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1. Methods 

 2D electronic spectroscopy. A Legend Elite regenerative amplifier is seeded by a Micra 

oscillator (Coherent, Inc.) to produce a pulsed beam with a 5 kHz repetition rate. A white-

light spectrum is produced by focusing the beam into argon gas. A MIIPS pulse shaper 

(Biophotonic Solutions, Inc.) is used to compress the pulse to 14 fs and shape its spectrum 

to an approximate Gaussian line shape (fig. S1). It is subsequently used in a 2D electronic 

spectrometer, which was described previously.1 We perform 2D spectroscopy by 

illuminating the sample with four beams in a boxcar geometry. By sampling the signal in this 

phase matched direction, we ensure that beam 1 contributes a negative wavevector while 

beams 2 and 3 contribute positive ones. Therefore, measuring the portion of the signal 

propagating in the direction of the local oscillator (beam 4) yields either the rephasing (ks = 

-k1+k2+k3) or non-rephasing (ks = k2-k1+k3) signals, depending on whether beams 1 or 2 

arrive at the sample first. As a result, aside from pulse mis-ordering near 𝜏 = 0 due to the 

non-zero pulse widths, the rephasing signal occurs at 𝜏 > 0 and the non-rephasing signal 

occurs at 𝜏 < 0. The time delays for pulses 1 and 2 have a range of several picoseconds, 

allowing long-range scans to be performed in coherence time.1 This long range is necessary 

to perform the Lorentz-Gauss filtering methods effectively, as discussed in the main text. 

Hierarchical equations of motion. To describe the influence of environmental 

fluctuations (due to protein, solvent, or intramolecular interactions) on excitonic energy 

transfer, a non-perturbative method called the hierarchical equations of motion (HEOM) has 

been implemented. HEOM was first derived by Tanimura and Kubo,2 employing the 

Feynman-Vernon double path integrals.3 
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 We assume that each site is coupled to a phonon bath independently. Each phonon 

bath is modeled as a series of overdamped harmonic oscillators, and therefore the Drude 

spectral density 𝐽(𝜔)  =  2𝜆𝛾𝜔/𝜋(𝜔2 + 𝛾2)  was implemented. Adopting the parameters 

commonly used in other HEOM studies of FMO,4 the Drude decay constant 𝛾  and 

reorganization energy 𝜆  are set to 0.01 fs-1 and 35 cm-1, respectively. Under this Drude 

spectral density, the correlation function can be expanded as a sum of exponential functions: 

𝐶(𝑡) =  ∑ 𝑐𝑘
∞
𝑘=0 𝑒−𝜈𝑘𝑡 , where 𝜈0 = 𝛾  and Matsubara frequencies 𝜈𝑘 = 2𝜋𝑘/𝛽ℏ . The 

coefficients 𝑐𝑘 are given by equations S1 and S2. 

𝑐0 = ℏ𝜆𝛾 [cot (
𝛽ℏ𝛾

2
) − 𝑖] ,  (S1) 

𝑐𝑘 =
4𝜆𝛾

𝛽

𝜈𝑘

𝜈𝑘
2−𝛾2   , for 𝑘 ≥ 1  (S2) 

We implemented a modified version of HEOM (named scaled HEOM) proposed by Shi et al.,5 

which improves the numerical convergence with respect to the number of Matsubara 

frequencies included in the correlation function. The scaled HEOM is shown in equation S3 

after the Ishizaki-Tanimura truncation scheme 𝜈𝑘𝑒
−𝜈𝑘𝑡 ≃ 𝛿(𝑡) has been applied to the 𝑘 >

𝐾 terms in the correlation function 𝐶(𝑡). 

𝑑

𝑑𝑡
𝜌̃𝒏 = −

𝑖

ℏ
[𝐻̂𝑆, 𝜌̃𝒏] − (∑ ∑ 𝑛𝑗𝑘𝜈𝑘

𝐾
𝑘=0

𝑁
𝑗=1 )𝜌̃𝒏 −

1

ℏ2
∑ (

𝑐𝑘

𝜈𝑘
)∑ [𝑉̂𝑗, [𝑉̂𝑗, 𝜌̃𝒏]]

𝑁
𝑗=1

∞
𝑘=𝐾+1 −

𝑖

ℏ
∑ ∑ √(𝑛𝑗𝑘 + 1)|𝑐𝑘|

𝐾
𝑘=0 [𝑉̂𝑗, 𝜌̃𝒏𝑗𝑘

+ ] −
𝑖

ℏ
∑ ∑ √

𝑛𝑗𝑘

|𝑐𝑘|
(𝑐𝑘𝑉̂𝑗𝜌̃𝒏𝑗𝑘

− − 𝑐𝑘
∗𝜌̃𝒏𝑗𝑘

− 𝑉̂𝑗)
𝐾
𝑘=0

𝑁
𝑗=1

𝑁
𝑗=1   (S3) 

𝐻̂𝑆  is the system Hamiltonian which has the form of  [
0 0 0
0 𝐻1𝑒𝑥 0
0 0 𝐻2𝑒𝑥

] . Here 𝐻1𝑒𝑥  =

∑ [(𝐸𝑗 + 𝜆)𝑁
𝑗=1 |𝑗⟩⟨𝑗| + ∑ 𝐽𝑗𝑘𝑘≠𝑗 (|𝑗⟩⟨𝑘| + |𝑘⟩⟨𝑗|)]  and ⟨𝑗𝑘|𝐻2𝑒𝑥|𝑗

′𝑘′⟩ = 𝛿𝑗𝑗′𝛿𝑘𝑘′(𝐸𝑗 + 𝐸𝑘) +
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𝛿𝑗𝑗′(1 − 𝛿𝑘𝑘′)𝐽𝑘𝑘′ + 𝛿𝑗𝑘′(1 − 𝛿𝑘𝑗′)𝐽𝑘𝑗′ + 𝛿𝑘𝑗′(1 − 𝛿𝑗𝑘′)𝐽𝑗𝑘′ + 𝛿𝑘𝑘′(1 − 𝛿𝑗𝑗′)𝐽𝑗𝑗′  are the 

single-exciton and bi-exciton Hamiltonian respectively, where 𝐸𝑗  is the site energy for the 𝑗-

th pigment and 𝐽𝑗𝑘  is the inter-site coupling between the 𝑗- and 𝑘-th pigment. In Eq. S3, 𝑗 

represents the site index, 𝑉𝑗  is the excitonic projection operator, and 𝒏 ≡

{{𝑛10, 𝑛11, ⋯ , 𝑛1K},⋯ , {𝑛𝑁0, 𝑛𝑁1, ⋯ , 𝑛𝑁𝐾}} is a vector of indices. The density matrices 𝜌̃𝒏 are 

coupled to the ones with indices 𝒏𝑗𝑘
+ = {{𝑛10, 𝑛11, ⋯ , 𝑛1K},⋯ , {𝑛𝑗0, ⋯ , 𝑛𝑗𝑘 ±

1,⋯ , 𝑛𝑗𝐾},⋯ , {𝑛𝑁0, 𝑛𝑁1, ⋯ , 𝑛𝑁𝐾}}. Each density matrix 𝜌̃𝒏 has a hierarchy tier of 𝐿, which is 

defined by 𝐿 ≡ ∑ 𝑛𝑗𝑘𝑗,𝑘 , and for simulating the 2D spectra of FMO and homodimer we 

included hierarchy matrices till 𝐿max = 2 and 𝐿max = 6, respectively. 

The simulation of 2D electronic spectra starts with the calculation of third-order 

optical response function (equation S4). 

𝑅(3)(𝑡, 𝑇, 𝜏) = −
𝑖

ℏ3
〈[[[𝜇̂(𝜏 + 𝑇 + 𝑡), 𝜇̂(𝜏 + 𝑇)], 𝜇̂(𝜏)], 𝜇̂]〉, (S4) 

Here, 〈⋯ 〉 ≡ Tr[⋯ 𝜌̂eq] . 𝜇̂ = ∑ 𝜇𝑗
𝑁
𝑗=1 |0⟩⟨𝑗| + ∑ ∑ 𝜇𝑗

𝑁
𝑘=𝑗+1 |𝑘⟩⟨𝑗𝑘|+𝜇𝑘|𝑗⟩⟨𝑗𝑘|𝑁−1

𝑗=1   is the 

transition dipole operator, and within the Heisenberg picture it has the form of 𝜇̂(𝑡) ≡

𝑒𝑖𝐻̂𝑡/ℏ𝜇̂𝑒−𝑖𝐻̂𝑡/ℏ. After applying the rotating wave approximation, the total response of the 2D 

spectral signal can be obtained by the non-rephasing and the rephasing contributions. The 

non-rephasing part is calculated by equation S5. 

𝑅NR
(3)(𝑡, 𝑇, 𝜏) = −

𝑖

ℏ3 Tr[𝜇̂𝒢̂(𝑡)𝜇̂+
×𝒢̂(𝑇)𝜇̂+

×𝒢̂(𝜏)𝜇̂−
×𝜌̂𝑒q

] , (S5) 

and the rephasing part is calculated by equation S6. 
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𝑅RP
(3)

(𝑡, 𝑇, 𝜏) = −
𝑖

ℏ3
Tr[𝜇̂𝒢̂(𝑡)𝜇̂+

×𝒢̂(𝑇)𝜇̂−
×𝒢̂(𝜏)𝜇̂+

×𝜌̂𝑒q
] . (S6) 

After performing a 2D Fourier transform with respect to the 𝜏 and 𝑡 times, the 2D signal are 

obtained as equations S7 and S8. 

𝑆NR
(3)(𝜔3, 𝑇, 𝜔1) = Im ∫ 𝑑𝜏

∞

0
∫ 𝑑𝑡3

∞

0
𝑒𝑖(𝜔1𝜏+𝜔3𝑡)𝑅NR

(3)(𝑡, 𝑇, 𝜏) , (S7) 

𝑆RP
(3)(𝜔3, 𝑇, 𝜔1) = Im ∫ 𝑑𝜏

∞

0
∫ 𝑑𝑡3

∞

0
𝑒𝑖(−𝜔1𝜏+𝜔3𝑡)𝑅RP

(3)(𝑡, 𝑇, 𝜏) . (S8) 

The combined signal used in the current study is defined as 𝑆C
(3)(𝜔3, 𝑇, 𝜔1) =

Abs (∫ 𝑑𝜏
∞

0
∫ 𝑑𝑡3

∞

0
𝑒𝑖(𝜔1𝜏+𝜔3𝑡)𝑅NR

(3)(𝑡, 𝑇, 𝜏) + ∫ 𝑑𝜏
∞

0
∫ 𝑑𝑡3

∞

0
𝑒𝑖(−𝜔1𝜏+𝜔3𝑡)𝑅RP

(3)(𝑡, 𝑇, 𝜏)). 

A reorganization energy of 35 cm-1 was used for all chromophores, with a bath 

relaxation time of 100 fs. For more theoretical detail on simulating 2D electronic spectra with 

HEOM, see the following references.4, 6-7 

 

2. Spectra of the sample and light 

 The laser spectrum is shaped to an approximate Gaussian peak using a MIIPS 

(Biophotonic Solutions, Inc.). The absorption spectrum of the Fenna-Matthews-Olson 

complex (FMO) overlaps with the light spectrum (fig. S1).  
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Figure S1. The laser spectrum (black) and FMO measured linear absorption spectrum (red) overlap 

significantly. 
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3. The application of Lorentz-Gauss filters, using calculated spectra  

 Lorentz-Gauss filters were applied to the experimental and calculated 2D spectra 

along both the coherence- and rephasing-time dimensions. They were first tested with 

calculated spectra of a model homodimer system and a calculated FMO spectrum, before 

finally being used on the experimental FMO spectrum.  

Unlike experimental spectra, an advantage of calculated spectra is that their 

Hamiltonian is known exactly. Therefore, the expected peak energies within the spectrum 

are known and can be compared to the obtained peaks in the filtered data. The homodimer 

system was composed of two identical chromophores, where each chromophore is 

modeled as an electronic two-level system with a transition energy of 12000 cm-1. The 

couplings were set to 100 or 25 cm-1. In these cases, the expected peak positions are 11900 

and 12100 cm-1, or 11975 and 12025 cm-1, respectively.  The dihedral angle between the 

two transition dipole vectors was set to 2𝜋/5. The parameters used in HEOM for spectral 

calculations are the same as the ones used in FMO.  Figure S2 shows representative 

examples with 100 and 25 cm-1 of coupling. These spectra indicate, using a basic system, 

that the filtering method is able to reveal cross peaks even with only small coupling. 
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Figure S2. Two-dimensional spectra are shown, obtained from calculation of a model homodimer 

system. The rephasing, non-rephasing, and combined spectra are shown, using Lorentz-Gauss 

filters with 𝑡0
′  = 0, 300, and 500 fs. The Hamiltonian was constructed using 12000 cm-1 site 

wavenumbers and either 100 or 25 cm-1 coupling. Therefore, the expected peak positions are 11900 

and 12100 cm-1, or 12975 and 12025 cm-1, respectively. The spectra contain peaks at these 

expected positions.  
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4. The application of Lorentz-Gauss filters on experimental data 

 The Lorentz-Gauss filters are applied in the (𝜏, T, t) domain. A representative 

example is shown in fig. S3. The Lorentz-Gauss filters are applied along both the 𝜏 and t 

domains, and the resulting complex-valued data set is Fourier transformed in both of these 

axes to obtain the filtered 2D spectra. To observe the effect of increasing 𝑡0
′ , an example is  

 

Figure S3. Representative (𝜏, T, t) domain plots are shown with no filter, and 𝑡0
′  = 0 or 300 fs at T 

= 0 fs.  The Lorentz-Gauss filters are applied along both the 𝜏 and t domains. The arcsinh of the 

absolute values are shown in this figure to facilitate visual representation, because a linear mapping 

does not show the Lorentz-Gauss window function’s contours well. (Note that all other figures 

have a linear color mapping.) The data are obtained by measurement. 
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shown in fig. S4. Though the filter is applied in both 𝜏 and t in the data analysis, this 

example that filters along t only is illustrative of how increasing 𝑡0
′  affects the experimental 

data. Alternative FMO spectra from HEOM, calculated with a site VIII wavenumber of either 

12500 or 12700 cm-1, are shown in Figure S5. The peak position corresponding to site VIII 

appears near 12500 cm-1 or 12700 cm-1 depending on the site VIII wavenumber, showing 

that the filtered spectra are responsive to changes in the underlying Hamiltonian. 

 

Figure S4. Line cuts taken from the rephasing data of a measured 2D spectrum at T = 60 fs are 

listed at representative frequencies 𝜔𝜏 = 12121, 12274, 12350, 12415, 12454, 12520, 12606, and 

12700 cm-1 (a-h, respectively). For each set of plots, the time- (left) and wavenumber-domain 

(right) line cuts are shown along the rephasing domain. The time-domain figures show Lorentz-

Gauss filters at different color-coded central positions (𝑡0
′ ), which are multiplied by the data and 

subsequently Fourier transformed to yield the spectra shown in the corresponding color-coded 

wavenumber-domain spectra. At 𝑡0
′  = 0, the peaks are broadened and less distinguishable within 

the broad peak shape. As 𝑡0
′  increases the peaks narrow and become distinguishable; but the 

signal also decreases, placing an upper limit on 𝑡0
′ .  
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Figure S5. The rephasing, non-rephasing, and combined 2D spectra are shown, obtained using a 

Lorentz-Gauss filter with 𝑡0
′  = 300 fs. These spectra were calculated using HEOM. The site VIII 

energy used to calculate the spectra was either 12500 or 12700 cm-1. The absolute values of the 

spectra are shown. 
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5. Rephasing and non-rephasing contributions in the FMO spectra 

 

Figure S6. The 2D rephasing, non-rephasing, and combined spectra are shown at a representative 

timing T = 0 fs, applying the Lorentz-Gauss filter at 𝑡0
′  = 0 (top) or 200 fs (bottom). At 𝑡0

′  = 0, the 

spectral features are broad and overlapping. In contrast, at 𝑡0
′  = 200 fs the features are more 

distinguishable. The dotted lines indicate cutoffs where the contour step size has changed. The 

phased spectra are shown. These spectra were obtained by experimental measurement. 

 Figure S6 shows the non-rephasing, rephasing, and combined spectra obtained at 𝑡0
′  

= 0 and 200 fs from a single representative waiting time (T = 0 fs). The individual peak 

shapes are distinguishable at individual waiting times.  
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6. The phasing and reproducibility of the 2D spectra 

 Non-collinear 2DES and transient absorption (TA) both generate similar signals, 

however 2DES has an uncertain phase relation between its local oscillator and signal onset. 

Phasing is a method to recover this phase information, by comparing the 2DES and TA 

spectra. A thorough description was published by Brixner et al.,8 but a brief background 

will be presented here.  

2DES and TA both generate signals via a third-order hyperpolarization 𝑃(3)(𝑡) 

(equation S9).  

𝑃(3)(𝑡) = ∫ ∫ ∫ 𝑆(3)(𝑡1, 𝑡2, 𝑡3)𝐸(𝑡 − 𝑡1 − 𝑡2 − 𝑡3)𝐸(𝑡 − 𝑡2 − 𝑡3)𝐸(𝑡 − 𝑡3)𝑑𝜏𝑑𝑇𝑑𝑡
∞

0

∞

0

∞

0
 (S9) 

This hyperpolarization depends on the sample’s third-order response function 

𝑆(3)(𝑡1, 𝑡2, 𝑡3) and the electric fields 𝐸(𝜔, 𝑡) = 𝐴𝑒𝑥𝑝(𝑖𝜔𝑡 − 𝑖𝑘⃑ ∙ 𝑟 ) involved in each of three 

interactions between the sample and light, where A=𝐸0𝜀 exp (−𝑖∅) is the complex pulse 

envelope, 𝐸0 is the electric field amplitude, 𝜀  is the field’s unit vector, 𝜔 is frequency, k is 

wavenumber, r is position, ∅ is a phase offset, t is time, and tn is the timing of the nth 

interaction with light.  

The sample characteristics contributing to the signal are therefore described by 

𝑆(3)(𝑡1, 𝑡2, 𝑡3), while the intensity of the signal is also dependent on the timing, phases, and 

amplitudes of the three electric fields. The interactions can happen any time within the 

temporal envelope of the incident pulses, so the timing cannot be controlled exactly. 

However, their average timing can be controlled by the timing of the incident pulses. 

Furthermore, because the spectra of all incident pulses are identical in this study, the signal 

scales with the intensity of the incident light as 𝑃(3)(𝜔) ∝ 𝐼(𝜔)3 2⁄ . 
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In order to compare the 2DES and TA signals, the projection-slice theorem is 

invoked to reduce the 2DES signal to one dimension by integrating over its 𝜔𝜏 axis at a 

particular waiting time to yield a spectrum along the 𝜔𝑡 domain. The equation we use is 

shown below (equation S10). Here, we assume the index of refraction to be 1. 

𝐴(𝑇,𝜔𝑡) = 𝑅𝑒[𝜔𝑡 ∫ 𝑆(3)(𝜔𝜏, 𝑇, 𝜔𝑡)
∞

−∞
𝑒𝑥𝑝(𝑖[∅1 + ∅2𝑡 + ∅3𝑡

2])𝑑𝜔𝜏] (S10) 

Here, ∅𝑖 are phase correction coefficients expanded in a Taylor series with respect to t, and 

𝜔0 is the light frequency.  The phase terms are fit to the TA signal. Because the total signal 

intensity is proportional to the product of the system response and the probe beam’s 

electric field contributions,8 this TA signal is divided by the square-root of the probe beam 

intensity before comparison to the 2DES signal.  

 The phased spectra from 2DES are shown alongside the corresponding TA spectrum 

in Figure S7. Here, the 2DES spectra are obtained by using a 400 fs apodization window in 

the coherence time domain and 600 fs in the rephasing-time domain following the arrival 

of beam 3. Hanning windows were applied to the spectra to reduce the artifacts from sharp 

cut-offs in the corresponding frequency domain due to Fourier transform.  
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Figure S7. Phased spectra obtained from 2DES measurements on Days 1-3 (a-c, 
respectively) are shown, compared to a measured TA spectrum (d). The spectra from 2DES 
are obtained using equation S10. The TA spectrum is obtained by subtracting the probe 
signal from the pump+probe signal, and dividing by the square-root of the probe signal. 

 

The TA spectra contain several features. A dominant, positive signal contribution 

appears from approximately 12,300 – 12,600 cm-1. The blue side of this signal partially 

decays within approximately 300 fs, leading to a dominant feature at approximately 12,400 

– 12,500 cm-1. The region spanning 12,000 – 12,250 cm-1 contains overlapping positive and 

negative contributions. The positive feature appears near 12,100 cm-1, while negative 

features appear at either side. 
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In comparison, the 2DES signals contain several similar features, as well as some 

differences that will be addressed subsequently. Near zero waiting time, they all contain a 

dominant signal contribution in the region of 12,400 – 12,600 cm-1. The blue side of this 

peak has a quickly decaying component, and then a slower-decaying peak centered near 

12,500 cm-1. A negative feature appears at approximately 12,200 cm-1, and then a positive 

peak at approximately 12,100 cm-1. They all contain a relatively weak signal component 

near zero waiting time in the region from 12,600 – 12,800 cm-1. They also contain the 

following differences. First, the negative signal components persist at 12,200 cm-1, instead 

of gradually lifting to a positive signal as in the TA spectrum.  

 

 

Figure S8. The intensity ratios of the transmitted probe spectra are shown from Days 1-3 
and the signal from the TA spectrum. Day 1 deviated the most from the others, because the 
experimental apparatus was tuned between experiments from Day 1 and Day 2. Data from 
Days 2-3 were measured in succession, without re-tuning, resulting in more similar 
incident laser spectra. 
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Furthermore, the peak at 12,300 cm-1 is especially intense in the data from Day 1, 

compared to those from Days 2-3. The regions at 12,400 cm-1 and 12,600 cm-1 are weaker 

in Day 1 than Days 2-3, while the region at 12,500 cm-1 is stronger, leading to a similar 

signal shape in the transient spectra with a sharper peak at 12,500 cm-1 and weaker 

shoulders on either side of this peak compared to the Day 2 and 3 spectra. The 12,300 cm-1 

peak in the Day 2 data also has more relative intensity compared to that from Day 3, as well 

as diminished intensity at approximately 12,350 cm-1. Though this feature is the smallest in 

Day 3, it nonetheless is still evident as a shoulder overlapping with its higher-energy peaks. 

As the 12,300 cm-1 peak becomes more intense, it out-competes the intensity from the 

peaks at 12,400 – 12,600 cm-1, so that this bluer region becomes diminished by comparison 

on the color maps of Days 1 and 2. To explain this peak’s prominence on Day 1, the ratios of 

the transmitted probe spectra obtained on 2DES experiments from Days 1-3 are shown in 

Figure S8. This figure shows the ratios of the transmitted probe spectra obtained on Days 

1-3. On Day 1, there is approximately 50% more intensity in the incident beams at 12,300 

cm-1 compared to the 2D signal on other days, accounting for the extra intensity in this 

region. Meanwhile, the relative strength of the 12,300 cm-1 peak in the Day 2 data can be 

accounted for by the diminished intensity near 12,500 cm-1 which, relative to the Day 3 

data, reduces the intensity of this feature compared to the peak at 12,300 cm-1.  

 2D and transient absorption spectra at particular waiting times are shown in Figure 

S9. The peaks at <12300 cm-1 are heightened in the 2D spectra, coinciding with increased 

incident light in that region compared to the TA spectrum (Figure S8). The TA spectrum was 

measured using the same spectrum for its pump and probe beams. The spectral line shape 

in the rest of the spectra offer a good match consistently in the remaining parts of the spectra, 
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for the duration of the scan. Like the transient absorption spectrum in Figure S7d, the exciton 

1 peak at 12102 cm-1 grows as T increases compared to the rest of the spectral peaks, 

indicating downhill energy transfer.  

 

Figure S9. Phased 2D spectra (after summation along the 𝜔𝜏 domain) are plotted with the 
transient absorption (TA) spectra at the same time delay, in the waiting time range of 0 – 
1800 fs with time steps of 300 fs (a-g, respectively). As described in Figure S8 and the 
accompanying text, the higher beam power at <12200 cm-1 and at 12300 cm-1 lead to 
increased peak intensities at these positions in the 2D spectrum, compared to the TA 
spectra. However, the remaining 2D peaks coincide with the positions in the TA spectra.  
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7. Aliasing in the experimental and computed line shapes 

The computed spectra were generated using a step size of 1 fs (Figure S10). In 

contrast, the experimental measurements were performed with a 3.5 fs step size, 

introducing an aliasing effect. Aliasing occurs in 2D spectra when the time-domain step size 

exceeds half the signal’s optical cycle. In this case, 800 nm light has an optical period of 2.67 

fs, so aliasing occurs if the 𝜏-domain step size surpasses approximately 1.33 fs. Here, we 

test whether the aliasing significantly affects the signal output using computed spectra. 

Because the computations were performed with a step size of 1 fs, they do not feature 

aliasing. However, by selecting every third data point in the data set, we obtain an aliased 

example with a step size of 3 fs (Figure S11).  

If aliasing significantly distorts the spectra, it will be apparent by comparing the 

spectra obtained by these two cases shown in Figs. S10 and S11. To simplify the 

comparison, we select the line cut of the exciton 2 signal in the 𝜔𝑡 domain due to its large 

intensity. The 𝜔𝜏-domain signals in these unaliased and aliased cases are shown in Figure 

S12. Because the number of data points in each case is odd (N = 2049 points), the frequency 

domains were obtained by using Nyquist frequencies of ±
1

2Δ𝜏
 as the outer limits, and then 

spacing N data points with constant step size between these two limits, where Δ𝜏 is the 

step size. We also did likewise for Δ𝑡 in the rephasing-time domain. Because the aliased 

example has a step size of 3fs, which is slightly more than two times 1.33 fs, the aliased 

frequency axis was shifted by adding two times 
1

2Δ𝜏
 to restore to the frequency positioning 

lost by aliasing. These spectra have very similar line shapes, with an apparent peak shift of 
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5 cm-1. The aliased signal has a slightly raised line shape on either side of the peak. Overall, 

the differences are minor. 

 

 

Figure S10. Time-domain calculated line shapes are shown at 𝜔𝑡 = 12133, 12268, 12360, 
12435, 12495, 12518, 12618, and 12740 cm-1 (a-h). The step size in the 𝜏 -domain is 1 fs.  
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Figure S11. Time-domain calculated line shapes are shown at 𝜔𝜏 = 12133, 12268, 12360, 
12435, 12495, 12518, 12618, and 12740 cm-1 (a-h). The calculations are shown with a 3 fs 
step size, obtained by collecting every third data point compared to the data shown in Figure 
S9.  
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Figure S12. Spectral components of the computed FMO spectrum are shown for 𝜏 and 𝑡 step 
sizes of 1 fs (blue) and 3 fs (red), corresponding to the unaliased and aliased cases, 
respectively. The position and line shape are not significantly changed by the difference in 
the sampling period. The signal used here corresponds to exciton 2 in the 𝜔𝑡 domain. 
Because this is a line cut from the 2D spectrum, this spectrum contains cross-peaks with 
the 𝜔𝜏 domain, due to other excitons embedded in its shoulders. 
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8. The effect of random noise and vibrational contributions 

To simulate the random noise contribution, we start with the data corresponding to 

the HEOM-simulated 2D spectra (Fig. S10). We add random noise Nj to each data point j, 

according to equation S11. 

𝑁𝑗 = 𝑀𝐹𝑟𝑗  (S11) 

In this equation, M is the maximum of the real-valued time-domain data; F is a scalar multiple 

that tunes the amount of noise added (indicated in the legend of Figure S13); and rj is a 

random number (with a flat probability density) in the range of [-0.5,0.5].  

 

Figure S13. Time-domain (a) and wavenumber-domain (b) signals are shown, calculated from 

HEOM with added noise. The legend indicates the noise factor F, according to equation S8. These 

plots are generated by summing 63 independent instances of noisy 2D spectra to simulate the 63 

steps in the T-domain of our experimental data. Each spectrum was generated by adding noise 

point-by-point to the time-domain of the 2D spectrum shown in Figure S9, then summing over the 

coherence frequency and waiting time domains. This is the same methodology that generated the 

spectra in Fig. 5 of the main text. Part (b) shows that the noise does not significantly alter the 

lineshape in the corresponding wavenumber-domain spectra. 

 

Here, we sum over the T-domain steps in the main text. Figure S13 shows the real-valued 

time- and wavenumber-domain data resulting from the addition of this noise, after 

performing the same summations used for the experimental data in Figure 4 in the main text. 

We assigned values as high as 5 to F, which is a significant overestimate of the noise we would 
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observe in actual experiments. From these spectra, we observe that noise does not 

contribute significantly to the spectra in the wavenumber window of interest.  

 For the vibrational sublevel contributions, we performed an HEOM calculation to 

simulate the 2D signal for sites 3 and 4 of FMO as a representative example. The reason for 

this calculation is that it is too computationally expensive to calculate the spectrum of the 

entire 8-site system if one additional vibrational sublevel is included on each existing state.  

 

Figure S14. 2D spectra were calculated using HEOM, for a system that includes two chromophores 

representing sites 3-4 of FMO. One additional vibrational sublevel was included for each state. 

The spectra were summed over the 𝜔𝜏  domain, yielding the 𝜔𝑡 -domain spectra shown here, 

similar to those shown in Figs. 1e and 4 of the main text. The energy gap of the electronic states 

was tuned closer to (red) or further from (blue) the vibrational energy spacing. Coincidence of 

these energy gaps would result in electronic-vibrational mixing, allowing the vibrational modes to 

borrow maximal oscillator strength from the electronic states and producing a worst-case scenario 

for the appearance of vibrational overtone features in the filtered spectra. However, no such peaks 

appear when comparing the two cases. 

 

The following parameters were used: E1 = 12150 cm-1 and E2 = 12245 (blue) or 12305 cm-1 

(red) for the two chromophores’ excited states (figure S14); and V = -50 cm-1 coupling. These 

parameters coincide with poorly mixed and well-mixed electronic-vibrational states, 



 S25 

respectively (Figure S15). The vibrational mode is set to 180 cm-1 with a Huang-Rhys factor 

of 0.025. The temperature is 77 K, with a bath relaxation time of 100 fs and reorganization 

energy of 35 cm-1. The parameterization involving a 150 cm-1 electronic energy offset is 

based on a previous publication,9 though with a global energy shift.  

 

Figure S15. The energies and oscillator strengths of the excited states are shown, calculated as a 

function of the electronic energy gap ∆𝐸 compared to the vibrational energy spacing ℏ𝜔0. The 

mixing between electronic and vibrational states is most significant when ∆𝐸/ℏ𝜔0  is 

approximately 0.88. The color scale indicates the oscillator strength. 

 

In this simulated spectrum, we have considered two energy configurations. In one 

case, the vibrational level is not similar to the energy gap of the electronic excited states, 

which minimizes their mixing and serves as a “control” test. In the other case, the vibrational 

level is similar to this energy gap, which induces quantum mixing between the electronic and 

vibrational states and maximizes the possibility of seeing an effect in the spectrum, due to 

the vibrational signals’ “borrowing” oscillator strength from the electronic transitions. When 

comparing these cases, we do not see any new peaks arise in the latter case. Therefore, we 

see no discernable effects arising from vibronic character using known parameters for our 

system.  

 

9. Comparison to previously published 2D spectra 
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 The line shapes of 2D spectra depend on the preparation, experimental, and analysis 

conditions. For example, Sec. 6 discusses that 2D spectra depend on the pump beams’ 

spectral intensity by 𝑃(3)(𝜔) ∝ 𝐼(𝜔)3 2⁄ , and it describes how these characteristics impact 

the spectra presented here. Additionally, Orf et. al.10 reported a redox-state-dependent 

photoprotection mechanism, and Allodi et al.11 reported how it can change the 2D spectra 

(eg., Figure 2 in that publication). Furthermore, the apparent resolution is also affected by 

the coherence-time range and windowing parameters, up to the signal duration. The spectra 

published by Engel et al.12 and Panitchayankoon et al.13 were treated with ascorbate, a 

reducing agent. Therefore, those spectra must be compared to the reduced sample’s spectra 

in the publication by Allodi et al. 11 While we did not use ascorbate, our spectra nonetheless 

resemble the reduced spectra as well. Allodi et al. attribute the spectral differences in 

oxidized and reduced conditions primarily to changes in the local electrostatic environments 

of excitons 4, 2, and 1, as well as changes to the system-bath coupling.  

The spectra shown in the main text are summed over waiting time, but these other 

publications show the spectra at individual waiting times. Therefore, in Figure S16 we show 

the spectrum at T = 30 fs, which is our closest example to the T = 40 fs spectrum showed by 

Allodi et al. For comparison to previously published spectra, we have applied smaller 

apodization window widths than 1 ps, more consistent with previous analyses (𝜏𝑚𝑎𝑥 =

400fs and 𝑡𝑚𝑎𝑥 = 600fs). Therefore, aside from the treatment of waiting time, the spectrum 

shown here also differs from the “unfiltered” spectrum shown in Fig. 3 of the main text, 

where the coherence and rephasing domain signals are preserved up to 1 ps for the eventual 

application of the LG filter. One significant difference between the oxidized and reduced 

spectra, according to Figure 2 in the publication by Allodi et al., is the presence of positive 
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signal at the [𝜔𝜏, 𝜔𝑡] coordinates of approximately [12200-13000cm-1, 12650-13000cm-1] in 

the reduced case, but not in the oxidized case (13000 cm-1 is the approximate upper limit of 

their plot range). This feature is outside of the plot ranges for the publications by 

Panitchayankoon et al. and Engel et al. We observe positive signals in this spectral region. 

Elsewhere, the other publications find a negative band at approximately 𝜔𝑡 = 12500cm-1, 

which corresponds to a horizontal region where the signal strength decreases in Figure S16, 

however we do not resolve a negative signal here. However, in higher resolution spectra (Fig. 

3, main text) we observe the signal go to zero at this region, with slight negative peaks, for 

instance, at [12400cm-1, 12500cm-1]. The previous publications disagree about whether the 

signal is positive or negative in the region of [12600-12700 cm-1, 12600-12700 cm-1], with 

Allodi et al. reporting negative signal there, while the other two report positive signal. We 

observe a positive peak at [12700 cm-1,12700 cm-1], but we also find a negative region 

directly underneath it. Like these other publications, we observe similar positive features at 

approximately 𝜔𝑡 =12100 cm-1 and 12270 cm-1 that spans most of the 𝜔𝜏 range, a negative 

feature above the diagonal line at [12100 cm-1, 12200 cm-1], and another at [12200 cm-1, 

12350 cm-1].  

There are also some differences among the spectra. For example, the spectra in 

Panitchayankoon et al. and those at T > 0 fs by Engel et al. do not contain the negative signal 

at 𝜔𝑡 =12050 cm-1 shown in the other reports. This negative signal is not resolved in Fig. 

S16, however it is observable when longer time delays are included (Fig. 3, main text). 

Panitchayankoon et al. and Engel et al. do not report a clear separation between the peak 

structures near [12250 cm-1, 12100 cm-1], though Allodi et al. do see it. We observe signs of 

it in Fig. S16, but it is much better resolved in Fig. 3 of the main text. These distinctions may 
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be due to the apparent spectral resolution, as well as differences in the incident spectra. For 

the reasons stated in the beginning of this section, we would not expect exact coincidence of 

the spectra. All four publications reported measurements made on different 2D 

spectrometers, in different lab spaces, and the FMO in this study was extracted by a different 

research group than the others. Nonetheless, many of the features are qualitatively similar. 

 

 

Figure S16. The 2D spectrum of the combined rephasing and non-rephasing measurements 
is shown at T = 30 without LG filtering. This spectrum was chosen because it is the closest to 
the spectra at 40 fs shown by Allodi et al. 11 To compare to previous spectra, for the Hanning 
apodization windows we have used the coherence and rephasing time domain maxima of 
𝜏𝑚𝑎𝑥 = 400fs and 𝑡𝑚𝑎𝑥 = 600fs.  
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