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Abstract

Introduction Establishing robust reference intervals

for clinical procedures has received much attention

from international clinical laboratories, with approved

guidelines. Physiological measurement laboratories

have given this topic less attention; however, most of

the principles are transferable.

Methods Herein, we summarise those principles and

expand them to cover bilateral measurements and one-

tailed reference intervals, which are common issues

for those interpreting clinical visual electrophysiology

tests such as electroretinograms (ERGs), visual

evoked potentials (VEPs) and electrooculograms

(EOGs).

Results The gold standard process of establishing

and defining reference intervals, which are adequately

reliable, entails collecting data from a minimum of

120 suitable reference individuals for each partition

(e.g. sex, age) and defining limits with nonparametric

methods. Parametric techniques may be used under

some conditions. A brief outline of methods for

defining reference limits from patient data (indirect

sampling) is given. Reference intervals established

elsewhere, or with older protocols, can be transferred

or verified with as few as 40 and 20 suitable reference

individuals, respectively. Consideration is given to

small numbers of reference subjects, interpretation of

serial measurements using subject-based reference

values, multidimensional reference regions and age-

dependent reference values. Bilateral measurements,

despite their correlation, can be used to improve

reference intervals although additional care is required

in computing the confidence in the reference interval

or the reference interval itself when bilateral mea-

surements are only available from some of subjects.

Discussion Good quality reference limits minimise

false-positive and false-negative results, thereby max-

imising the clinical utility and patient benefit. Quality

indicators include using appropriately sized reference

datasets with appropriate numerical handling for

reporting; using subject-based reference limits where

appropriate; and limiting tests for each patient to only

those which are clinically indicated, independent and

highly discriminating.
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Abbreviations

ERG Electroretinogram

VEP Visual evoked potential

EOG Electrooculogram

ISCEV International Society for Clinical

Electrophysiology of Vision

CI Confidence interval

RI Reference interval

RC Repeatability coefficient

CV Coefficient of variation

SD Standard deviation

Introduction

Reference1 values describe the diversity observed in

parameters measured from a group of individuals

representing some healthy population. Improved

diagnostic quality results from using reference values

garnered from an adequately sized sample of appro-

priate reference individuals. This process has been the

subject of extensive international cooperative work in

the fields of laboratory medicine [2–5], and human

biometrics such as height and weight [6] have received

some attention in other areas of clinical measurement

[7, 8], but less so in clinical electrophysiology of

vision.

The International Society for Clinical Electrophys-

iology of Vision (ISCEV) standards [9–13] and

guidelines [14, 15] state the need for reference values,

but it is not within the scope of such documents to

provide detail on the process. Similarly, whilst some

medical devices for visual electrophysiology hold in-

built reference data, techniques for verifying

their suitability for a patient population may not be

included. The purpose of this work is to collate

expertise from other clinical scientific areas as well as

our own computational studies and present a guide to

reference values relevant for those undertaking or

interpreting clinical visual electrophysiology tests.

This work is also pertinent to other clinical measure-

ments on bilateral systems (e.g. hearing, nerve

conduction) where intra-subject correlation needs to

be considered.

Typically, a reference interval for a single param-

eter includes 95% of its reference values. This 95%

figure may be based on the 5% significance level,

widely used since the early twentieth century, and

selected on the basis of convenience for judging the

significance of a deviation [16]. More stringent criteria

such as a 99.8% reference range have been proposed

[17], but are not widely used nor included in any

consensus guidelines. The use of a 95% reference

range in reporting clinical test results means that any

single test parameter has a 1 in 20 chance of being

classified as abnormal when no abnormality exits.

When multiple parameters per test (e.g. a- and b-wave

amplitudes and peak times) are analysed, or when

multiple tests (e.g. full-field ERG, pattern VEP,

pattern ERG) are conducted, the chance of any false-

positive finding rises, albeit related to the extent of

independence of test parameters [18–20]. Reference

limits can be adjusted to reduce this risk (see section

Adjusting for multiple measurements); however, the

correlation between the measures must be known. It is

advisable to limit electrophysiology tests to only those

clinically indicated—preferably both independent and

highly discriminating—rather than conducting a stan-

dard battery of tests on every patient. This reduces

false-positive findings [21], limits additional unnec-

essary testing, reduces patient risk from investigations

or therapeutic interventions, reduces patient anxiety

and reduces resource wastage in health care [20].

The following terminology has been established for

the subject of reference values and is endorsed by the

World Health Organization [2]:

• Reference individual—a subject who meets the

inclusion criteria.

• Reference population—the group comprising all

reference individuals who exist, usually an

unknown quantity.

• Reference sample group—the group of reference

individuals selected, usually non-randomly, to

represent the reference population.

1 The term ‘normal’ (or ‘normative’) is obsolete because of lack

of scientific clarity due to its triple meaning in the English

language (clinically healthy; statistically Gaussian; popularly

connoting conventional). There also is flawed circular logic

inherent in equating a ‘normal’ person with a person free from

disease, while disease is diagnosed based on measurable

characteristics of ‘normal’ individuals. Finally, the implication

that an individual is ‘abnormal’ should a measurement lie

outside certain limits is pejorative [1].
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• Reference value—value of a test parameter mea-

sured from a reference individual (Fig. 1).

• Reference distribution—the frequency of all ref-

erence values (Fig. 1). Often this distribution

cannot be described by a single mathematical

function. It is relatively rare to find a Gaussian

distribution, so defining reference limits as the

mean ± some standard deviations of the reference

values is rarely appropriate and risks systematic

misclassifications (see Parametric method).

• Reference limit—a value derived mathematically

from the reference distribution, defined such that a

stated fraction (e.g. 2.5%) of the reference values

lies above or below it (Fig. 1).

• Reference interval—the interval considered as

healthy, which for two-tailed limits is the interval

between and including the two reference limits

(Fig. 1) or for one-tailed reference limits, the

values equal to or above/below the one reference

limit.

Commercial software and freeware [22] are avail-

able to undertake most or all of the processes described

here. Our computational studies, including all figures,

were performed in Mathematica� version 12.2 (Wol-

fram Research, Champaign, IL, USA); a copy of the

source code is available as supplementary material.

Establishing reference intervals: direct sampling

Defining reference individuals

Direct sampling refers to reference individuals

selected from a reference population using specific,

well-defined criteria. The reference population is

defined using criteria such that it is similar to the

patient group in aspects such as age, ethnicity and

gender: a single group of young, healthy adults is

unlikely to be as clinically appropriate as age-related

reference intervals [2]. Group comparisons in a

research context should also ensure balanced ages,

ethnicities and genders between disease groups and

control or comparison groups. Careful selection of the

reference population is important: a too-narrowly

defined population with many restrictions will have

only limited applicability. Including even a few

diseased subjects in the reference sample group, either

by a definitional oversight or misdiagnosis, may have a

marked effect on the reference interval. For example,

suppose a disease decreases an ERG measurement to

abnormal levels. If there were 100 subjects in the

reference sample group, the 2.5th percentile would be

the value from the subject with the 3rd smallest result

when using the nonparametric method (see footnote 2:

index = 0.5 ? p n = 0.5 ? (0.025 9 100) = 3). If

three subjects had the disease, the reference limit

would be set by one of the disease cases, not someone

free from disease. With two diseased subjects, the

reference limit would be the value from the free-from-

Fig. 1 Illustration of terms. Upper panel: example of the

distribution of reference values from the reference population

shown as a probability density function (idealised data,

demonstrated herein with a gamma distribution. The gamma

distribution is one of many probability distributions in an

exponential family; others include the normal (Gaussian), log-

normal and Poisson distributions. It was selected to illustrate a

skewed distribution as well as the issues associated with having

a mismatch between a fitted model and the underlying data in

parametric methods). The reference interval spans from the

lower to the upper reference limit and encloses the middle 95%

of the distribution. Lower panel: histogram of 120 random

measurements sampled from the distribution in the upper panel,

forming the reference distribution. The reference intervals and

reference limits are derived from sample measurements such as

these, along with estimates of the uncertainties of those limits
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disease subject with the smallest result, rather than

from the free-from-disease subject with the 3rd

smallest result.

For a priori and a posteriori population sampling,

criteria are applied before and after data collection,

respectively. Exclusion criteria are used to minimise

the number of subjects with non-pathology-related

changes and may differ by test and centre (Table 1). A

further list of factors known to affect ISCEV standard

parameters, i.e. potential partitioning criteria, is also

given in Table 1.

These exclusion criteria define subjects eligible for

recruitment to a reference study. For any study, ethical

approval and relevant permissions are required, and

subjects must give written, informed consent. Moni-

toring data findings and adjusting recruitment strate-

gies ensure adequate demographic and age

distributions. Partition factors and exclusion criteria

are included in a questionnaire with any additional

relevant factors to capture a minimum dataset for

recruited subjects. Specific questions relating to the

presence of or family history of ophthalmic or

neurological conditions are valuable: self-reporting,

screening or ophthalmic examination may be war-

ranted, and assessment is adapted to be suitable for

age. Further details captured at the time of testing

include test site, time of day, order of tests, person

performing the test, equipment serial numbers, proto-

col identification numbers, stimulus calibration infor-

mation, device and electrode type. Any factors that

deviate from the relevant ISCEV standard is noted,

and where the standard allows options (for example,

ERG active electrode type) or a range of variables, the

option or value chosen is noted.

Nonparametric method

The nonparametric method is the gold standard for

establishing reference limits [2]. It makes no assump-

tions about the shape of the reference distribution,

relying on only the values near the edges of the

frequency plot (Fig. 1). Data are ranked and per-

centiles calculated,2 with the minimum number of data

points, n, required to distinguish two adjacent per-

centiles separated by P% given by

n ¼ 100

P

� �
� 1 ð1Þ

Therefore, to distinguish the 2.5th from the 5th

percentile, a minimum of n = 39 data points are

required. With this minimum number and without

using interpolation techniques, the extreme values of

the distribution become the estimated reference limits

and are therefore vulnerable to aberrant values.

Increasing the sample size reduces this vulnerability.

Precision of a reference limit is conventionally

expressed as its 90% confidence interval (CI) and can

be calculated from ranked data [25] or bootstrapping

Table 1 Exclusion criteria and partitioning factors for consideration when designing a reference data study for clinical visual

electrophysiology

Exclusion criteria for consideration when selecting reference individuals Potential partitioning factors for

consideration

Restricted diet Age

Alcohol use Sex

Drug use Affluence/deprivation

Drug misuse Ethnicity/pigmentation

Recent or current illness Refractive status

History of premature birth

History or family history of ophthalmic or neurological disease

History of retinal surgeries, recent other ocular surgeries (e.g. cataract)

Indicators of ocular disease such as high intraocular pressure, diabetes, poor cup-to-disc ratios,

poor best-corrected visual acuity

2 Percentiles are derived from a sample, as estimates of true

population percentiles, by calculating an index position of the

ranked sample data or using linear extrapolation for non-integer

indices. Index = 0.5 ? p n, where p is the percentile of interest
and n the sample size [23] has higher accuracy than alternative

index calculations [24].
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(see below). A sample size of 120 data points is the

smallest number that allows exact, nonparametric

calculation of the precision of each reference limit

[26] and therefore is the minimum recommended [2].

This sample size is after any outlier removal and is for

each partition (e.g. for males and for females if these

differ significantly).

Parametric method

Unlike nonparametric methods, parametric methods

use information from all the reference values, thereby

reducing uncertainty but relying on assumptions about

the shape of the underlying reference population.

Physiological measurement data seldom have a Gaus-

sian distribution, if for no other reason than Gaussians

have nonzero probability for all values, which would

include physiologically impossible negative time

delays (where the response occurs before the stimulus)

as well as mathematically impossible negative peak-

to-peak amplitudes. The central limit theorem, which

makes many statistical processes which are sums have

a Gaussian distribution, applies only to the centre and

not to the tails of a distribution which is where the

reference limits are located.

Standard tests such as Kolmogorov–Smirnov or

Anderson–Darling’s [27] can be applied to assess

normality. If acceptably normal, 95% reference limits

are defined as the sample mean ± 1.96 standard

deviations. The 90% CI of each reference limit can

be calculated as

90%CI ¼ reference limit� 2:81
sffiffiffi
n

p
� �

ð2Þ

where s is the standard deviation of the sample and n is

the number of data points [25]. This formula is an

approximation to the non-central Student’s T distri-

bution of the Lawless interval [28]. The error between

the formulae is shown in Fig. 2, where for reasonably

sized n, the difference is sufficiently small that they are

interchangeable (and Eq. 2 is much easier to calcu-

late). Because parametric tests involve more assump-

tions than nonparametric tests, they are generally more

powerful and require smaller sample sizes to reach

equivalent certainty as the nonparametric gold stan-

dard [29].

In some cases, a Gaussian distribution can be

achieved by transforming the data using logarithmic,

power function (Box-Cox), square root or other

suitable transforms [25, 27]. Limits and their confi-

dence intervals derived from transformed data are

back-transformed before use. Required sample sizes

are greater if data need to be transformed [27] (Fig. 3).

If reference limits are defined parametrically as

mean ± 1.96 standard deviations when the data do not

have a Gaussian distribution either before or after

transformation, systematic misclassification will

occur: although the parametric reference interval

may enclose 95% of reference values, it will not be

the central 95%. For example, amplitude data are

usually skewed (Fig. 3). Parametric reference limits

will misclassify, for example, ERGs with low ampli-

tudes as normal, and misclassify ERGs with large

amplitudes as supranormal (or hypernormal).

Bootstrapping techniques

Bootstrapping is useful in deriving reference intervals

because it allows inference about a population, e.g. its

distribution, from a sample. By repeatedly resampling

a dataset (with replacement), multiple, new, resampled

datasets are generated in which original values may

occur more than once, once, or not at all: the

resampled datasets will emulate the results of repeat-

ing experiments. From these resampled datasets,

bootstrap estimates of the reference limits and their

precision (90% CIs) can be calculated. This technique

improves the precision of reference limit estimation,

Fig. 2 Percentage error in Eq. 2 relative to the non-central

Student’s T distribution of the Lawless interval, as a function of

number of data points n. Equation 2 provides the confidence

intervals for the upper and lower reference limits. All four

confidence interval points are shown, although results overlap.

Error between Eq. 2 and the non-central Student’s T distribution

falls as 1/n
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so that the requirement for the 90% CI of a reference

limit to be\ 0.2 of the reference interval is achieved

with smaller sample sizes than with the nonparametric

technique [30]. The bootstrapping technique is suit-

able for data which is not, and cannot be transformed

to be, Gaussian in distribution, and can be employed

for relatively small samples (n * 40) [29, 31–33].

Outliers

Measurements obtained from the reference sample

group are curated to remove outlying data points [34].

There is a trade-off between removing outliers, which

narrows the reference interval and thereby highlights

more diseased cases, and removing useful data which

thereby flags more normal cases. The emphasis is

always on retaining data.

Inspection of graphed data is a helpful process, and

data points distinctively separated from neighbouring

points are examined to establish whether they are due

to measurement error, operator or device error, subject

compliance, deviations from protocol, or non-adher-

ence to inclusion/exclusion criteria. Relying on intu-

itive insight from graphs should be used with caution;

for example, the rightmost point in Figs. 1 and 3 was a

sample from the underlying distribution and therefore

should not be classified as an outlier.

Objective techniques exist to remove any remain-

ing outlying data from a near-Gaussian distribution

(before or after transformation), for example Pierce’s

a b

c d

Fig. 3 Illustration of nonparametric (a, b) and parametric (c, d)
reference interval estimates with precision estimates (90% CI).

Data are from Fig. 1. Black vertical lines: true reference limits

of the underlying population calculated exactly by integrating

the probability density function of the continuous gamma

distribution used as the source for the sampled data. Dots:

sampled data from underlying population. Red vertical lines:

reference limits estimated from sample data using the different

methods. Grey boxes: 90% CIs of estimated reference limits.

For nonparametric estimates (a, b), CIs are wider for the longer
(right) tail of the distribution, being 29% of the reference

interval in panel a, exceeding the 20% goal so that more

measurements may be needed. Bootstrapping (1000 9 , panel

b narrows this CI from 29 to 23% of the reference interval.

Estimated limits are close to true limits. Panel c shows

parametric (mean ± 1.96 standard deviations) estimates and

their CIs. The data do not have a Gaussian distribution

(normality test fail, p\ 0.05). 90% CIs are incorrectly

symmetrical for both reference limits, and inaccurately narrow

(13% of the reference interval): the lower CI does not enclose

the true reference limit. Panel d shows parametric estimates,

performed on log-transformed data, and back-transformed for

display. Estimated limits’ 90% CIs enclose the true limits, but

the precision of longer (right) tail is 29% of the reference

interval, exceeding the 20% goal so that more measurements

may be needed. The gaps between true and estimated limits

indicate the data distribution deviates somewhat from the

assumed log-normal although the statistical test fails to reject

the log-normal distribution (p = 0.4). RI: reference interval. CI:

confidence interval
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criterion, Grubbs’ test, and Reed/Dixon’s Q test [35].

Where the shape of the reference distribution is not

known, Tukey’s fences rejects outliers using nonpara-

metric techniques [36]. Advanced numerical tech-

niques have also been described [37]. Using Tukey’s

far outliers (three interquartile ranges from the upper

or lower quartile), for example, rejects two values per

million from a Gaussian distribution but two values

per thousand from the gamma distribution used in

Figs. 1 and 3.

Outlier detection should be performed after any

adjustments to the data are made (see sections on

Subject age (below), and transformations in the

Parametric method section (above)). For example, if

peak times increase with age and if outlier detection is

performed before adjusting values based on age,

elderly (and very young) subjects may erroneously

be more likely to be classified as outliers.

Prevention of outliers affecting estimates of age

dependence or parametric method fit parameters may

be done with robust fitting techniques [2, 32, 38].

Tukey’s biweights, instead of minimising the squared

errors between the fit and the data, perform the

minimisation iteratively after attenuating errors that

are excessively large. Trimmed means or Tukey’s

biweights can be used to estimate the mean, and the

interquartile range can be used in place of standard

deviation.

Recommended number of subjects

While no single recommended number exists, a

justified target is at least 120 subjects after outlier

removal [26]. It is always better to have more subjects

than fewer; larger numbers of subjects reduce the

uncertainty of the reference limits and also enable

finer-grained partitioning which may give tighter

reference intervals, making it more likely that diseased

subjects will be flagged to the clinician.

The key criterion for required sample size is that the

precision with which the reference limits are known

(their 90% confidence intervals or CIs) is small

relative to the biological dispersion, i.e. the reference

interval itself (Fig. 3). It is recommended that the CI of

a reference limit should be\ 0.2 of the whole

reference interval [2, 27, 29]. CIs indicate the relia-

bility of reference limits and therefore whether a test is

able to meet clinical expectations. Meeting this

criterion, especially for data at the long-tailed end of

highly skewed distributions, may be difficult to

achieve as the required sample size may be consider-

ably beyond 120 per partition when using nonpara-

metric methods. If the reference distribution is

Gaussian, meeting this criterion may require as few

as 55 subjects per partition [39].

In some instances, for example very young or

highly myopic subjects, it may not be possible to

collect sufficient reference data points. Recommen-

dations for handling small reference datasets have

been developed [40]. For sample sizes C 20 but\ 40,

robust or parametric (if appropriate) techniques should

be used; calculation of 90% CIs should only be

undertaken to illustrate the magnitude of uncertainty,

not for clinical classification as ‘indeterminate’. Data

should be presented as a histogram with median (or

mean) and minimum and maximum values stated. For

sample sizes C 10 but\ 20, values should be listed in

a ranked table with only the median (or mean)

calculated [39]. It is not recommended that reference

data from 10 or fewer subjects be reported, and

subject-based reference intervals should be considered

if so few reference subjects are available [40].

Correlation between eyes

ERGmeasurements between the right and left eyes are

correlated [18, 19, 41]. When estimating a reference

limit, there are several acceptable strategies to com-

pensate for inter-eye correlation. Data from only one

eye per subject may be used, although because the

inter-eye correlation is not perfect, information is lost.

Averaging results between eyes is not recommended,

as it erroneously reduces the effect of variability due to

recording factors such as electrode placement: no such

reduction in variability will occur during patient

testing. If all reference subjects provide data from

both eyes, using both eyes’ data will not affect the

expected values of the reference limits but will

improve their accuracy. In the limit of no correlation,

using both eyes’ data is the same as doubling the

sample size, as seen in the right panel of Fig. 4, where

no correlation (r = 0) provides the same performance

as doubling the number of subjects. In the limit of

perfect correlation, using both eyes’ data has no effect:

for example, the 10th percentile of the digits 0–9 is 1

no matter how many sets of those digits are used (and

also can be seen at the rightmost side of plots in the

right panel in Fig. 4). If only some subjects have data
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from both eyes, strategies to use all available infor-

mation become more complex. Through simulations

(Fig. 4), we found that duplicating single eye data

from subjects where only one eye was tested (making

perfectly correlated two-eye subjects), so that all

subjects have a pair of results, works well across

sample sizes and levels of correlation. The duplication

method is never worse than the using only one eye and

is better when the eyes are not perfectly correlated.

When estimating the uncertainty in reference

limits, one must also compensate for inter-eye corre-

lation, unless only data from one eye per subject were

used. We found through simulations that bootstrap-

ping subjects (not eyes) eliminate overly narrow

confidence intervals resulting from having ‘dupli-

cates’ in cases of high correlation between eyes, while

also not affecting the confidence intervals in low

correlation cases. Using generalised estimating equa-

tions [42], which estimate the correlation as a fit

parameter, may also be useful in computing the

confidence intervals.

One or two reference limits?

Typically, pathology affects electrophysiological

measures by reducing amplitude and increasing peak

times, and it has been considered that one-tailed limits

are suitable for evoked potential measures, i.e. that an

evoked potential can only be too small or too late [43].

However, in clinical visual electrophysiology, find-

ings in several pathologies contradict this. For exam-

ple, early pattern VEP P100 peak are seen in some

patients with visual pathway dysfunction [44, 45] and

supranormal VEP amplitudes are also seen in certain

conditions [46]. Whilst supranormal (or hypernormal)

full-field ERG amplitudes have been related to

pathology [47], the prevalence of extreme amplitudes

(104 out of 5000 cases) may be that expected by

chance [48]. For these reasons, the choice of con-

structing one- or two-sided reference limits should be

made for each parameter based on the likelihood of

too-early peak times or too-large amplitudes being

seen in pathological cases. Where both extremes of a

parameter are associated with pathology, the reference

interval is from the central portion of the distribution,

e.g. 2.5th to the 97.5th percentile. Where only one

extreme is associated with pathology, the reference

interval is the upper or lower portion of the distribu-

tion, and the single reference limit is the 5th or the 95th

percentile as appropriate. When using one-sided

reference limits, we propose still expressing its

uncertainty as the ratio of its 90% CI to the two-tailed

95% reference interval (2.5th–97.5th percentile)

rather than a one-tailed reference interval. The two-

tailed reference interval is numerically more favour-

able than using either of the one-tailed reference

intervals (5th–100th or 0th–95th percentile), which

Fig. 4 Uncertainty of reference limits, expressed as the ratio

(%) of the 90% confidence interval (CI) of a limit to the whole

reference interval (RI), as a function of inter-eye correlation.

Three methods for handling correlation between eyes are

shown: use one eye per subject (solid lines); use all available

eyes as independent samples (dashed lines); and, for subjects

with data from only one eye, duplicate the point so that all

subjects have data from two eyes, then use all eyes as

independent samples (dotted lines). Right panel: all subjects

have results from both eyes. Left panel: 75% of subjects have

results from both eyes and 25% have results only for one eye.

For each correlation coefficient and number of subjects, samples

of correlated Gaussian random variables were taken and the

lower reference limit was estimated using the nonparametric

method. The process was repeated 1,000,000 times for each

condition. n: number of subjects
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depends on the most extreme value measured and

therefore does not converge with increasing n.

Partitioning

The effect of demographic variables, such as gender,

race or age (see Table 1), on any visual electrophys-

iological parameter can be gathered from the litera-

ture. Where a demographic affects a parameter such

that there is both a statistically significant and a

clinically meaningful difference between subgroup

average values, partitions are made to create separate

subgroups. One rule of thumb suggests separate

reference ranges are not required unless subgroup

averages differ by[ 25% of the 95% reference range

of the combined group [49]; a more stringent require-

ment of * 15% has also been suggested [50]. An

alternative metric requires separate partitions if[ 4%

of reference data points from one subclass fall outside

the reference limits for all groups combined [50]. A

further recommendation requires separate subgroup

reference ranges if the ratio of subgroup standard

deviations is 1.5 or greater, regardless of any differ-

ence in subgroup means [50]. Given the challenges of

recruiting and testing sufficient subjects per partition,

limiting the number of partitions is advisable.

Subject age

Unlike some demographic variables, age is a contin-

uous value. Partitioning age into decades or some

other grouping leads to artefacts at the group bound-

aries, where identical test results on the day before and

the day of a subject’s birthday may switch classifica-

tion from abnormal to normal (or vice versa) as the

subject ages into a new age partition. Having more age

groups reduces the changes in reference interval

between adjacent groups, but requires more reference

subjects.

The majority of visual electrophysiology parame-

ters change during infancy and childhood, and to a

lesser extent, in the elderly. For example, the P100 of

the pattern reversal VEP is strongly dependent on age

over the first year of life, being slower in younger

babies: pooling infants and toddlers together in a

reference dataset will create reference intervals which

are too wide to detect abnormalities in toddler-aged

patients [51]. Studies of age-related changes generally

employ a cross-sectional study design where each

reference subject provides data at a single age, with

ages suitably sampled for robust centile estimation

[52–54]. Given the onerous nature of testing small

children, smaller sample sizes are likely per age group,

which makes estimates vulnerable to extreme obser-

vations; optimal reference sample groups may require

as many as 500 reference subjects [55].

Compensating for age with a continuous function

(e.g. linear correction) may be preferable as it keeps all

the subjects in the same partition. Robust curve fitting

is useful in this process so that age compensation can

happen before outlier removal [56, 57]. With many

subjects in the reference distribution, the upper and

lower reference limits can be separately fitted so that

the width of the reference interval can change with age

as well.

Establishing reference intervals: indirect sampling

Where direct sampling of a reference population is not

possible, reference intervals can be derived from

patient data [58, 59], referred to as indirect sampling.

Since patients often undergo visual electrophysiology

tests to have a disease excluded, many do indeed have

normal test results. It is therefore possible to extract an

estimated ‘health-related’ sub-population from patient

databases, although reference intervals derived this

way may not reflect the general population [60, 61].

Discussion of indirect sampling techniques is beyond

the scope of this work, but readers are referred to

techniques described elsewhere, based on removal of

outliers, systematic removal of subjects with certain

clinical factors [62], removal of repeat measures, and

statistical derivation of two sub-samples, one of which

aims to reflect a ‘health-related’ sub-population

[61, 63–65]. Data mining applications make such

analyses of large datasets feasible [66–68].

Transference of a reference interval

Establishing reliable reference intervals is time-con-

suming and costly. Where possible, reference intervals

already established elsewhere should be used, provid-

ing quality conditions can be met. Transference of a

reference value is the process of adapting a previously

established reference interval to a new or updated test

technique or test centre [2, 32, 69]. As an example, a
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centre previously established an ERG reference inter-

val based on the 2004 Standard [70] using a

2.0 cd�s�m-2 flash, but wished to update their ERG

test protocol to comply with the current stipulation of

3.0 cd�s�m-2 [12]. As another example, one may want

to transfer reference data taken with one electrode type

to another electrode type.

Transference of a reference interval involves com-

paring results from the same subjects tested with both

methods, which is the subject of an international

guideline in clinical laboratories [2, 71] (Fig. 5).

Measure at least 40 subjects using both the old and

new test methods. If the results have high correlation

(r2 � 0:7) [72], a slope near one, and small offset,

existing reference intervals can be used with the new

test method. If the correlation is high, but the slope or

offset are clinically significant, reference limits can be

mathematically adjusted using values from the corre-

lation equation. The measurements should span a wide

range, and the magnitude of any offset (intercept)

should be small relative to the data range and to the

reference interval. Both diseased subjects and subjects

free from disease can be used.

If a centre wishes to adopt a reference interval

established elsewhere, visual electrophysiology has a

great advantage over clinical laboratories, as the

establishment of ISCEV standards has produced

tightly defined stimulus, acquisition and analysis

parameters, which results in very low intra-individual

variation, as established for the pattern VEP [73] and

the full-field ERG [74], even when different equip-

ments are used. This greatly increases confidence in

the possibility of transferring reference intervals.

Verification (or validation) of a reference interval

Verification of a reference value is the process of

ensuring that a reference interval established else-

where can be adopted locally with reasonable confi-

dence [2, 69, 72] (Fig. 5). This might typically occur

when a centre wishes to use a manufacturer’s own,

built-in reference data or another centre’s reference

data. It should also be undertaken as part of transfer-

ence of reference intervals.

Initial verification entails documented assessment

of the original reference dataset, i.e. demographic

variables and method of estimating the reference

limits, and of the original test procedures: if these

factors are subjectively judged to be comparable with

the adopting centre’s test methods and patient popu-

lation, then adoption is validated.

Further verification may be necessary, particularly

if not all required details of the reference interval are

available. The adopting centre recruits 20 local

reference subjects who satisfy exclusion and partition

criteria: if no more than two reference data points fall

outside the primary reference interval, that interval

can be considered acceptable for local use. If three or

four data points fall outside the primary reference

a

b

Fig. 5 Flowcharts outlining simplified processes of a transference [71] and b verification [2]. RI reference interval, y yes, n no, #

number of
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range, a further 20 local subjects should be recruited

and tested; if no more than two reference data points

from this second local sample group fall outside the

primary reference interval, the interval can be consid-

ered acceptable for local use. Otherwise, a re-exam-

ination of test protocols should be considered, along

with the possibility that the local patient population is

substantially different to the reference subjects con-

tributing to the primary reference sample.

This simple check is vulnerable to error for skewed

distributions or variance differences between primary

and local samples. If the full primary reference dataset

is available, comparisons using Mann–Whitney U,

Siegel–Tukey or Kolmogorov–Smirnov are more

sensitive and specific [2]. For greater accuracy in

deciding the acceptability of a primary reference

dataset, for example where there is a particular local

need for accuracy, larger numbers of local reference

subjects can be tested [71].

Interpreting serial measurements: subject-based

reference values

Population-based reference intervals, as discussed so

far, are primarily used for a single, diagnostic assess-

ment, for case-finding, and for screening. However,

their high inter-individual variability means they may

not be sensitive to changes within a patient over time:

an individual could show significant worsening of a

parameter even though it remains well within the

reference interval [41, 75, 76]. In some developed

economies, healthcare is increasingly devoted to

management of disease, with proliferation of serial

measurements on patients. In such cases, subject-

based reference values from longitudinal data may be

more useful than cross-sectional population-based

reference values to decide whether a parameter has

changed by a clinically meaningful amount—the

‘delta check’. The size of the change should exceed

that expected to be due to inherent sources of

variability such as acquisition or stimulus changes,

electrode positioning, and to the individual’s biolog-

ical changes, some of which can be minimised by

standardised protocols related to time of day, pupil

diameter and so forth.

The critical change size (or critical difference) is

termed the repeatability coefficient (RC) [77] and is

described as:

RC ¼ �zCV
ffiffiffi
2

p
or RC ¼ �zSD

ffiffiffi
2

p
ð3Þ

where z is the z-statistic, CV is the coefficient of

variation of replicates and SD is the standard deviation

of replicates. Generally, standard deviations should be

used for times (variability expressed inms), while CVs

should be used for amplitudes (variability expressed in

percent changes). The z-statistic is conventionally

taken to be 1.96, giving a 5% probability of a false

positive. Larger z values increase the size of the

change required to be classified as a significant change

(the RC), thus decreasing the false-positive rate while

increasing the false-negative rate [78]. If z = 1.96,

Eq. 3 simplifies to RC = 2.77 9 CV or RC = 2.77 9

SD. With data from multiple subjects, each with the

same number of replicates, the average CV or SD is

used. If the number of replicates differs between

subjects, a weighted average is used to account for the

greater certainty of the precision in subjects with more

replicates:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ki � 1ð Þs2iPN
i¼1ðki � 1Þ

s
ð4Þ

where ki is the number of replicates for the ith subject,

si is the standard deviation for the ith subject, and N is

the total number of subjects. The CV is defined

analogously. When computing the RC, data from each

eye should not be combined but treated as separate

‘subjects’. Combining data from both eyes in calcu-

lating a standard deviation will artificially increase the

standard deviation in cases where expected value of

the two eyes is not the same (e.g. unilateral disease).

See simulations in the supplementary material for

additional evidence for treating each eye separately.

Uncertainty of the RC can be computed, for example,

by using bootstrapping as described.

The RC can be measured with as few as eight

subjects [79]. Clinically meaningful flash VEP

changes [80] and ERG changes have been established

for patients with [41, 81–84] and without retinal

disease [81, 85]; RCs established from stable but

diseased patients may sometimes be appropriate.

Multidimensional reference region

Visual electrophysiology data are naturally bi-variate

(e.g. the pattern ERG P50 has both an amplitude and a

123

Doc Ophthalmol (2021) 143:155–170 165



peak time) with both data portions being related to

some degree, being derived from the same part of the

organ system. Multiple further related measures are

often captured at the same recording (e.g. pattern ERG

N95 parameters) and even more during a test session,

which may also record full-field ERGs, multifocal

ERGs and other indicated tests. They therefore

naturally lend themselves to multivariate reference

regions rather than multiple univariate reference

intervals as have been discussed so far, thereby

reducing the risk of false-positive findings. Despite

their suitability for scoring multiple tests assessing the

same organ system, multivariate reference regions are

only slowly gaining traction as a diagnostic tool

[86–88], perhaps because of difficulties with clinical

interpretation or the relatively complexmaths required

[89, 90].

Clinical interpretation

Relation between reference intervals, clinical

decision limits and disease detection

Measurements falling within the reference interval are

consistent with the reference population, i.e. people

with normal vision, and are classified as normal.

Normal measurements do not guarantee the patient is

disease-free; for example, the patient may have a

disease that does not affect that measurement. Mea-

surements outside the reference interval are not

consistent with the reference population and are

classified as abnormal or atypical. Patients with

atypical results can be examined more closely or

more frequently with more concern for cases where

the results are far from the reference limits in a

direction associated with disease. Reference limits

cannot be used to tell which disease a patient might

have, but they can highlight cases where some disease

is suspected.

Measurements falling within the CI of either the

upper or lower reference limit may be considered

‘indeterminate’ [91] to some extent. For small refer-

ence samples, many patient parameters will fall in

these indeterminate zones. No clear guidance exists on

how to handle this, and it may simply be advisable to

be aware of the size of reference limits’ CIs when

reporting and interpreting clinical visual electrophys-

iology recordings.

For serial (or longitudinal) testing, a measurement

outside the repeatability coefficient (RC) indicates that

patient’s result has changed, either improving or

worsening depending on what is known about the way

a particular disease affects the measurement.

Clinical decision limits, by contrast, classify

patients as diseased or healthy. They are determined

using data from diseased subjects as well as healthy

subjects and consider the balance of test sensitivity

and specificity. For example, the World Health

Organization recommends a clinical decision limit of

glycated haemoglobin (HbA1c) C 6.5% to classify

patients as having diabetes [92].

If a 95% reference interval is used as a clinical

decision limit for detecting a disease, the test speci-

ficity (probability a healthy subject is classified as

healthy) is 95%, because that is the proportion of

reference subjects enclosed by the 95% reference

interval. Reference intervals cannot be used to classify

a patient as having a particular disease because the

disease’s influence on the measurement is not used

when constructing the reference intervals (in fact, no

diseased subjects are used in making reference inter-

vals). In other words, 95% reference intervals used as

clinical decision limits have no impact on test

sensitivity (probability a diseased subject is classified

as diseased).

Adjusting for multiple measurements

The use of a 95% reference range means that any

single parameter has a one in 20 chance of being

classified as abnormal when no abnormality exits, so

reporting multiple parameters from multiple tests

(n parameters total) carries an increasing risk

(1–0.95n) [20] of false-positive findings (if all n pa-

rameters are uncorrelated with each other) and may

require to be adjusted for simultaneous statistical

inference [19]. Useful test interpretation, following

factual classification of each parameter can utilise

understanding of the origin and interaction between

parameters to mitigate such risks. For example, a

borderline-small ERG a-wave may be of concern in

the face of an abnormally delayed a-wave peak time or

an abnormally small b-wave, but would be of less

concern if all related parameters are normal.
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Conclusions

Clinical visual electrophysiology has long established

and highly standardised tests, which appear to have

low within-subject variability. Current ISCEV stan-

dards indicate that each centre should establish its own

reference data; however, undertaking this process

adequately is onerous and likely not to be feasible for

all centres. Transferring and verifying reference

datasets from elsewhere, with due care to quality

measures, offer the possibility of sharing high-quality,

large reference datasets. It also allows high-quality

legacy reference data to continue to be used even when

standards are updated. Such initiatives have success-

fully been undertaken in other clinical areas with the

goal of harmonising reference limits, to the great

benefit of patients [93, 94].

Clinical electrophysiology has advantages over

imaging techniques, because of its consistency due

to international standards [9–13] and because of its

generation of objective, quantitative data that can be

robustly classified using reference data. This paper

describes methods of creating reference limits either

by establishing them de novo or by transferring or

validating limits acquired elsewhere. Our emphasis

has been on clinical electrophysiology of vision;

however, these methods are also valid for other

quantitative clinical measurements on bilateral sys-

tems where intra-subject correlation needs to be

considered. Good quality reference limits minimise

false-positive and false-negative results, thereby max-

imising the clinical utility and patient benefit. Quality

indicators include using appropriately sized reference

datasets with appropriate numerical handling for

reporting; using subject-based reference limits where

appropriate; and limiting tests for each patient to only

those which are clinically indicated, independent and

highly discriminating.
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Özsu MT (eds) Encyclopedia of Database Systems.

Springer, New York, NY, pp 1–5

38. Horn PS, Pesce AJ, Copeland BE (1998) A robust approach

to reference interval estimation and evaluation. Clin Chem

44:622–631

39. Braun JP, Concordet D, Geffre A et al (2013) Confidence

intervals of reference limits in small reference sample

groups. Vet Clin Pathol 42:395–398. https://doi.org/10.

1111/vcp.12065

40. Friedrichs KR, Harr KE, Freeman KP et al (2012) ASVCP

reference interval guidelines: determination of de novo

reference intervals in veterinary species and other related

topics. Veterinary Clinical Pathology 41:441–453. https://

doi.org/10.1111/vcp.12006

41. Jeffrey BG, Cukras CA, Vitale S et al (2014) Test-retest

intervisit variability of functional and structural parameters

in X-linked retinoschisis. Trans Vis Sci Tech 3:5. https://

doi.org/10.1167/tvst.3.5.5

42. Glynn RJ, Rosner B (2012) Regression methods when the

eye is the unit of analysis. Ophthalmic Epidemiol

123

168 Doc Ophthalmol (2021) 143:155–170

https://doi.org/10.1002/(SICI)1097-4598(199701)20:1%3c4::AID-MUS1%3e3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-4598(199701)20:1%3c4::AID-MUS1%3e3.0.CO;2-H
https://doi.org/10.1002/mus.25204
https://doi.org/10.1007/s10633-012-9353-y
https://doi.org/10.1007/s10633-012-9353-y
https://doi.org/10.1007/s10633-017-9573-2
https://doi.org/10.1007/s10633-017-9573-2
https://doi.org/10.1007/s10633-011-9296-8
https://doi.org/10.1007/s10633-011-9296-8
https://doi.org/10.1007/s10633-014-9473-7
https://doi.org/10.1007/s10633-014-9473-7
https://doi.org/10.1007/s10633-016-9553-y
https://doi.org/10.1007/s10633-016-9553-y
https://doi.org/10.1007/s10633-017-9621-y
https://doi.org/10.1037/0003-066X.37.5.553
https://doi.org/10.1037/0003-066X.37.5.553
https://doi.org/10.1515/CCLM.2004.126
https://doi.org/10.1007/s10633-010-9249-7
https://doi.org/10.1080/1086508X.2000.11079306
https://doi.org/10.1080/1086508X.2000.11079306
https://doi.org/10.1093/ajcp/aqw132
https://doi.org/10.1093/ajcp/aqw132
https://doi.org/10.1002/mus.880170718
https://doi.org/10.1002/mus.880170718
https://doi.org/10.1111/j.1939-165X.2011.00287.x
https://doi.org/10.1111/j.1939-165X.2011.00287.x
https://doi.org/10.1198/000313007X244457
https://doi.org/10.1198/000313007X244457
https://doi.org/10.1128/CVI.00112-10
https://doi.org/10.1007/s10462-004-4304-y
https://doi.org/10.1007/s10462-004-4304-y
https://doi.org/10.1111/vcp.12065
https://doi.org/10.1111/vcp.12065
https://doi.org/10.1111/vcp.12006
https://doi.org/10.1111/vcp.12006
https://doi.org/10.1167/tvst.3.5.5
https://doi.org/10.1167/tvst.3.5.5


19:159–165. https://doi.org/10.3109/09286586.2012.

674614

43. American Electroencephalographic Society (1984) Ameri-

can electroencephalographic society guidelines for clinical

evoked potential studies. J Clin Neurophysiolol 1:3–54

44. Brecelj J, Strucl M, Hawlina M (1990) Central fiber con-

tribution to W-shaped visual evoked-potentials in patients

with optic neuritis. Doc Ophthalmol 75:155–163. https://

doi.org/10.1007/BF00146551

45. Mellow TB, Liasis A, Lyons R, Thompson D (2011) When

do asymmetrical full-field pattern reversal visual evoked

potentials indicate visual pathway dysfunction in children?

Doc Ophthalmol 122:9–18. https://doi.org/10.1007/s10633-

010-9250-1

46. Pampiglione G, Harden A (1977) So-called neuronal ceroid

lipofuscinosis: Neurophysiological studies in 60 children.

J Neurol Neurosurg Psychiatry 40:323–330. https://doi.org/

10.1136/jnnp.40.4.323

47. Robson AG, Webster AR, Michaelides M et al (2010)

‘‘Cone dystrophy with supernormal rod electroretinogram’’:

a comprehensive genotype/phenotype study including fun-

dus autofluorescence and extensive electrophysiology.

Retina 30:51–62. https://doi.org/10.1097/IAE.

0b013e3181bfe24e

48. Heckenlively JR, Tanji T, Logani S (1994) Retrospective

study of hyperabnormal (supranormal) electroretinographic

responses in 104 patients. Transactions of the American

Ophthalmological Society 92:217–231; discussion 231–3

49. Sinton TJ, Cowley DM, Bryant SJ (1986) Reference inter-

vals for calcium, phosphate, and alkaline phosphatase as

derived on the basis of multichannel-analyzer profiles. Clin

Chem 32:76–79. https://doi.org/10.1093/clinchem/32.1.76

50. Harris E, Boyd J (1990) On dividing reference data into

subgroups to produce separate reference ranges. Clin Chem

36:265–270
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