ; remove oldest point
Retrain OCSVM obtaining new model F ′

if F (xt) == 1 & F ′(xt) == 1 then
nt ← nt−1 + 1; unnecessary retraining

end if
Replace model F with F ′

end for

a potentially relatively high number of model retrainings
compared with the number of new concepts occurring in actual
data streams), in FMA, we retrain the model with adjusted
retraining horizon Ht > 1. It is expected to reduce the
complexity in comparison to CMA. In FMA, the model is
firslty trained on the initial window W . The label of xt is
determined by model F while xt is injected to window W and
the oldest one is removed. We do not retrain the model until
horizon Ht is reached. We investigate two sub-cases: Case 1:
Ht < W and Case 2: Ht ≥ W to examine the impact of the
training memory on the model. The adjusted Ht parameter
controls the Ht

W ratio. If Ht < W (ratio less than 1) then
during retraining we still retain some of previous knowledge in
the new model, i.e., the created decision boundary is partially
based on the SVs of the previous model. In this case, the
knowledge of previous and new concepts could provide the
model with better explanation of how the data change thus
allowing it to refine the decision boundary. If Ht ≥ W
then we completely forget the previous model (no previously
SVs are transferred to the new retrained model). That is the
decision boundary is created using only the SVs of the new
model. As the model is retrained less frequently, it does not
always reflect the underlying concepts. Since the knowledge
of the previous model becomes irrelevant after some time,
it is advantageous to forget the SVs of the older model to
‘make space’ in the memory for the SVs representing current
concepts. Hence, in principle, the adjustment rules depend
on novelty and unnecessary retraining trend: ∆Ht = αHt−1
if ∆(nt

t) ≥ 0 and ∆(ctt) ≤ 0, i.e., we prolong the next
retraining phase by increasing horizon Ht by a factor α%
if the rate of unnecessary retrainings increases and the rate of
detecting novelty decreases; otherwise, ∆Ht = −αHt−1 (we
set α = 0.1). Note: Ht takes over once Ht−1 has elapsed.
Based on this transient adjustment, we expect to increase
novelty rate before the retraining of the model and then a
sudden drop right after. This is connected with the horizon
length of retraining which affects the model’s adaptability
to changing concepts. It also results in smaller amount of
unnecessary retrainings. A re-training is considered necessary

by comparing the labels of xt assigned by F (trained t−Ht−1
instances ago) and current F ′ (trained at t). Node replaces
then model F with model F ′. FMA reduces the inherent
computational complexity, while initial H0 depends on the
window size W .

Algorithm 2 Adjusted-Frequency Model Adaptation (FMA).
Require: Sliding window W ; parameter ν

Train OCSVM over window W obtaining model F
for t = 1, . . . do

Observe data point xt

if F (xt) == −1 then
ct ← ct−1 + 1; non-inlier/novelty

end if
Inject xt to window W ; remove the oldest point
if (t%Ht == 0) then

Retrain OCSVM obtaining new model F ′

if F (xt) == 1 & F ′(xt) == 1 then
nt ← nt−1 + 1; unnecessary retraining

end if
end if
Replace model F with F ′ and adjust Ht

end for

IV. PERFORMANCE EVALUATION

A. Experimental Setup & Performance Metrics

Datasets: We use the 3-dim. Greenhouse real datasets1 (d =
3), where edge nodes (Coral DevBoard with DHT11 sensors in
an open space GlassHouse) capture data streams of humidity
(x1), soil (x2), and air (x3) temperature every 3 minutes and
generate two 2-dim. datasets: D1 with x2 and x3, and D2 with
x1 and x3, which have the strongest correlation; see Fig. 1.
Each dataset contains 16,039 2-dim. points.

(a) Correlation in D2. (b) Correlation in D1.

Fig. 1. Correlation of humidity and air-temperature (D2 dataset) (a); corre-
lation of soil and air-temperature (D1 dataset) (b) of GlassHouse data.

OCSVM Parameters Tuning: We performed a series of
experiments to choose the optimal set of parameters ν and
γ for OCSVM to learn the optimal decision boundary; see
Fig. 2 using k = 10 fold-cross validation; we implemented
OCSVM using [14] and locally executed on the edge nodes.
Due to our data non-linearity, we adopted the Radial Basis

1http://iprism.eu/index.php/datasets-ppts

Function kernel widely used in SVM [18]: K(x,x′) =
exp(−γ‖x − x′‖2), where x,x′ ∈ Rd. The ν ∈ (0, 1)
parameter indicates an upper bound on the fraction of margin
errors and a lower bound of the fraction of SVs relative to the
total number of points in window W [4]. By increasing ν, it
increases the amount of SVs thus the decision boundary fits
as many training points as possible (risk of model overfitting);
while, by decreasing ν, it generalizes the model (the decision
boundary is simplified). This happens because there are less
SVs deliberately considered to be outliers, however, we risk
model underfitting. Hence, ν it tuned to trade-off between
overfitting and generalization. The γ represents kernel’s width
influencing the shape of the decision boundary and the size
of the region covered [17]. By decreasing γ, it leads to
simpler boundary shape, thus, decreasing the amount of SVs
(model underfitting); conversely, increasing γ means stricter
decision boundary (model overfitting). We experimented with
ν ∈ {.01, . . . , .5} with step .05 and γ ∈ {.001, . . . , .2} with
step .01; our goal was to find the pairs of ν and γ such that
OCSVM learns the most optimal decision boundary. By using
trial-and-error and observing the error train changes (number
of outliers in training set), we found the pair (ν, γ) = (.03, .04)
that optimizes the model and the boundaries are shown on Fig.
2 per dataset. Both models obtain good results shown on Fig.
2(a) (D2) and 2(b) (D1).

(a) Decision boundaries for D2 (hu-
midity & air temperature).

(b) Decision boundaries for D1 (soil
& air temperature).

Fig. 2. Decision boundaries on D1 (b) and D2 (a) of the GreenHouse dataset;
(ν, γ) = (.03, .04).

Comparison Models & Performance Metrics: The win-
dow size W = 1000 points in D1 and D2 reflecting memory
capacity of edge nodes, while horizon H varies from the
adjustment rules (Cases 1 and 2). We evaluate and compare
CMA and FMA. CMA adopts the continuous model retraining
paradigm in [19] using quarter-sphere OCSVM [11], which is
replaced here with the ν-OCSVM [17] for fair comparison.
We record the amount of unnecessary retraining n, total
retrainings, amount of identified novelty c, which allows us
to observe how novelty develops over time, per model per
dataset. After each retraining, we calculate the number of SVs
m per each model, whose expected value should converge to
ν, and investigate how m changes over time. Note: metric
m reflects the memory requirement for building decision

TABLE I
EXPERIMENTAL RESULTS

Metric CMA FMA
Unnecessary retrainings n D1:12341; D2:11772 D1:18; D2:7
Total retrainings D1:15309; D2:14698 D1:30; D2:15
Novelty counter c D1:2605; D2:3537 D1.Case-1:5542

D1.Case-2:6013
D2.Case-1:6084
D2.Case-2:6480

Average #SVs E[m] ≈ ν D1:36; D2:32 D1.Case-1:36
D1.Case-2:37
D2.Case-1:33
D2.Case-2: 33

boundaries and detection complexity which is O(m); see (3).

B. Performance & Comparative Assessment

Experimental results are shown in Table I and in Figures 3
and 4. We obtain similar model behaviours indicating that our
methods are not dataset dependent. In CMA and FMA, the
amount of unnecessary retrainings n is greater than 50% of
the total retrainings. It suggests that concepts in data do not
change as frequently, and therefore, model re-training at every
point (CMA policy) is inefficient. FMA significantly reduces
the rate of total retrainings (3-4 orders of magnitude in D1
and D2) indicating efficiency of the horizon adjustment rules.

The evolution of the amount of identified novelties in CMA
and FMA is shown in Figures 3(a) and 4(a). This illustrates
the trade-off between the ability of the model to detect novel
concepts and incorporate them into the normal pattern, and
computational efficiency. In D1 and D2, FMA detected 2 to 3
times more novelties than CMA due to its adjustable horizon.
There was a marginal difference in number of novel points
detected by the two FMA Cases, with Case 2 (E[H]

W ≥ 1)
detecting 10% more novel points than Case 1. This indicates
a memory-less behaviour, where, in Case 2, the model forgets
entirely its previously trained boundaries, thus, between two
consecutive retrainings, the model is ‘surprised’ with com-
pletely new unseen points. The sudden increase in FMA’s
identified novelties as observed in Figures 3(a) and 4(a) is
correlated with the model retraining time indicating the rate at
which the model turns obsolete. This is not observed in CMA’s
behaviour as frequent retraining adapts it gradually to any
change in the data. Every change is instantaneously reflected
by CMA and incorporated as normal pattern, however, at
the expense of decreasing computational efficiency. On the
contrary, FMA balances by prolonging retraining, thus, avoid-
ing unnecessarily wasting resources while identifying novelty,
deemed appropriate in our resource-constrained context.

The evolution of the amount of SVs mt is shown in the
Figures 3(b) and 4(b). Frequent retraining in CMA results
in large fluctuations of mt with relatively high variance.
Conversely, mt in FMA remains constant for longer time
periods due to adjustable retraining horizon. On average, mt

in FMA comes with less variance, thus, the space (memory)
and time complexity is controlled in FMA increasing our
certainty on the expected required resources. The ν parameter

of OCSVM controls the model detection time and space
complexity and the number of SVs. This results in less
complex model and easier decision boundaries should the
amount of SVs be low. Both CMA and FMA lead to expected
m close to ν as shown in Table I; the average m is similar
for both methods in both datasets and does not exceed 3.45%,
i.e. it does not deviate much from the theoretical ν = 3.0%.
However, CMA results in higher variance of SVs related to
continuous retrainings. As a result we are confident that the
memory footprint remains small and constant for the duration
of the novelty detection task. Fluctuations in m occur also
due to dynamic nature of data. Therefore, we do not deal with
unpredictable memory requirements, which is undesirable in
edge computing environments.

The number of marginal non-inliers ` detected in the
window depends on ν; ` is upper bound of points per window
annotated by model F as non-inliers to establish the decision
boundary. Figures 3(c) and 4(c) show the evolution of `t with
time indicating the correlation with the model retraining. The
` metric represents the rate in which the model turns obsolete.
The fluctuations in ` observed in CMA comes from highly
frequent model retrainings and its adaptation to concept drifts.
In FMA, the ` metric increases until the model is retrained
after which a sudden drop occurs. This reflects FMA’s ability
to adapt to new concepts. The spikes suggest that FMA,
especially in Case 2, turns obsolete thus not capturing effec-
tively all the underlying concepts. This is the feedback to the
Hadjustment rules, which trigger model retraining allowing
for incorporating novelties to normal pattern and drastically
decreasing `. In Case 2, FMA becomes memory-less thus,
the rate of increase of ` triggers model retraining. In Case 1,
however, model retrainings are more frequent, thus `’s spikes
are significantly lower w.r.t. Case 2 improving the adaptability
of the model. FMA (Case 1) exhibits again an effective trade-
off by reducing unnecessary retraining (being eminently more
resource efficient than CMA) and being more adaptive to
identified novelty (than FMA (Case 2)).

CMA and FMA (Cases 1 and 2) use only recent edge data
to identify novelty explicitly in an unsupervised manner; the
ground truth is purely data-driven determined by the decision
boundaries (no human-centric labelling) while the windowing
framework allows for transferring knowledge between model
retrainings. Memory requirement is more predictable in FMA
rather than in CMA governed by ν resulting in non-complex
models determined by a small amount of SVs. CMA adapts
to every change in the data and easily incorporates novelty
patterns as evidenced by steadily increasing c. However, most
of these frequent retrainings are unnecessary yielding CMA
inefficient in terms of computational resources. FMA’s adjust-
ment rules render it computationally efficient. Notably, FMA
Case 1 allows partial knowledge transfer between retraining
thus incrementally adjusts (expands/shrinks) the boundary
following streaming trend and novelty occurrence. FMA’s
flexibility to control resources consumption and knowledge
adaptation to data streams makes it appropriate for adoption
to edge computing environments.

(a) Number of novelties (ct) in D1 (soil & air temperature).

(b) Number of SVs (mt) in D1 (soil & air temperature).

(c) Number of marginal non-inliers (`t) in D1 (soil & air temperature).

Fig. 3. Comparison of CMA and FMA (Cases 1 and 2) over D1 (soil & air
temperature data): number of novelties in (a); number of SVs in (b); number
of marginal non-inliers (shown every 100 points for readability) in (c).

V. CONCLUSIONS

We investigate online light-weight novelty detection mech-
anism over data streams in edge computing focusing on One-
Class SVM. Our mechanism adjusts periodic model retraining
to follow data streams trends and identifies novelties being
resource-efficient adapting to concepts. Our evaluation indi-
cates the effectiveness of our mechanism taking into account
the novelty rate and unnecessary model retraining to adjust
future model retraining. Future work includes data-streams
aware adjustability and confidence-driven novelty detection.

REFERENCES

[1] M. Amer, M. Goldstein, and S. Abdennadher. Enhancing one-class
support vector machines for unsupervised anomaly detection. In ACM
SIGKDD Outlier Detection and Description, pages 8–15, USA, 2013.

[2] C. Anagnostopoulos. Edge-centric inferential modeling analytics.
Journal of Network and Computer Applications, 164:102696, 2020.

[3] J. Arenas-Garcı́a, V. Gómez-Verdejo, and Ángel Navia-Vázquez. RLS
adaptation of One-Class SVM for time series novelty detection. In
Learning 04 International Conference, Elche, Spain, 2004.

[4] C.-C. Chang and C. J. Lin. Training v-support vector classifiers: Theory
and algorithms. Neural Computation, 13:2119–2147, 2001.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[6] A. Emmott, S. Das, T. Dietterich, A. Fern, and W.-K. Wong. A meta-
analysis of the anomaly detection problem. Computer Science, 2015.

[7] E. R. F. et al. Novelty detection in data streams. Artificial Intelligence
Review, 45:235–269, 2016.

(a) Number of novelties (ct) in D2 (humidity & air temperature).

(b) Number of SVs (mt) in D2 (humidity & air temperature).

(c) Number of marginal non-inliers (`t) in D2 (humidity & air temperature).

Fig. 4. Comparison of CMA and FMA (Cases 1 and 2) over D2 (humidity
& air temperature): number of novelties in (a); number of SVs in (b); number
of marginal non-inliers (shown every 100 points for readability) in (c).

[8] V. Gomez-Verdejo, J. Arenas-Garcia, M. Lazaro-Gredilla, and Navia-
Vazquez. Adaptive one-class support vector machine. IEEE Trans.
Signal Processing, 59(6):2975–2981, 2011.

[9] D. M. Hawkins. Identification of Outliers. Chapman and Hall, 1980.
[10] T. R. Hoens, R. Polikar, and N. V. Chawla. Learning from streaming

data with concept drift and imbalance: an overview. Progress in Artificial
Intelligence, 1:89–101, 2012.

[11] P. Laskov, C. Schäfer, I. Kotenko, and K.-R. Müller. Intrusion de-
tection in unlabeled data with quarter-sphere support vector machines.
27(4):228–236, 2004.

[12] J. Ma and S. Perkins. Time-series novelty detection using one-class
support vector machines. In Intl. Conf. Neural Networks, volume 3,
pages 1741–1745, Portland, OR, USA, 2003. IEEE.

[13] Q. T. Nguyen, K. Phuc Tran, P. Castagliola, T. Thu Huong, M. K.
Nguyen, and S. Lardjane. Nested one-class support vector machines
for network intrusion detection. In 7th IEEE ICCE, pages 7–12, 2018.

[14] F. e. a. Pedregosa. Scikit-learn: Machine learning in Python.
[15] Y. Qiao, X. Cui, P. Jin, and W. Zhang. Fast outlier detection for high-

dimensional data of wireless sensor networks. International Journal of
Distributed Sensor Networks, 16, 2020.

[16] D. Rao, V. N. Gudivada, and R. V. Vijay. Data quality issues in big
data. IEEE Big Data, pages 2654–2660, 2015.

[17] B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylort, and J. Platt.
Support vector method for novelty detection. Advances in neural
information processing systems, 12:582–588, 1999.

[18] J.-P. Vert, K. Tsuda, and B. Schölkopf. Kernel Methods in Computa-
tional Biology. MIT Press, Cambridge, MA, USA, 2004.

[19] Y. Zhang, N. Meratnia, and P. Havinga. Adaptive and online one-class
support vector machine-based outlier detection techniques for wireless
sensor networks. In AINA, pages 990–995, 2009.

