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We consider the phenomenological implications of charged scalar extensions of the Standard Model (SM)
Higgs sector in addition to effective field theory (EFT) couplings of this new state to SMmatter. We perform a
detailed investigation of modifications of loop-induced decays of the 125 GeV Higgs boson, which receives
corrections from the propagating charged scalars alongside one-loop EFToperator insertions and demonstrate
that the interplay ofH → γγ and H → Zγ decays can be used to clarify the additional states phenomenology
in case a discovery is made in the future. In parallel, EFT interactions of the charged Higgs can lead to a
decreased sensitivity to the virtual presence of charged Higgs states, which can significantly weaken the
constraints that are naively expected from the precisely measured H → γγ branching ratio. Again H → Zγ
measurements provide complementary sensitivity that can be exploited in the future.
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I. INTRODUCTION

The search for physics beyond the Standard Model
(BSM) is the highest priority of the Large Hadron
Collider (LHC) after the discovery of the Higgs boson
[1,2]. So far, however, there has been no conclusive
evidence for the presence of new states or interactions.
In parallel, the increasingly fine-grained picture of the
Higgs sector that ATLAS and CMS are obtaining creates a
phenomenological tension when Higgs data are contrasted
with theoretically well-motivated new physics models. In
particular, Higgs sector extensions that predict the presence
of additional charged scalar bosons are constrained by extra
scalar contributions to the H → γγ decay mode, which is
experimentally clean, in addition to direct search con-
straints in the context of, e.g., the two-Higgs-doublet or -
triplet models [3,4].
In this work, we approach such constraints from a

different perspective. We extend the Standard Model
(SM) with an additional electromagnetically charged
Higgs h� which acts as transparent and minimal extension

to the SM providing additional propagating degrees of
freedom to modify observed SM Higgs rates. These states
appear in many BSM Higgs sector extensions (e.g., in two-
Higgs-doublet [5] or -triplet models [6]). In parallel, we
consider effective field theory (EFT) operators to para-
metrize interactions of the new charged state with the SM
gauge sector model-independently, e.g., by integrating out
h�-dominant interactions with and intrinsic EFT mass
scale Λ. Considering EFT operators up to dimension 6,
we compute the loop-induced decays of the SM Higgs (see
also [7–17]) in this scenario to identify regions of con-
sistency with the SM expectation (for similar analyses of
electroweak observables, see, e.g., [18,19]). This highlights
the possibility of nonminimal interactions of the charged
Higgs as parametrized by the EFT interactions to signifi-
cantly reduce the sensitivity of the naively (highly) con-
straining SM Higgs H → γγ decay mode. In contrast, we
will see that the phenomenologically challenging H → Zγ
branching can resolve cancellations that render the BSM
H → γγ decay consistent with the SM.
We organize this work as follows: in Sec. II, we review

the details of the extended Higgs sector, introducing all
relevant couplings and EFT operators that we consider in
this work. Section III provides a short overview of our
computation, while we discuss constraints and results in
Sec. IV. We conclude in Sec. V.

II. THE MODEL

For the purpose of our work, we have considered the
effective operators up to dimension 6, and the full effective
Lagrangian can be written as
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L ¼ Lrenorm þ
XN
j¼1

Cð5Þj

Λ
Oð5Þ

j þ
XM
k¼1

Cð6Þk

Λ2
Oð6Þ

k : ð1Þ

We extend the Higgs sector by considering an extra SUð2ÞL
singlet scalar field S with hypercharge 1. The renormaliz-
able part of the Lagrangian Lrenorm mentioned in Eq. (1)
then takes the form

Lrenorm ¼ −
1

4
GA

μνGAμν −
1

4
WI

μνWIμν −
1

4
BμνBμν

þ ðDμϕÞ†ðDμϕÞ þ ðDμSÞ†ðDμSÞ − Vðϕ;SÞ
þ iðL̄γμDμLþ ēγμDμeþ Q̄γμDμQþ ūγμDμu

þ d̄γμDμdÞ þ LYukawa þ H:c:; ð2Þ

where GA
μν, WI

μν, and Bμν are the field strength tensors
corresponding to SUð3ÞC, SUð2ÞL, and Uð1ÞY , respec-
tively. The generic form of the scalar potential Vðϕ;SÞ
mentioned in Eq. (2),

Vðϕ;SÞ ¼ m2
1ðϕ†ϕÞ þm2

2ðS†SÞ þ λ1
2
ðϕ†ϕÞ2

þ λ2
2
ðS†SÞ2 þ λ3

2
ðϕ†ϕÞðS†SÞ: ð3Þ

The Yukawa part of the Lagrangian is also extended as the
transformation properties of S under SUð3ÞC ⊗ SUð2ÞL ⊗
Uð1ÞY allow the interaction between the left-handed lepton
doublets and the singlet scalar,

LYukawa ¼ −yeL̄eϕ − yuQ̄uϕ̃ − ydQ̄dϕ

− fðLciτ2LÞS; ð4Þ

here, ϕ̃ is the charge-conjugated SM Higgs doublet, and
ye;u;d are the Yukawa coupling matrices, and f is the
coupling constant for the new interaction present in Eq. (4).
In Eq. (1), we also include effective operators that

parametrize the new interactions between charged scalar
and SM fields [20].
In Table I, we have collected the operators that contribute

to different rare and flavor-violating li → lj≠iγ processes.
From the strong constraints on the decay width from these
channels, we can infer that the Wilson coefficients corre-
sponding to these operators are negligible, and we will not
consider these operators in the remainder of this work. The
dimension 6 operatorswhich contribute toH → γγ andH →
Zγ decay have been tabulated in Table II and the operators
which contribute to H → gg decay are given in Table III; in
both cases, no dimension 5 operator contributes.
After spontaneous symmetry breaking (SSB), the

SUð2ÞL doublet scalar ϕ takes the following form and
produces the physical neutral Higgs H:

ϕ ¼
� Gþ

1ffiffi
2

p ðvþH þ iG0Þ
�
; ð5Þ

where G� and G0 are the charged and neutral Goldstone
fields, respectively. After SSB, the SUð2ÞL singlet scalar

TABLE I. Effective operators relevant for li → lj≠iγ decay.
Operator written in bold is the only dimension 5 operator [21] that
contributes to the decay amplitude. τI is SUð2Þ generator and
I ¼ 1, 2, 3.

Ψ2Φ2 Ψ2Φ3

OLeϕS L̄eϕ̃S OLϕS L̄eϕðS†SÞ

Ψ2Φ2D Ψ2ΦX

OSLeD ðLcγμeÞϕ̃ðiDμSÞ OeBS BμνðLcσμνLÞS
OSLD ðL̄γμLÞðS†iD

↔

μSÞ OeWS WI
μνðLcσμντILÞS

OSeD ðēγμeÞðS†iD
↔

μSÞ

TABLE II. Effective operators relevant forH → γγ andH → Zγ
decay.Operators in bold are the pure StandardModel effective field
theory (SMEFT) operators that contribute to the leading order (LO)
amplitudes inH decay. τI is SUð2Þ generator and I ¼ 1, 2, 3: The
dual field strengths are defined as X̃μν ¼ ϵμνρδXρδ=2.

Φ4D2 Φ6

OSϕD ðS†SÞ½ðDμϕÞ†ðDμϕÞ� OϕS ðϕ†ϕÞ2ðS†SÞ
OϕSD ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ�

Φ2X2

OBϕ BμνBμν(ϕ†ϕ) OBS BμνBμνðS†SÞ
OB̃ϕ B̃μνBμν(ϕ†ϕ) OB̃S B̃μνBμνðS†SÞ
OWϕ WI

μνWIμν(ϕ†ϕ) OWS WI
μνWIμνðS†SÞ

OW̃ϕ W̃I
μνWIμν(ϕ†ϕ) OW̃S W̃I

μνWIμνðS†SÞ
OWBϕ WI

μνBμν(ϕ†τIϕ)
OW̃Bϕ W̃I

μνBμν(ϕ†τIϕ)

TABLE III. Effective operators relevant for H → gg decay.
Operators in bold are the pure SMEFToperators that contribute to
the LO amplitudes in H decay, A ¼ 1; 2.::8. The dual field
strength tensors are in the convention of Table II.

Φ4D2 Φ6

OϕSD ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ� OϕS ðϕ†ϕÞ2ðS†SÞ

Φ2X2

OGϕ GA
μνGAμν(ϕ†ϕ) OGS GA

μνGAμνðS†SÞ
OG̃ϕ G̃A

μνGAμν(ϕ†ϕ) OG̃S G̃A
μνGAμνðS†SÞ
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SðS†Þ emerges as charged scalar field h�. The operator
ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ� changes the normalization of the h�-
kinetic term. We can redefine the field as

h� →

�
1 − CϕSD

v2

2Λ2

�
h� ð6Þ

to recover a canonically normalized Lagrangian. The mass
of charged scalar h� receives contributions from the
effective operator ðϕ†ϕÞ2ðS†SÞ. Considering this operator
and the proper redefinition of field given in Eq. (6), we find
the squared of the mass of h� from Eq. (3) to be

M2
h� ¼

�
m2

2 þ
λ3
2
v2
��

1 − CϕSD
v2

Λ2

�
þ CϕS

v4

Λ2
: ð7Þ

The Φ6 class of operators (in the convention of [22]) are
given by ðS†SÞ3, ðϕ†ϕÞ2ðS†SÞ, and ðϕ†ϕÞðS†SÞ2 and these
parametrize the new interactions of the new scalar and the
SM Higgs. None of these operators impacts the stability of
the neutral vacuum.

III. ELEMENTS OF THE CALCULATION

As detailed in the previous section, we start with a
canonically normalized effective Lagrangian in the broken
electroweak phase. The calculation of the loop-induced
decays of SM Higgs decay then receives contributions from
the propagating SM degrees of freedom, the BSM charged
scalar h�, as well as the dimension 6 operator insertions at
one loop. The latter radiatively induce the SMEFT oper-
ators tabulated under Φ2X2 class in the first column of
Table II,

Ld6 ¼
vH
Λ2

ðCWϕWIμνWI
μν − CWBϕW3μνBμν þ CBϕBμνBμνÞ

þ vH
Λ2

ðCW̃ϕW
3μνW̃3

μν − CW̃BϕB
μνW̃3

μν þ CB̃ϕB
μνB̃μνÞ

þ vH
Λ2

ðCGϕGa;μνGa
μν þ CG̃ϕG

a;μνG̃a
μνÞ; ð8Þ

which need to be included as part of the renormalization of
the processes that we consider in this work. The above Ld6
is given in terms of mass eigenstates using

�
W3

μ

Bμ

�
¼

0
B@

gWffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p gYffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p

− gYffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p gWffiffiffiffiffiffiffiffiffiffi
g2Wþg2Y

p

1
CA�Zμ

Aμ

�
; ð9Þ

where gW and gY are the gauge coupling constants
corresponding to the SUð2ÞL and Uð1ÞY , respectively, as

Ld6 ¼
vH
Λ2

ðCAϕAμνAμν þ CAZϕAμνZμν þ CZϕZμνZμνÞ

þ vH
Λ2

ðCÃϕAμνÃμν þ CAZ̃ϕA
μνZ̃μν þ CZ̃ϕZ

μνZ̃μνÞ

þ vH
Λ2

ðCGϕGa;μνGa
μν þ CG̃ϕG

a;μνG̃a
μνÞ ð10Þ

and

CAϕ ¼ g2Y
g2W þ g2Y

CWϕ −
gWgY

g2W þ g2Y
CWBϕ þ

g2W
g2W þ g2Y

CBϕ;

CAZϕ ¼ 2gWgY
g2W þ g2Y

ðCWϕ − CBϕÞ −
g2W − g2Y
g2W þ g2Y

CWBϕ;

CZϕ ¼ g2W
g2W þ g2Y

CWϕ þ
gWgY

g2W þ g2Y
CWBϕ þ

g2Y
g2W þ g2Y

CBϕ:

Similar relations hold for the CP-odd operators.
In the following, we will sketch the calculation of the

H → γγ branching. The H → Zγ; gg decay results can be
obtained in a similar fashion, but we will comment on
process-specific differences where they are relevant. In the
case of theHðk1Þ → γðk2Þγðk3Þ amplitude, this gives rise to
a new tree-level contribution,

ð11Þ

with

Oo ¼ −4ϵμνρδϵ�μðk2Þϵ�νðk3Þk1;ρk2;δ; ð12Þ

Oe ¼ 2½2ðϵ�ðk2Þk1Þðϵ�ðk3Þk1Þ − k21ðϵ�ðk2Þϵ�ðk3ÞÞ�; ð13Þ

and it is these operator structures that will be renormalized
as a consequence of the one-loop h�-related EFT inser-
tions, while the renormalizable interactions of the propa-
gating h� lead to a ultraviolet (UV)-finite modification of
the H → γγ partial decay width.
Throughout this work, we chose on-shell renormaliza-

tion for SM fields alongside the modified minimal sub-
traction scheme (MS) of Wilson coefficients. The
Lagrangian of Eq. (10) leads to a counterterm contribution
for the H → γγ amplitude,

MCT ¼ ½δCAϕþ CAϕðδZH=2þ δZAAÞþCAZϕδZZA=2�
vOe

Λ2

þ½δCÃϕþCÃϕðδZH=2þ δZAAÞþCAZ̃ϕδZZA=2�
vOo

Λ2

þ δv
Λ2

MLO; ð14Þ

where the implications of Z − γ mixing have been
included. These δZH and δZVV 0 factors correspond to the
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renormalization constants of the H → H and V → V 0 two-
point functions, respectively, and result from a replacement
of the bare quantities,

�
Z

A

�
→

 
1þ 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1þ 1

2
δZAA

!�
Z

A

�
: ð15Þ

They are determined by imposing the on-shell conditions
on the real parts of the gauge boson self-energies; see, e.g.,
[23]. The dimension 6 counterterms δC arise from shifting
the bare Wilson coefficients in Eq. (10): C → C þ δC while
δv ¼ −δT=M2

H is related to the tadpole counterterm
[24,25]. The explicit expressions of these counterterms
have been given in the Appendix for the case of H → γγ.
As indicated in these equations, we include loop cor-

rections and renormalization constants evaluated to order
Λ−2, i.e., we strictly work in the dimension 6 framework
such that the considered field theory is technically renor-
malizable. We modified the SMEFTFR package [26,27] to
add the charged scalar in our calculation and included all
relevant Feynman diagrams from a FEYNRULES [28]-
generated model file using a modified version FEYNARTS

[29] to include interactions up to six-point vertices. This is
essential for a consistent result as the diagram of Fig. 1(a) is
related to other EFT-h� diagrams by gauge symmetry.
While only the BSM contributions to H → γγ are

sketched in Fig. 1, we include the SM contributions
throughout, in particular for cross-checks against SM
results at analytical [29] (we use Feynman gauge through-
out our calculation) as well as numerical level by compar-
ing to the results reported by the Higgs cross-section
working group [30–33]. Identical cross-checks were per-
formed for the H → Zγ and H → gg decay calculations.1

As mentioned in the Introduction, in this work, we will
assume that new physics is dominantly related to the h�
bosons’ interactions, i.e., all SMEFT operators will be
sourced radiatively through h� operators; the UV-singular
structure of Fig. 1 is only related to the operator matrix
elements Oo, Oe. Furthermore, only the CP-odd (even)

operators of Table II contribute to UV singularities dressing
the Oo (Oe) amplitudes at one-loop level. Adding the
counterterm contributions to all one-loop diagrams of
Fig. 1, we can therefore consistently absorb all singularities
of the BSM one-loop correction into a redefinition of the
SMEFT operators in the mass basis shown in Eq. (10).
The amplitude contains scalar two- and three-point

functions B0, C0 in the convention of Passarino and
Veltman [34,35] which we include analytically in the case
of H → γγ; gg, where we deal with a two-scale problem. In
the case ofH → Zγ, we evaluate the three scale C0 function
numerically using LOOPTOOLS [36,37]. As done in the SM,
we include the full squared amplitude of the (renormalized)
one-loop result to the calculation of the respective decay
widths. We will see, however, that for perturbative param-
eter choices, the dependence of physical results is well-
approximated by linearized Wilson coefficient dependen-
cies. The phase space integration is straightforward and can
be performed analytically [38].
We are particularly interested in the modifications of the

loop-induced γγ; Zγ; gg decays to the total Higgs decay
width and the resulting branching ratio modifications, as
well as SMHiggs production via the dominant gluon fusion
(GF) channel. To this end, we choose vanishing values for
the renormalized Wilson coefficients of Eq. (10), which
otherwise would impact the Higgs phenomenology already
at tree level. The leading order approximation of the GF
cross section scales as (see, e.g., [39])

σBSMGF

σSMGF
¼ ΓBSMðH → ggÞ

ΓSMðH → ggÞ ; ð16Þ

where ΓiðH → ggÞ represents the different partial decay
widths of H → gg. Branching ratios are modified as

BRBSMðH → XÞ
BRSMðH → XÞ ¼ ΓBSMðH → XÞ

ΓSMðH → XÞ
ΓSM
tot

ΓBSM
tot

; ð17Þ

where the total decay widths are

ΓðBÞSM ¼
X
X

ΓðBÞSMðH → XÞ: ð18Þ

Assuming the narrow width approximation, the 125 GeV
Higgs signal strength is then given by

(a) (b) (c) (d) (e)

FIG. 1. BSM Feynman topologies contributing to the Higgs di-photon branching H → γγ via the new propagating h� and its EFT
interactions, e.g., the five-point interaction of (a) but also modifications of three- and four-point interactions.

1In the H → Zγ case, the SM part of the amplitude receives an
additional counterterm contribution ∼emW=ð2sθcθÞδZAZ from
Z − γ mixing, where sθ, cθ are the sine and cosine of the
Weinberg angle, respectively.
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μXgg ¼
½σGF × BRðH → XÞ�BSM
½σGF × BRðH → XÞ�SM : ð19Þ

It is interesting to see how the SM result is obtained as a
function of the new degrees of freedom and the higher-
dimensional operator contributions. Firstly, for all Ci ¼ 0,
the new physics contributions are controlled by λ3 alone
and as can be seen in Fig. 2(a), we obtain the SM
expectation irrespective of Mh for λ3. We can also see that
for perturbative coupling choices, we are dominated by a
linear behavior of the new physics coupling. Second, the
Appelquist-Carazzone decoupling theorem [40] implies an
asymptotic SM result for Mh ≫ MH. While these results
are known from concrete models with propagating degrees
of freedom such as, e.g., the two-Higgs-doublet model
[41,42], the contribution of the EFT operators is shown in
Fig. 2(b). For λ3 ¼ 0, we can directly observe the decou-
pling of new physics when the cutoff scale is removed from
the theory Λ → ∞. For λ3 ≠ 0, we asymptotically approach
the results that include the propagating h�, Fig. 2(b)
highlighted by the dashed lines.

IV. RESULTS

A. Constraints

Before we will discuss the impact of the considered
scenario on the SM Higgs boson’s phenomenology as
outlined above, a few remarks regarding constraints on the
model are due.
We have already commented on the potential lepton

flavour implications in Sec. II, in the limit where inter-
actions of h� with fermions is weak, flavor constraints can
be avoided. Yet, resonantly produced h� can still be
observed in leptonic final states (BR ≃ 1) and searches
for charged Higgs bosons at the LHC (e.g., [43–47])
typically focus on their quark or lepton decay final states.

However, searches for gauge-philic charged scalars with
suppressed Yukawa interactions have limited sensitivity;
see, e.g., [48,49]. The recent Ref. [50] (see also [51]) sets
95% confidence level constraint on a charged Higgs in
decays h� → W�Z between 90 fb and 1 pb for masses in
the range of 0.4 TeV≲Mh ≲ 2 TeV. However, these final
states exploit a nontrivial role of h� in electroweak
symmetry breaking (as part of, e.g., a SUð2ÞL triplet [6]),
and hence rest on the assumption of a significant departure
of the alignment of H from fluctuations around v, and a
significant nondoublet character of SSB. The charged
Higgs bosons introduced above are produced at the LHC
via Drell-Yan-like pair production (e.g., as also present in
the two-Higgs-doublet model). While even parametrically
small Yukawa couplings can lead to discoverable clean
leptonic final states as mentioned above, the electroweak
pair production cross section is suppressed such that the
LHC will be statistically limited in a mass range Mh ≃
500 GeV (see also [52]). It is worth noting that the gauge-
h� effective field theory insertions do not lead to an
enhancement of Drell-Yan production at large energies.
Next, we comment on constraints on the new couplings

from unitarity and perturbativity. The scattering angle of
2 → 2 scattering can be removed by projecting the ampli-
tude on to partial waves,

aJfi ¼
β1=4ðs;m2

f1; m
2
f2Þβ1=4ðs;m2

i1; m
2
i2Þ

32πs

×
Z

1

−1
d cos θDJ

μi;μf iMfiðcos θ;
ffiffiffi
s

p Þ; ð20Þ

where s is squared the center-of-mass energy andmi are the
masses of the states in the initial state i and final state f. iM
is the 2 → 2 scattering amplitude (identical particles in
initial and final states require an additional factor 1=

ffiffiffi
2

p
),

DJ
μi;μj are the Wigner functions of [53], μi;j are defined from

(a) (b)

FIG. 2. Approaching the SM as a function of λ3 (a) for zero Wilson coefficient and (b) for nontrivial Wilson coefficient choices. The
dashed lines represent modifications to the decay widths from a charged Higgs without higher-dimensional interactions, which are
asymptotically approached for Λ → ∞ for nonvanishing Wilson coefficient choices.

EXTENDED HIGGS BOSON SECTORS, EFFECTIVE FIELD … PHYS. REV. D 103, 096009 (2021)

096009-5



the differences of the initial and final states helicities (see
also [54]), and βðx;y;zÞ ¼ x2þ y2þ z2− 2xy− 2xz− 2yz.
Unitarity and perturbativity can then be parametrized as
jaJfij < 1 [55–58].

h�h∓ scattering receives non-negligible corrections
from the effective field theory operators OS□;OϕSD;OSϕ

mentioned in Table IV in the high energy regime
ffiffiffi
s

p
≫ M2

h
(and other contributing mass scales). Therefore, perturba-
tivity of the J ¼ 0 partial wave can be used to restrict the
Wilson coefficient range at dimension 6 level,

jCϕSDj
Λ2

≲ 32π

j2λ2 − λ3jv2
;

jCSϕj
Λ2

≲ 16π

v2
;

jCS□j
Λ2

≲ 32π

s
;

jCSϕDj
Λ2

≲ 64π

s
; ð21Þ

while OϕS has a vanishing contribution in this kinematic
regime. λ2;3 as renormalizable interactions are subject to the
usual ∼4π bound. We will see that the operators of Eq. (21)

TABLE IV. Effective operators contributing to 2 → 2 scattering
amplitudes. The operators from Φ4D2 and Φ6 classes contribute
to h�h∓ scattering, while Φ2X2 operators affect h�W∓, h�γ, and
h�Z scattering.

Φ4D2 Φ6

OSϕD ðS†SÞ½ðDμϕÞ†ðDμϕÞ� OSϕ ðϕ†ϕÞðS†SÞ2
OϕSD ðϕ†ϕÞ½ðDμSÞ†ðDμSÞ�
OS□ ðS†SÞ□ðS†SÞ

Φ2X2

OBS BμνBμνðS†SÞ OB̃S B̃μνBμνðS†SÞ
OWS WI

μνWIμνðS†SÞ OW̃S W̃I
μνWIμνðS†SÞ

(a) (b)

(c) (d)

FIG. 3. Higgs boson signal strength modifications due to the different h�-related effective operators as a function of their Wilson
coefficients for Mh ¼ 700 GeV and Λ ¼ 1 TeV. The CP-even operators are well approximated by a linearized calculation for
perturbative choices, while the CP-odd operators impact the inclusive Higgs properties at squared dimension 6 level by construction.
The gauge-h� operators (a),(c),(d) have a more significant impact on the Higgs phenomenology than the Higgs-h� operators (b). The
effective interactions related to the gluon are given in (d), but we will mainly focus on electroweak couplings in this work (see text).
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only have a mild impact on the Higgs phenomenology
below. Even nonperturbative coupling choices ∼4π=TeV2

do not lead to phenomenologically relevant deviations. The
gauge scalar operators are more relevant for driving the
BSM Higgs physics modifications (see below) and can be
analyzed by considering h�W∓, h�γ, and h�Z scattering.
Using the strategy of [57,58], we compute coupled J ¼ 1
bounds (note that in for effective interactions transverse V
polarizations provide constraints which are qualitatively
different from the SM [59]),

jCWSj
Λ2

;
jCW̃Sj
Λ2

≲ 24π

MW
ffiffiffi
s

p ;

jCBSj
Λ2

;
jCB̃Sj
Λ2

≲ 48π

MWc2θ
ffiffiffi
s

p ; ð22Þ

again in the limit where participating masses are negligible
compared to

ffiffiffi
s

p
. These limits are rather weak, e.g.,

unitarity violation at
ffiffiffi
s

p
≃ 10 TeV translates into rather

loose bounds of jCij≲ 100Λ2=TeV2.
Third, one might object at this point that electroweak

precision measurements such as the oblique corrections
already constrain this scenario. To clarify this point, we
have investigated the Peskin-Takeuchi S, T, U parameters
[60,61] in the scenario of Sec. II where the gauge boson
polarizations receive CWS- and CBS-related corrections. We
find that these Wilson coefficients identically vanish from
the on-shell renormalized S, T, U parameters leaving a
residual dependence on the mass scaleMh. However, given
that these states are weakly coupled, their contribution is
small to the extent that this scenario is not constrained by
electroweak precision data.
Under the assumptions of this work, namely that new

physics contributions are predominantly mediated through
the charged Higgs sector, and its non-negligible inter-
actions with the SM Higgs sector, the precision inves-
tigation of the H → γγ; Zγ decay as outlined above can act
as an indirect and phenomenologically important probe of
such extensions.

B. Loop-induced Higgs phenomenology

Returning to loop-induced Higgs boson decays, we
present the signal strength deviations from the SM as a
function of a range of Wilson coefficients of Sec. II in
Fig. 3, for Mh ¼ 700 GeV, Λ ¼ 1 TeV, and λ3 ¼ 1, as
well as vanishing MS values for the couplings of Eq. (10).
As indicated earlier, the pseudo-observables are well
described by the linearized approximation for perturbative
choices of the Wilson coefficients. The obvious exceptions
are the CP-odd interactions where the interference of
CP-even SM amplitude and dimension 6 CP-odd contri-
butions cancels identically in CP-even observables like the
partial decay widths. CP-even effects then arise as squared

CP-odd dimension 6 contributions, giving rise to a non-
linear Wilson coefficient dependence.
Furthermore, we note that the effect of electroweak

corrections to μgggg is negligible for CGϕ;S; CG̃ϕ;S ¼ 0 and
results from the small overall modification of the Higgs
total decay width, Fig. 4. This is the limit where our results
are most relevant: BSM degrees of freedom with nontrivial
QCD interactions that are integrated out to arrive at
CGϕ;S; CG̃ϕ;S ≠ 0 can typically be more efficiently con-
strained by direct searches at hadron colliders; see, e.g., the
recent discussion of [62,63].
Turning to the effective electroweak interactions, the Zγ

and γγ decay widths are particularly sensitive to modifi-
cations of the gauge-h� interaction for the chosen Wilson
coefficient normalizations, while the CϕS; CϕSD interactions
are suppressed. Phenomenologically relevant deviations

FIG. 4. Impact of the CWS; CBS; CGS operators on the Higgs
signal strength in the different loop-induced decay modes as a
function of the new scalar mass Mh with the cutoff scale
Λ ¼ 1 TeV.

FIG. 5. Limits of the projected H → γγ signal strength at 3=ab
HL-LHC (Δμ ¼ 3.3%) [65], the ILC-1000 (Δμ ¼ 1.9%), and the
FCC-ee/eh/hh (Δμ ¼ 0.29%) [66]. No dimension 6 effects are
included.
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from the SM expectations related to CϕS; CϕSD are quickly
pushed to the nonperturbative coupling regime where a
meaningful perturbative matching is not possible. This
indicates a phenomenological blindness of Higgs signal
strength data to the interactions parametrized by these
coefficients, also because of gauge cancellations between
the diagrams of Fig. 1.
In Fig. 5, we show the expected constraints charged

Higgs masses as a function of the coupling λ3, for Λ ¼ ∞.
The LHC will be able to indirectly probe the gauge-philic
scenario up mass scales of ∼500 GeV for perturbative
scenarios, while sensitivity extrapolations at the FCC-hh
[64] and the highly constraining FCC-ee can explore a
broader range of charged Higgs bosons. The inclusion of
higher-dimensional interactions related to the new charged
scalar changes this picture.
We will first focus on the expected outcome of the

HL-LHC. Extrapolations by the CMS experiment [65]
suggest that

Δμγγgg
μγγgg

¼ 3.3% ð23Þ

can be obtained at a luminosity of 3=ab. The H → Zγ is
considerably more challenging and statistically limited in
the recent 139=fb ATLAS analysis of [67] which gives an
expected μZγ ¼ 1.0� 0.8ðstatÞ � 0.3ðsystÞ. Rescaling
uncertainties with the root of the luminosity, we can
estimate the sensitivity at 3=ab to be

ΔμZγgg
μZγgg

¼ 18%; ð24Þ

which is comparable with the extrapolation of [66] in
the context of the κ framework [30]. Furthermore,

extrapolating to a future circular collider, Ref. [66] quotes
improvements of

Δμγγgg
μγγgg

¼ 0.6%;
ΔμZγgg
μZγgg

¼ 1.4%; ð25Þ

from combinations of the ee, eh, and hh options [64,68,69].
The Zγ and γγ channels access orthogonal information of

the dimension 6 interactions, Fig. 6(a). For an SM-like
outcome of bothH decay channel measurements within the
uncertainty quoted above, the CWS and CBS operators yield
complementary constraints as a result of different overlaps
of Z, γ with the gauge eigenstates. Concretely this means
that if one of the operators is expected to be nonzero, the
combination of both channels can be used as a measure-
ment or constraint on other contributing effective couplings
as demonstrated in Fig. 6(b) for the case of CWS=Λ2.

V. CONCLUSIONS

The presence of additional charged scalar degrees of
freedom is predicted in many BSM scenarios. When these
states couple predominantly to the electroweak sector, they
are difficult to observe experimentally, in particular when
they do not play a role in electroweak symmetry breaking.
This highlights the question of whether additional new
physics that arises as a nontrivial extension of the extra
scalar’s interactions can have phenomenologically relevant
implications.
We approach this question by means of effective field

theory, i.e., we assume a mass gap between the charged
BSM scalar and other states that lead to generic effective
operators involving the scalar and the Standard Model
fields. While in the most generic approach, all SMEFT
operators would be sourced as well, these can be radiative

FIG. 6. Complementarity of the CBS; CWS directions in the H → γγ; Zγ comparison. In (a), the cutoff scale Λ is taken as 1 TeV. If one
of the operators is present, but due to a cancellation, the H → γγ rate looks SM compatible, the Zγ final state can resolve this blind
direction.
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effects when the new states predominantly interact with the
SM fields via the propagating scalar (as also motivated,
e.g., from Higgs portals).
While precision electroweak observables are largely

unaffected by the presence of this state, loop-induced
Higgs decays become sensitive tools to set constraints
for these (strong) new physics contributions associated with
the charged scalar. In particular, operator combinations that
are not constrained by generic gauge boson phenomenol-
ogy can be accessed in a precision analysis of Higgs decays
into rare yet clean γγ and γZ final states. As we have
demonstrated, the complementarity of these decay modes
could allow us, at least to some extent, to disentangle new
physics contributions in case this scenario is broadly
realized.
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APPENDIX: RENORMALIZATION

As discussed in Sec. III, we have considered on-shell
renormalization for the SM and additional fields and
parameters, and MS renormalization for Wilson coeffi-
cients. Here we have given the explicit expressions for the
renormalization constants used in the counterterm given in
Eq. (14). The terms A0, B0, B00, B1 used in the following
equations are the short-handed notations to express the one-
point and two-point integrals (see, e.g., [23]):

A0ðm2Þ ¼ m2ΔþOð1Þ;
B0 ¼ ΔþOð1Þ;

B1 ¼ −
Δ
2
þOð1Þ;

B00ðp2; m2
1; m

2
2Þ ¼

�
m2

1 þm2
2

4
−
p2

12

�
ΔþOð1Þ:

Δ ∼ ϵ−1 denotes the UV-divergent MS parts of the one-loop
integrals in dimensional regularization d ¼ 4 − 2ϵ.
The wave function renormalization is computed from the

on-shell conditions of the two-point functions at p2 ¼ 0,

δZAA ¼ 1

96π2ðg2Y þ g2WÞ
�
g2Yg

2
W

�
4þ 30B0ðM2

WÞ þ 24
X

l¼e;μ;τ

B1ðM2
l Þ þ 8

X
qd¼d;s;b

B1ðM2
qdÞ

þ 32
X

qu¼u;c;t

B1ðM2
quÞ − 48

X
l¼e;μ;τ

dB00ðM2
l Þ

− 16
X

qd¼d;s;b

dB00ðM2
qdÞ − 64

X
qu¼u;c;t

dB00ðM2
quÞ þ 12B1ðM2

WÞ − 3g2Wv
2dB0ðM2

WÞ

þ 12M2
WdB0ðM2

WÞ þ 12dB00ðM2
WÞ þ 24dB00ðM2

hÞ þ 60dB00ðM2
WÞ
�

− 24A0ðM2
hÞðCBSg2W þ CWSg2YÞ

�
ðA1Þ

and

δZZA ¼ −
1

48π2M2
Zðg2Y þ g2WÞ

�
gYgW

�
3g2Yg

2
Wv

2B0ðM2
WÞ þ 12g2WM

2
WB0ðM2

WÞ − 12g2YB00ðM2
WÞ

− 24g2WA0ðM2
WÞ − 24g2YB00ðM2

hÞ þ ð36g2Y − 12g2WÞ
X

l¼e;μ;τ

B00ðM2
l Þ þ ð4g2Y − 12g2WÞ

×
X

qd¼d;s;b

B00ðM2
qdÞ þ ð40g2Y − 24g2WÞ

X
qu¼u;c;t

B00ðM2
quÞ þ 60g2WB00ðM2

WÞ þ 6ðg2Y − g2WÞA0ðM2
WÞ

þ 12g2YA0ðM2
hÞ þ ð6g2W − 18g2YÞ

X
l¼e;μ;τ

A0ðM2
l Þ

þ ð6g2W − 2g2YÞ
X

qd¼d;s;b

A0ðM2
qdÞ þ ð12g2W − 20g2YÞ

X
qu¼u;c;t

A0ðM2
quÞ
��

: ðA2Þ
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Note that the dimension 6 parts of these renormalization constants would introduce dimension 8 contributions which we
neglect consistently in the computation of the next-to-leading order dimension 6 amplitude (see also [11,62,70].
Similarly, for the Higgs boson, the wave function renormalization is computed from an on-shell residue at p2 ¼ m2

H (thus
eliminating LSZ factors from the S-matrix element),

δZH ¼ 1

64π2

�
CϕSDλ23v

4dB0ðM2
H;M

2
hÞ þ 4CϕSλ3v4dB0ðM2

H;M
2
hÞ þ 4v2CϕSDλ3B1ðM2

H;M
2
hÞ

þ 4CϕSDλ3M2
hv

2dB0ðM2
H;M

2
hÞ þ 4CϕSDλ3M2

Hv
2dB1ðM2

H;M
2
hÞ þ 4CSϕDA0ðM2

hÞ
�

þ 1

256π2v2

�
128

X
l¼e;μ;τ

M4
l B0ðM2

H;M
2
l Þ þ 64

X
l¼e;μ;τ

M2
l B1ðM2

H;M
2
l Þ þ 64M2

H

X
l¼e;μ;τ

dB1ðM2
H;M

2
l ÞM2

l

þ 12ðg2Y þ g2WÞv2B0ðM2
H;M

2
ZÞ þ 24g2Wv

2B0ðM2
H;M

2
WÞ þ 192

X
qd¼d;s;b

m2
qdB1ðM2

H;M
2
qdÞ

þ 192
X

qu¼u;c;t

M2
quB1ðM2

H;M
2
quÞ þ 384

X
qd¼d;s;b

M4
qddB0ðM2

H;M
2
qdÞ þ 384

X
qu¼u;c;t

M4
qudB0ðM2

H;M
2
quÞ

þ 384
X

qd¼d;s;b

M4
qddB0ðM2

H;M
2
qdÞ þ 192M2

H

X
qd¼d;s;b

M2
qddB1ðM2

H;M
2
qdÞ þ 192M2

H

X
qu¼u;c;t

M2
qudB1ðM2

H;M
2
quÞ

þ 16g2Wv
2B1ðM2

H;M
2
WÞ þ 8ðg2Y þ g2WÞv2B1ðM2

H;M
2
ZÞ − 8λ2v4dB0ðM2

H;M
2
ZÞ þ 4ðg2Y þ g2WÞM2

Zv
2dB0ðM2

H;M
2
ZÞ

þ 12ðg2Y þ g2WÞM2
Hv

2dB0ðM2
H;M

2
ZÞ þ 12g2WM

2
Hv

2dB0ðM2
H;M

2
ZÞ − 16λ21v

4dB0ðM2
H;M

2
WÞ

þ 8g2WM
2
Wv

2dB0ðM2
H;M

2
WÞ þ 24g2WM

2
Hv

2dB0ðM2
H;M

2
WÞ − 14g4Wv

4dB0ðM2
H;M

2
WÞ

− 7ðg4Y þ g4WÞv4dB0ðM2
H;M

2
ZÞ − 14g2Wg

2
Yv

4dB0ðM2
H;M

2
ZÞ − 4λ3v4dB0ðM2

H;M
2
hÞ − 72λ21v

4dB0ðM2
HÞ

þ 16g2WM
2
Hv

2dB1ðM2
H;M

2
WÞ þ 8ðg2Y þ g2WÞM2

Hv
2dB1ðM2

H;M
2
ZÞ
�
; ðA3Þ

where dBi represents the derivative of the scalar function with respect to the external momentum. The tadpole counterterm
δv in Eq. (14) reads

δv ¼ −
1

64π2M2
Hv

�
v2A0ðM2

hÞð4v2CϕS þ λ3v2CϕS þ 4M2
hCϕSD − 2λ3Þ − 3g2Yv

2A0ðM2
ZÞ − 6g2Wv

2A0ðM2
WÞ

− 3g2Wv
2A0ðM2

ZÞ − 2λ1v2A0ðM2
ZÞ − 6λ1v2A0ðM2

HÞ − 4λ1v2A0ðM2
WÞ þ 16

X
l¼e;μ;τ

M2
l A0ðM2

l Þ

þ 48
X

qd¼d;s;b

M2
qdA0ðM2

qdÞ þ 48
X

qu¼u;c;t

MquA0ðM2
quÞ þ 2ðg2Y þ g2WÞv2M2

Z þ 4g2Wv
2M2

W

�
: ðA4Þ

These terms need to be included in the renormalization of the three-point function H → γγ of Fig. 1. The divergences
related to the renormalization of the Wilson coefficients are then given by

δCAϕ ¼ 4gYg3WM
2
HM

2
W þ g3Yg

3
WM

2
Hv

2

64ðg2Y þ g2WÞM2
HM

2
Zπ

2
CAZϕ þ

λ3ðg2YCWS þ g2WCBSÞ
32ðg2Y þ g2WÞπ2

þ 1

64π2M2
Hv

2ðg2Y þ g2WÞ
�
2g2Y

�
v2ð−ðg2Wð3ðM2

W þM2
ZÞ

− 14M2
HÞ þ λ1ð3M2

H þ 2M2
W þM2

ZÞ þ λ3M2
hÞÞ þ 2M2

H

� X
l¼e;μ;τ

M2
l þ 3

X
q¼u;d

M2
q

�
þ 8

� X
l¼e;μ;τ

M4
l þ 3

X
q¼u;d

M4
q

��

− g4Yv
2ðM2

H þ 3M2
ZÞ þ g2W

�
4

�
M2

H

� X
l¼e;μ;τ

M2
l þ 3

X
q¼u;d

M2
q

�
þ 4

� X
l¼e;μ;τ

M4
l þ 3

X
q¼u;d

M4
q

��

− v2ð3g2WðM2
H þ 2M2

W þM2
ZÞ þ 2λ1ð3M2

H þ 2M2
W þM2

ZÞ þ 2λ3M2
hÞ
��

CAϕ ðA5Þ
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and

δCÃϕ ¼ 4gYg3WM
2
HM

2
W þ g3Yg

3
WM

2
Hv

2

64ðg2Y þ g2WÞM2
HM

2
Zπ

2
CAZ̃ϕ þ

λ3ðg2YCW̃S þ g2wCB̃SÞ
32ðg2Y þ g2WÞπ2

þ 1

64π2M2
Hv

2ðg2Y þ g2WÞ
�
2g2Y

�
v2ð−ðg2Wð3ðM2

W þM2
ZÞ

− 14M2
HÞ þ λ1ð3M2

H þ 2M2
W þM2

ZÞ þ λ3M2
hÞÞ þ 2M2

H

� X
l¼e;μ;τ

M2
l þ 3

X
q¼u;d

M2
q

�

þ 8

� X
l¼e;μ;τ

M4
l þ 3

X
q¼u;d

M4
q

��
− g4Yv

2ðM2
H þ 3M2

ZÞ þ g2W

�
4

�
M2

H

� X
l¼e;μ;τ

M2
l þ 3

X
q¼u;d

M2
q

�

þ 4

� X
l¼e;μ;τ

M4
l þ 3

X
q¼u;d

M4
q

��
− v2ð3g2WðM2

H þ 2M2
W þM2

ZÞ þ 2λ1ð3M2
H þ 2M2

W þM2
ZÞ þ 2λ3M2

hÞ
��

CÃϕ:

ðA6Þ
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