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ABSTRACT
We study a holomorphic Poisson structure defined on the linear space S(n, d) ∶=Matn×d(C)×Matd×n(C) that is covariant under the natural
left actions of the standard GL(n,C) and GL(d,C) Poisson–Lie groups. The Poisson brackets of the matrix elements contain quadratic
and constant terms, and the Poisson tensor is non-degenerate on a dense subset. Taking the d = 1 special case gives a Poisson structure on
S(n, 1), and we construct a local Poisson map from the Cartesian product of d independent copies of S(n, 1) into S(n, d), which is a holomorphic
diffeomorphism in a neighborhood of 0. The Poisson structure on S(n, d) is the complexification of a real Poisson structure on Matn×d(C)
constructed by the authors and Marshall, where a similar decoupling into d independent copies was observed. We also relate our construction
to a Poisson structure on S(n, d) defined by Arutyunov and Olivucci in the treatment of the complex trigonometric spin Ruijsenaars–Schneider
system by Hamiltonian reduction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0035935., s

I. INTRODUCTION
In this paper, we prove a remarkable “decoupling property” of a holomorphic Poisson structure defined on the space

S(n, d) ∶=Matn×d(C) ×Matd×n(C), (1.1)

which appeared in recent derivations of trigonometric spin Ruijsenaars–Schneider models1 by Hamiltonian reduction.2,3 The decoupling
means that the Poisson algebra of S(n, d) will be realized using d independent (pairwise Poisson commuting) copies of the Poisson algebra of
S(n, 1). The spaces S(n, d) are defined for arbitrary pairs of natural numbers, but the decoupling requires that both n and d are greater than 1.
Our result is expected to be useful, for example, for the further studies of the holomorphic spin Ruijsenaars–Schneider systems.

To set the stage, for any natural number ℓ, we introduce the Drinfeld–Jimbo classical r-matrix rℓ by

rℓ ∶=
1
2 ∑

1≤j<k≤ℓ
Ejk(ℓ) ∧ Ekj(ℓ), (1.2)

where Ejk(ℓ) is the usual elementary matrix of size ℓ × ℓ. We also need

rℓ± ∶= rℓ ±
1
2

Iℓ, with Iℓ ∶=
ℓ

∑
j,k=1

Ejk(ℓ)⊗ Ekj(ℓ). (1.3)
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Note that for ℓ = 1, rℓ = 0 and Iℓ can be viewed as 1 ⊗ 1. Denoting the elements of S(n, d) as pairs (A, B) and employing the standard tensorial
notation,4,5 the pertinent Poisson bracket can be written as follows:

{A1, A2}κ = −κ(r
nA1A2 + A1A2rd

),

{B1, B2}κ = −κ(B1B2rn + rdB1B2),

{A1, B2}κ = κ(B2rn
+A1 + A1rd

+B2 + Cn×d
12 ).

(1.4)

Here, we use notations (1.2) and (1.3) together with

Cn×d
12 ∶=

n

∑
i=1

d

∑
α=1

En×d
iα ⊗ Ed×n

αi , (1.5)

where En×d
iα ∈ Matn×d(C) is the elementary matrix having a single non-zero entry, equal to 1, at the iα position. One could fix the arbitrary

constant κ ∈ C∗ without loss of generality, but it will be advantageous not to do so.
The Poisson structure (1.4) represents the complexification of a U(n) × U(d) covariant real Poisson structure on Matn×d(C) ≃ R2nd

considered in Ref. 3. By simple changes of variables (see below), it also reproduces the holomorphic Poisson bracket defined on S(n, d) by
Arutyunov and Olivucci.2 In the papers mentioned, it was natural to assume that n > 1, but here, we assume only that either n or d is greater
than 1. The d = 1 (or n = 1) cases provide the building blocks from which the general S(n, d) cases will be realized via the decoupling.

The above-mentioned Poisson brackets have remarkable Poisson–Lie covariance properties. (For background on the theory of Poisson–
Lie groups, one may consult, for example, Refs. 4 and 6–8.) To describe these, we equip the group GL(ℓ,C) with the standard multiplicative
Poisson bracket given in the tensorial notation by

{g1, g2}
κ
G ∶= κ[g1g2, rℓ]. (1.6)

The subscript G expresses that this Poisson bracket lives on the group G = GL(ℓ,C).
Then, the linear left-action of GL(n,C) on S(n, d), defined by

GL(n,C) × S(n, d) ∋ (g, A, B)↦ (gA, Bg−1
) ∈ S(n, d), (1.7)

enjoys the Poisson–Lie property, which means that map (1.7) is Poisson if GL(n,C) is equipped with bracket (1.6) for ℓ = n and S(n, d) is
equipped with bracket (1.4). Similarly, the linear left-action of GL(d,C), given by

GL(d,C) × S(n, d) ∋ (g, A, B)↦ (Ag−1, gB) ∈ S(n, d), (1.8)

also has the Poisson–Lie property, where GL(d,C) is equipped with bracket (1.6), for ℓ = d.
Now, we describe our main result, which was motivated by an analogous result of Ref. 3. Let us introduce the group

D(ℓ) ∶= GL(ℓ,C) ×GL(ℓ,C). (1.9)

This is the Drinfeld double of the Poisson–Lie group GL(ℓ,C). The dual Poisson–Lie group, GL(ℓ,C)∗, is the subgroup of D(ℓ) consisting of
pairs (h+, h−), where h+ and h− are invertible upper triangular and lower triangular matrices, respectively, whose respective diagonal entries
are inverses of each other, i.e., (h−)jj = 1/(h+)jj for j = 1, . . ., ℓ. Consider the space S(n, 1), with elements (a1, b1), endowed with the Poisson
bracket (1.4). Introduce the (locally defined) map

(g+, g−) : S(n, 1)→ GL(n,C)∗ (1.10)

by the following definition:

(g+)jj =
√

Gj/Gj+1, (g+)jk =
a1

j b1
k

√
GkGk+1

for j < k (1.11)

and

(g−1
− )jj =

√
Gj/Gj+1, (g−1

− )jk =
a1

j b1
k

√
GjGj+1

for j > k, (1.12)

using the functions

Gj = 1 +
n

∑
k=j

a1
kb1

k, G0 = Gn+1 = 1, (1.13)

which are well-defined only locally, including a neighborhood of 0.
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Theorem 1.1. For any n and d greater than 1, take d copies of S(n, 1), each equipped with Poisson bracket (1.4), and denote their elements
by (aα, bα), α = 1, . . ., d. Let (a, b) stand for the collection of the (aα, bα), and let Aα and Bα stand for the columns and the rows of the matrices
(A, B) ∈ S(n, d), respectively. Define the (local) map

m : S(n, 1) ×⋯ × S(n, 1)→ S(n, d) (1.14)

by formulas A1(a, b) = a1 and B1(a, b) = b1, and for α ≥ 2,

Aα
(a, b) = g+(a1, b1

)⋯ g+(aα−1, bα−1
)aα, (1.15a)

Bα
(a, b) = bαg−1

− (a
α−1, bα−1

)⋯ g−1
− (a

1, b1
). (1.15b)

Then, the map m is a local, holomorphic Poisson diffeomorphism from the d-fold product Poisson space S(n, 1) × ⋯ × S(n, 1) to S(n, d), where
S(n, 1) and S(n, d) are equipped with the relevant Poisson brackets of the form (1.4).

The fundamental property of the map (g+, g−) (1.10) is the factorization identity,

1n + a1b1
= g+(a1, b1

)g−(a1, b1
)
−1

. (1.16)

Introducing
G±(a, b) ∶= g±(a1, b1

)⋯ g±(ad, bd
), (1.17)

identity (1.16), and formulas of Theorem 1.1 imply the further identity,

1n + A(a, b)B(a, b) = G+(a, b)G−(a, b)−1. (1.18)

These properties, which are easily verified, actually motivated our construction. Their meaning will be enlightened in Sec. III (see Remark 3.5)
utilizing the theory of Poisson–Lie moment maps.

We can also give an analogous realization of the Poisson bracket (1.4) on S(n, d) in terms of n copies of the Poisson bracket on S(1, d).
Such a map can be obtained by combining Theorem 1.1 with the swap map ν from S(n, d) to S(d, n) that operates according to

ν : (A, B)↦ (ηdBηn,ηnAηd
), (1.19)

where for any ℓ ∈ N, we let ηℓ ∶= ∑ℓ
i=1 Ei,ℓ+1−i(ℓ). It is easily seen that

ν : (S(n, d),{ , }κ)→ (S(d, n),{ , }−κ) (1.20)

is a Poisson diffeomorphism.
In addition, we shall present decoupling results for the “oscillator Poisson brackets” of Arutyunov and Olivucci,2 who introduced two

Poisson structures on S(n, d). Denoting the elements of S(n, d) now as pairs (A,B), one of their Poisson structures, called { , }+
κ , is given by

{A1,A2}
+
κ = κ(r

nA1A2 −A1A2rd
),

{B1,B2}
+
κ = κ(B1B2rn

− rdB1B2),

{A1,B2}
+
κ = κ(−B2rn

+A1 + A1rd
−B2) − Cn×d

12 .

(1.21)

Their other Poisson bracket, called { , }−κ , is obtained from this one by replacing (A,B) by (Aηd,ηdB) in the above formula. In fact, we
have two different decoupling results for the Poisson bracket { , }+

κ . The first one is obtained by combining Theorem 1.1 with the following
simple lemma.

Lemma 1.2. Let ξA and ξB be arbitrary constants for which ξAξB = −
1
κ . Then, the map

ξ : (A, B)↦ (A,B) ∶= (ξAAηd, ξBηdB) (1.22)

is a Poisson diffeomorphism from (S(n, d),{ , }κ) to (S(n, d),{ , }+
−κ).

An alternative decoupling map from (S(n, 1),{ , }κ)
×d to (S(n, d),{ , }+

κ) will be presented in Sec. V.

Remark 1.3. It is known that the brackets { , }κ and { , }+
κ satisfy the Jacobi identity, but the interested reader can also check this by

routine calculation.
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II. BASIC FACTS ABOUT POISSON–LIE GROUPS
We will recall the embedding of the Poisson–Lie group GL(ℓ,C) and its dual into their Drinfeld double D(ℓ). Then, we will present the

notion of the Poisson–Lie moment map. We do not give proofs here since the relevant statements can be found in many reviews.4,6–8

Let us consider the complex Lie group D(ℓ) (1.9) and equip its Lie algebra,

D(ℓ) ∶= gl(ℓ,C)⊕ gl(ℓ,C), (2.1)

with the non-degenerate, invariant bilinear form

⟨(U, V), (X, Y)⟩κ ∶=
1
κ
(tr(UX) − tr(VY)), (2.2)

using a constant κ ∈ C∗. Let us also introduce the triangular decomposition

gl(ℓ,C) = gl(ℓ,C)> + gl(ℓ,C)0 + gl(ℓ,C)<, (2.3)

where gl(ℓ,C)0 is the set of diagonal matrices, while gl(ℓ,C)> [respectively, gl(ℓ,C)<] contains the upper (respectively, lower) triangular
matrices with zero diagonal. Then, D(ℓ) can be represented as the vector space direct sum of the isotropic subalgebras,

gl(ℓ,C)δ ∶= {(X, X) ∣ X ∈ gl(ℓ,C)} (2.4)

and

gl(ℓ,C)∗δ ∶= {(Y> + Y0, Y< − Y0) ∣ Y> ∈ gl(ℓ,C)>, Y< ∈ gl(ℓ,C)<, Y0 ∈ gl(ℓ,C)0}. (2.5)

In (2.4), the subscript δ indicates that gl(ℓ,C)δ is the diagonal embedding of gl(ℓ,C) into D(ℓ) (2.1). We may identify gl(ℓ,C) with the
diagonal subalgebra gl(ℓ,C)δ and identify its linear dual space with the subalgebra gl(ℓ,C)∗δ . We also let GL(ℓ,C)δ and GL(ℓ,C)∗δ denote
the subgroups of D(ℓ) corresponding to the subalgebras in the decomposition,

D(ℓ) = gl(ℓ,C)δ + gl(ℓ,C)∗δ . (2.6)

The group D(ℓ) carries a natural multiplicative Poisson structure. To describe it, let us take arbitrary bases Ta of gl(ℓ,C)δ and Ta
of gl(ℓ,C)∗δ that are in duality with respect to the pairing (2.2). The Poisson bracket of two holomorphic functions F and H on D(ℓ)
is given by

{F,H}κD ∶=
n2

∑
a=1
((∇TaF)(∇TaH) − (∇

′
TaF)(∇′TaH)), (2.7)

where for any T ∈ D(ℓ), we have

(∇TF)(p) =
d
dz
∣
z=0

F(ezTp), (∇
′
TF)(p) =

d
dz
∣
z=0

F(pezT
), ∀p ∈ D(ℓ). (2.8)

It is well-known that GL(ℓ,C)δ and GL(ℓ,C)∗δ are Poisson submanifolds of D(ℓ), and we equip them with the inherited Poisson structures.
The above Poisson structures can be conveniently presented in terms of the functions given by the matrix elements on the respective

groups. Denoting the elements of D(ℓ) as pairs (u, v) and employing the tensorial notation of the Faddeev school, one has

{u1, u2}
κ
D = κ[u1u2, rℓ], {v1, v2}

κ
D = κ[v1v2, rℓ], {u1, v2}

κ
D = κ[u1v2, rℓ+], (2.9)

using r-matrices (1.2) and (1.3). On the subgroup GL(ℓ,C)δ with elements denoted as (g, g), this reduces to bracket (1.6). The group GL(ℓ,C)∗δ
consists of the pairs (h+, h−) ∈ D(ℓ) for which h+ (respectively, h−) is upper triangular (respectively, lower triangular) and the diagonal part of
h+ is the inverse of the diagonal part of h−. Restriction from D(ℓ) gives the following Poisson bracket on this dual group:

{h±,1, h±,2}
κ
∗ = κ[h±,1h±,2, rℓ], {h+,1, h−,2}

κ
∗ = κ[h+,1h−,2, rℓ+]. (2.10)

We stress that D(ℓ), GL(ℓ,C) ≡ GL(ℓ,C)δ , and GL(ℓ,C)∗ ∶= GL(ℓ,C)∗δ with the above Poisson brackets are Poisson–Lie groups. This means,
for example, that the group product D(ℓ) × D(ℓ)→ D(ℓ) is a Poisson map.

Let us briefly explain how (2.9) follows from (2.8). For T = (X, Y) ∈ D(ℓ), the derivatives of the matrix elements are

∇Tuij = (Xu)ij, ∇
′
Tuij = (uX)ij, ∇Tvij = (Yv)ij, ∇

′
Tvij = (vY)ij. (2.11)

For any dual bases Ta = (Xa, Xa) and Ta = (Za, Wa), one can calculate that

Xa
⊗ Za = −κrℓ− and Xa

⊗Wa = −κrℓ+. (2.12)

By using these relations, one readily obtains (2.9) from (2.8).
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There is an important mapping of GL(ℓ,C)∗ onto GL(ℓ,C), which is given by

χ : (h+, h−)↦ h ∶= h+h−1
− . (2.13)

This mapping is 2n to 1 since the image does not change if we replace (h+, h−) by (h+τ, h−τ) for any diagonal matrix τ whose entries are
taken from the set {+1,−1}. The map χ yields a holomorphic diffeomorphism9 between respective neighborhoods of the identity elements.
Moreover, it is a Poisson map with respect to the so-called Semenov–Tian–Shansky Poisson structure4,7 on GL(ℓ,C),

{h1, h2}
κ
STS = κ(h1rℓ−h2 + h2rℓ+h1 − h1h2rℓ − rℓh1h2). (2.14)

With this Poisson bracket, GL(ℓ,C) can serve, at least locally, as a model of the dual Poisson–Lie group GL(ℓ,C)∗. We note in passing that
this quadratic Poisson bracket naturally extends to a Poisson structure on gl(ℓ,C), which is compatible with its linear Lie–Poisson bracket.

We now recall10 what is meant by a moment map for a Poisson action of GL(ℓ,C). Suppose that GL(ℓ,C) acts on a holomorphic
Poisson manifold (P,{ , }P) in such a way that the action map, GL(ℓ,C) × P → P, is Poisson, where the product Poisson structure on
GL(ℓ,C) × P is built from the bracket { , }κG (1.6) on GL(ℓ,C) and { , }P on P. For any X ∈ gl(ℓ,C), let XP be the vector field on P
given by the flow of exp(tX). We can take the derivative LXPF of any holomorphic function on P. We then say that a holomorphic map
(ϕ+,ϕ−) : P → GL(ℓ,C)∗δ is the Poisson–Lie moment map for the action if it satisfies the following two conditions. First, we must have the
equality

LXPF = ⟨(X, X),{F, (ϕ+,ϕ−)}P(ϕ+,ϕ−)−1
⟩κ (2.15)

for all X and F. Second, we also require that (ϕ+, ϕ−) is a Poisson map with respect to bracket (2.10) on the dual group. This second condition
is equivalent to the requirement that the map

ϕ ∶= ϕ+ϕ−1
− : P→ GL(ℓ,C) (2.16)

is Poisson with respect to the Semenov–Tian–Shansky bracket (2.14) on GL(ℓ,C). Indeed, the Semenov–Tian–Shansky bracket is just the
push-forward of the Poisson bracket (2.10) on the dual group GL(ℓ,C)∗. The first condition can also be recast in terms of the map ϕ, as we
shall see in our concrete example in Sec. III.

III. COVARIANCE PROPERTIES OF THE POISSON STRUCTURE (1.4)
We now characterize the behavior of the Poisson bracket (1.4) on S(n, d) under the natural left-action of GL(n,C). Throughout this

section, d ≥ 1 and n ≥ 2; otherwise, they are arbitrary. The statements presented below can also be obtained as consequences of known2,3

analogous properties of the Arutyunov–Olivucci Poisson bracket (1.21). We sketch the proofs in order to make this paper basically self-
contained.

Proposition 3.1. Consider the natural action of GL(n,C) on S(n, d), defined by

g ⋅ (A, B) ∶= (gA, Bg−1
), ∀g ∈ GL(n,C), (A, B) ∈ S(n, d). (3.1)

With respect to the Poisson structures (1.4) and (1.6), this is a Poisson action.

Proof. This is very easy and goes as follows. We can calculate {g1A1, g2A2} using the product Poisson structure defined by combining
(1.4) and (1.6). This gives

{g1A1, g2A2} = {g1, g2}
κ
GA1A2 + g1g2{A1, A2}κ

= −κ(rng1A1g2A2 + g1A1g2A2rd
), (3.2)

which agrees with the Poisson bracket on S(n, d). The next line of (1.4) is handled in the same way. Finally, one needs to show that

{g1A1, B2g−1
2 } = κ(B2g−1

2 rn
+g1A1 + g1A1rd

+B2g−1
2 + Cn×d

12 ). (3.3)

We refrain from spelling this out, but note that the direct verification of this equality relies on the identity g1Cn×d
12 = Cn×d

12 g2. ◽

Proposition 3.2. Suppose that (ϕ+,ϕ−) : S(n, d) → GL(n,C)∗ is a (possibly only locally defined) moment map for the Poisson action
(3.1). Then, condition (2.15) is equivalent to the following equalities:

{A1,ϕ±,2}κ = −κrn
∓A1ϕ±,2 and {B1,ϕ±,2}κ = κB1rn

∓ϕ±,2, (3.4)

where the usual tensorial notation is employed. For ϕ ∶= ϕ+ϕ−1
− , these relations imply

{A1,ϕ2}κ = κ(ϕ2rn
+ − rn

−ϕ2)A1 and {B1,ϕ2}κ = κB1(rn
−ϕ2 − ϕ2rn

+). (3.5)
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Proof. Let Ta = (Xa, Xa) and Ta = (Za, Wa) be dual bases of gl(n,C)δ and gl(n,C)∗δ . Consider an arbitrary matrix element Aiα as a
function on S(n, d). Its derivative along the vector field induced by Xa

∈ gl(n,C) equals (XaA)iα, and (2.15) gives the following identity:

(XaA)iα = ⟨Ta,{Aiα, (ϕ+,ϕ−)}κ(ϕ
−1
+ ,ϕ−1

− )⟩κ. (3.6)

Since Ta is a basis of gl(n,C)δ , this implies that

{Aiα, (ϕ+,ϕ−)}κ(ϕ
−1
+ ,ϕ−1

− ) = (X
aA)iαTa. (3.7)

This is equivalent to the following relations:

{Aiα,ϕ+}κ = (X
aA)

iαZaϕ+ and {Aiα,ϕ−}κ = (X
aA)

iαWaϕ−. (3.8)

By using identities (2.12), these two equations are just the componentwise form of the first tensorial formulas in (3.4). The relations involving
B are verified in the same way. The equalities in (3.4) are converted into those in (3.5) by a short calculation. Since the matrix elements of A
and B form a coordinate system on S(n, d), the proof is complete. ◽

Proposition 3.3. Define the map Γ : S(n, d)→ gl(n,C) by the following formula:

Γ(A, B) = 1n + AB. (3.9)

As a consequence of the Poisson brackets (1.4), this map satisfies the relation

{Γ1, Γ2}κ = κ(Γ1rn
−Γ2 + Γ2rn

+Γ1 − Γ1Γ2rn
− rnΓ1Γ2) (3.10)

together with

{A1, Γ2}κ = κ(Γ2rn
+ − rn

−Γ2)A1 and {B1, Γ2}κ = κB1(rn
−Γ2 − Γ2rn

+). (3.11)

In a neighborhood of 0, Γ can be represented in the form Γ = Γ+Γ−1
− so that (Γ+, Γ−) : S(n, d) → GL(n,C)∗ serves (locally) as the Poisson–Lie

moment map for the action (3.1).

Proof. Equalities (3.10) and (3.11) can be verified by an easy calculation. For this, one needs to use the identities A1A2Id = InA1A2 and
InA1 = A2Cn×d

12 . Since Γ(0) = 1n, it is clear that Γ admits a unique factorization of the form Γ = Γ+Γ−1
− if we restrict (A, B) to be near enough

to 0, require the continuity of Γ±, and impose condition Γ±(0) = 1n. The so-obtained (Γ+, Γ−) can be written as holomorphic functions of
the matrix entries of Γ. Equation (3.10) entails that (Γ+, Γ−) gives a Poisson map into the dual group GL(ℓ,C)∗ carrying brackets (2.10), and
relations (3.11) are equivalent to the moment map conditions given in (3.4). Here, we used the coincidence of (3.5) with (3.11) and that Γ and
(Γ+, Γ−) are related by a local Poisson diffeomorphism. ◽

Remark 3.4. A natural generalization of Proposition 3.3 holds around an arbitrary point (A0, B0) ∈ S(n, d) for which (1n + A0B0) is an
invertible matrix. See Refs. 9 and 11 for the construction of (Γ+, Γ−).

Remark 3.5. We observe from Proposition 3.3 and the first factorization identity (1.16) that (g+, g−) given by (1.10) is nothing but the
(local) GL(n,C)∗-valued Poisson–Lie moment map on S(n, 1). For d > 1, the meaning of the second factorization identity (1.18) is that the
(local) moment map (Γ+, Γ−) mentioned in Proposition 3.3 satisfies the following equality:

(Γ± ○m)(a, b) = G±(a, b), (3.12)

where m is the map of Theorem 1.1 and G± are defined in (1.17).

IV. DERIVATION OF THEOREM 1.1
The Poisson structure is derived in Sec. IV A, and we prove that m is a diffeomorphism in Sec. IV B. The strategy of the derivation is

analogous to Ref. 3, Lemma 5.1.

A. The Poisson structure
1. Preparation and notations

The product Poisson structure on S(n,1)×d can be written in the tensor notation using the pairs (aα, bα) as follows:

{aα1 , aβ2}κ = −κδαβ rn aα1aβ2 , {bα1 , bβ2}κ = −κδαβbα1bβ2 rn, (4.1a)

{aα1 , bβ2}κ = κδαβ(bβ2 rn
+ aα1 +

1
2

aα1bβ2 + Cn×1
12 ). (4.1b)
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For fixed α ∈ {1, . . . , d}, we use the pair (aα, bα) to define Gα
j locally by (1.13) and then the upper and lower triangular matrices g+,α, g−1

−,α by
(1.11) and (1.12). Using (1.16) in the form

g+,αg−1
−,α = 1n + aαbα, (4.2)

we can combine Propositions 3.2 and 3.3 for each copy S(n, 1), and we obtain

{aα1 , (g+,β)2
}
κ
= −κδαβ rn

− aα1(g+,β)2
, {aα1 , (g−1

−,β)2
}
κ
= κδαβ(g

−1
−,β)2

rn
+ aα1 , (4.3a)

{bα1 , (g+,β)2
}
κ
= κδαβbα1 rn

− (g+,β)2
, {bα1 , (g−1

−,β)2
}
κ
= −κδαβbα1(g

−1
−,β)2

rn
+. (4.3b)

We also use (2.10) to write

{(g+,α)1, (g+,β)2
}
κ
= κδαβ[(g+,α)1(g+,β)2

, rn
], (4.4a)

{(g−1
−,α)1

, (g−1
−,β)2
}
κ
= −κδαβ[(g

−1
−,α)1
(g−1
−,β)2

, rn
], (4.4b)

{(g+,α)1, (g−1
−,β)2
}
κ
= −κδαβ((g+,α)1rn

+(g
−1
−,β)2

− (g−1
−,β)2

rn
+(g+,α)1). (4.4c)

Remark 4.1. The involution ι : S(n,1)×d
→ S(n,1)×d defined by

ι(a1, b1, . . . , ad, bd
) = ((b1

)
T

, (a1
)

T
, . . . , (bd

)
T

, (ad
)

T
) (4.5)

is an anti-Poisson automorphism by Remark A.3 in the Appendix. Using this map, we observe the following identities of matrix-valued
functions:

g+,α ○ ι = (g−1
−,α)

T
, g−1

−,α ○ ι = gT
+,α. (4.6)

The consistency of the anti-Poisson property with the Poisson brackets collected above is straightforward to check.

To ease computations, we introduce

hα
+ = g+,1 ⋯ g+,α, hα

− = g−1
−,α ⋯ g−1

−,1, 1 ≤ α ≤ d, (4.7)

with h0
+ = 1n = h0

− so that (1.15a) and (1.15b) become

Aα
= hα−1

+ aα, Bα
= bαhα−1

− , 1 ≤ α ≤ d. (4.8)

It will also be convenient to introduce for 1 ≤ α ≤ γ ≤ d,

hα;γ
+ = g+,α ⋯ g+,γ, hα;α

+ = g+,α, hα;γ
− = g−1

−,γ ⋯ g−1
−,α, hα;α

− = g−1
−,α, (4.9)

and we set hα;α−1
+ = 1n = hα;α−1

− . We note, in particular, that under the involution ι (4.5), which satisfies (4.6), we can write

hα;γ
+ ○ ι = (h

α;γ
− )

T , hα;γ
− ○ ι = (h

α;γ
+ )

T . (4.10)

2. Preliminary lemmas
Lemma 4.2. The following identities hold:

{aα1 , (hβ
+)2
}
κ
= −κδ(α≤β)(h

α−1
+ )2

rn
− aα1(h

α;β
+ )2

, (4.11a)

{bα1 , (hβ
+)2
}
κ
= κδ(α≤β)(h

α−1
+ )2

bα1 rn
− (h

α;β
+ )2

, (4.11b)

{aα1 , (hβ
−)2
}
κ
= κδ(α≤β)(h

α;β
− )2

rn
+ aα1(h

α−1
− )2

, (4.11c)

{bα1 , (hβ
−)2
}
κ
= −κδ(α≤β)b

α
1(h

α;β
− )2

rn
+ (h

α−1
− )2

. (4.11d)

Here, the value of δ(α≤β) is 1 if the condition α ≤ β holds and is zero otherwise.
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Proof. We have from (4.3a) that {aα1 , (g+,γ)2}κ vanishes identically if γ ≠ α. By definition of hβ
+, we thus get

{aα1 , (hβ
+)2
}
κ
= (hα−1

+ )2
{aα1 , (g+,α)2}κ(h

α+1;β
+ )

2
(4.12)

if α ≤ β, while it vanishes for β < α. We then get the first equality from (4.3a). The second equality is found in the same way, and the following
two are obtained by applying the anti-Poisson automorphism ι. ◽

Lemma 4.3. The following identities hold:

{(hα
+)1

, (hβ
+)2
}
κ

α⩽β
= κ((hα

+)1
(hα

+)2
rn
(hα+1;β

+ )
2
− rn
(hα

+)1
(hβ

+)2
), (4.13a)

{(hα
+)1

, (hβ
−)2
}
κ

α⩽β
= κ((hβ

−)2
rn

+ (h
α
+)1
− (hα

+)1
(hα+1;β
− )

2
rn

+ (h
α
−)2
), (4.13b)

{(hα
+)1

, (hβ
−)2
}
κ

α⩾β
= κ((hβ

−)2
rn

+ (h
α
+)1
− (hβ

+)1
rn

+ (h
β+1;α
+ )

1
(hβ
−)2
). (4.13c)

Proof. For the first identity, since α ≤ β, we use the decomposition

{(hα
+)1

, (hβ
+)2
}
κ
=

α
∑
γ=1
(hγ−1

+ )1
(hγ−1

+ )2
{(g+,γ)1, (g+,γ)2}κ(h

γ+1;α
+ )

1
(hγ+1;β

+ )
2
,

and note that the Poisson bracket appearing in the sum is given by (4.4a). This directly leads to the claimed result. For the second identity, we
write for α ≤ β,

{(hα
+)1

, (hβ
−)2
}
κ
=

α
∑
γ=1
(hγ−1

+ )1
(hγ+1;β
− )

2
{(g+,γ)1, (g−1

−,γ)2
}
κ
(hγ+1;α

+ )
1
(hγ−1
− )2

,

and then, we use (4.4c) to get the desired result. The case α ≥ β is obtained in a similar way. ◽

Note that the identities from Lemmas 4.2 and 4.3 can be used with h0
± = 1n as well.

3. The Poisson brackets {A1,A2}κ and {B1,B2}κ

We note that obtaining {A1, A2}κ in (1.4) is equivalent to deriving

{Aα
1 , Aβ

2}κ
= −κ(rnAα

1Aβ
2 +

1
2

sgn(α − β)Aβ
1Aα

2). (4.14)

This follows by spelling out the action of rd using (1.2). In order to get (4.14), we note that (4.8) yields

{Aα
1 , Aβ

2}κ
={(hα−1

+ )1
, (hβ−1

+ )2
}
κ
aα1aβ2 + (hβ−1

+ )2
{(hα−1

+ )1
, aβ2}κaα1

+ (hα−1
+ )1

{aα1 , (hβ−1
+ )2

}
κ
aβ2 + (hα−1

+ )1
(hβ−1

+ )2
{aα1 , aβ2}κ.

(4.15)

We can then use (4.1a) and Lemmas 4.2 and 4.3 to reduce this expression. If α = β, we directly get

{Aα
1 , Aα

2}κ = −κrnAα
1Aα

2 . (4.16)

If α < β, we get

{Aα
1 , Aβ

2}κ
= −κrnAα

1Aα
2 +

κ
2
(hα−1

+ )1
(hα−1

+ )2
In aα1(h

α;β−1
+ )

2
aβ2 . (4.17)

Upon using the identity

In aα1(h
α;β−1
+ aβ)

2
= aα2(h

α;β−1
+ aβ)

1
, (4.18)

we find

{Aα
1 , Aβ

2}κ
= −κ rnAα

1Aβ
2 +

κ
2

Aβ
1Aα

2 . (4.19)

Thus, we have derived (4.14) for all α ≤ β, and hence, it holds for all α, β by antisymmetry. We can check that we obtain the claimed Poisson
bracket for {B1, B2}κ either by a direct computation or using the anti-Poisson automorphism ι (4.5) under which A○ι = BT .
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4. The Poisson bracket {A1,B2}κ

We now use that obtaining {A1, B2}κ in (1.4) is equivalent to deriving

{Aα
1 , Bβ

2}κ
= κ
⎛

⎝
Bβ

2 rn
+ Aα

1 +
1
2
δαβAα

1Bβ
2 + δαβ∑

μ<α
Aμ

1Bμ
2 + δαβCn×1

12
⎞

⎠
. (4.20)

We have by (4.8) that

{Aα
1 , Bβ

2}κ
= bβ2{(h

α−1
+ )1

, (hβ−1
− )2

}
κ
aα1 + {(hα−1

+ )1
, bβ2}κaα1(h

β−1
− )2

+ (hα−1
+ )1

bβ2{aα1 , (hβ−1
− )2

}
κ

+ (hα−1
+ )1

{aα1 , bβ2}κ(h
β−1
− )2

,
(4.21)

which can be computed using (4.1b) and Lemmas 4.2 and 4.3. If α < β, only the first and third sums in (4.21) do not trivially vanish, and we
find that

{Aα
1 , Bβ

2}κ
= κBβ

2 rn
+ Aα

1 . (4.22)

If α > β, we also obtain (4.22) by a similar computation. If α = β, only the first and fourth sums in (4.21) are nonzero, and we obtain

{Aα
1 , Bα

2}κ = κ(Bα
2 rn

+ Aα
1 +

1
2

Aα
1Bα

2 + (hα−1
+ )1

Cn×1
12 (h

α−1
− )2

). (4.23)

We deduce from (4.2) that hα−1
+ hα−1

− = 1n +∑μ<α AμBμ, which implies

(hα−1
+ )1

Cn×1
12 (h

α−1
− )2

= Cn×1
12 +∑

μ<α
Aμ

1Bμ
2 . (4.24)

Thus, we can write {Aα
1 , Bβ

2}κ
for all α, β in the desired form (4.20).

B. Diffeomorphism property
Let us consider a point where the map m (1.14) is well-defined, i.e., we can construct g± ,α = g±(aα, bα) for α = 1, . . ., d using (1.11)

and (1.12) with (1.13). In a sufficiently small neighborhood of this point, the entries of the matrices g± ,α are analytic functions; hence, m is
holomorphic. From the image of this neighborhood, we can define inductively

a1
= A1, b1

= B1, a2
= g−1

+,1A2, b2
= B2g−,1, . . . ,

ad
= g−1

+,d−1 ⋯ g−1
+,1Ad, bd

= Bdg−,1 ⋯ g−,d−1,
(4.25)

which is the inverse of the map m. The inverse map is holomorphic since the elements g± ,α are analytic functions in (Aβ
i , Bβ

i ) for β ≤ α.

V. A DECOUPLING PROPERTY OF THE ARUTYUNOV–OLIVUCCI BRACKET
We now derive an alternative realization of the Poisson algebra (1.21), as was promised after Lemma 1.2. For this purpose, we take d

copies of (S(n, 1),{ , }κ) with variables (aα, bα) for α = 1, . . ., d and define the new variables (Âα, B̂α
) as follows:

Âα
(a, b) = g−1

+ (a
d, bd
)⋯ g−1

+ (a
α, bα)aα, (5.1a)

B̂α
(a, b) = bαg−(aα, bα)⋯ g−(ad, bd

), (5.1b)

using the functions introduced previously in (1.11) and (1.12).

Theorem 5.1. The map F : (a, b) ↦ (Â, B̂) given by (5.1a) and (5.1b), where (Âα, B̂α
) denote the columns and the rows, respectively, of

the matrices (Â, B̂) ∈ S(n, d), is a local Poisson diffeomorphism,

F : (S(n, 1),{ , }κ)
×d
→ (S(n, d),{ , }′κ), (5.2)

where { , }′κ denotes the Poisson structure on S(n, d) defined by

{Â1, Â2}
′
κ = κ(r

nÂ1Â2 − Â1Â2rd
),

{B̂1, B̂2}
′
κ = κ(B̂1B̂2rn

− rdB̂1B̂2),

{Â1, B̂2}
′
κ = κ(−B̂2rn

+Â1 + Â1rd
−B̂2 + Cn×d

12 ).

(5.3)
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Proof. The calculation of the Poisson brackets of the functions in (5.1a) and (5.1b) is, in principle, straightforward and follows the
derivation of Theorem 1.1 made in Sec. IV A.

The fact that the map F is a local diffeomorphism is similar to the argument used in Sec. IV B. We begin by observing the following
identities:

1n − g+,α+1 ⋯ g+,dÂαB̂αg−1
−,d ⋯ g−1

−,α+1 = g−1
+,αg−,α for α = d, . . . , 1, (5.4)

which follow from (5.1a) and (5.1b) using g± ,α = g±(aα, bα), with g± ,d+1 ∶= 1n, and applying the analog of (1.16) for all α. Then, picking Â and
B̂ near 0, we define the functions (ĝ+,α, ĝ−,α) ∈ GL(n,C)∗ for 1 ≤ α ≤ d by considering the factorization problems,

1n − ÂdB̂d
= ĝ−1

+,d ĝ−,d, (5.5)

and iteratively,

1n − ĝ+,α+1 ⋯ ĝ+,dÂαB̂αĝ−1
−,d ⋯ ĝ−1

−,α+1 = ĝ−1
+,αĝ−,α for α = d − 1, . . . , 1. (5.6)

This procedure uniquely specifies ĝ±,α for all α if we set ĝ±,α = 1n for vanishing Â and B̂ and further require that these matrices depend
continuously on Â, B̂ in an open neighborhood of 0. As the final step, we define

aα = ĝ+,αĝ+,α+1 ⋯ ĝ+,dÂα, bα = B̂αĝ−1
−,d ⋯ ĝ−1

−,α+1ĝ−1
−,α. (5.7)

The definitions guarantee that if on the left-hand sides of (5.5) and (5.6) we use (5.1a) and (5.1b), then we obtain

ĝ+,α = g+(aα, bα), ĝ−,α = g−(aα, bα), (5.8)

and hence, the map that we constructed by (5.7) is indeed the local inverse of F. ◽

It should be noted that although the map F from Theorem 5.1 is only a local diffeomorphism, formulas (5.3) yield a holomorphic Poisson
structure on the full space S(n, d).

Remark 5.2. By using G± (1.17), the formula

(a, b)↦ (G+(a, b),G−(a, b)) (5.9)

defines a local Poisson map from (S(n, 1),{ , }κ)
×d to (GL(n,C)∗,{ , }κ∗). This map satisfies the following identity:

G+(a, b)−1G−(a, b) = 1n − Â(a, b)B̂(a, b), (5.10)

which is a counterpart of identity (1.18). The left-action of GL(n,C) on S(n, d) has the Poisson–Lie property with respect to the bracket { , }′κ
(5.3) on S(n, d) and the bracket { , }−κG (1.6) on GL(n,C). The map (Â, B̂) ↦ Γ̂(Â, B̂) ∶= 1n − ÂB̂ represents the (densely defined) moment
map associated with this action, using the standard mapping (2.13) of GL(n,C)∗ into GL(n,C). To put it more explicitly, Â, B̂ and Γ̂ satisfy

{Γ̂1, Γ̂2}
′
κ = −κ(Γ̂1rn

−Γ̂2 + Γ̂2rn
+Γ̂1 − Γ̂1Γ̂2rn

− rnΓ̂1Γ̂2) (5.11)

together with

{Â1, Γ̂2}
′
κ = −κ(Γ̂2rn

+ − rn
−Γ̂2)Â1 and {B̂1, Γ̂2}

′
κ = −κB̂1(rn

−Γ̂2 − Γ̂2rn
+). (5.12)

These relations have the same form as those in (3.10) and (3.11), taking into account that now we are referring to Poisson–Lie symmetry with
respect to the bracket { , }−κG on GL(n,C). The interested reader can verify all these equalities by direct calculation.

Finally, we state the sought after decoupling property of the Arutyunov–Olivucci Poisson bracket (1.21).

Corollary 5.3. Let θA and θB be arbitrary constants satisfying θAθB = −
1
κ . Then, the rescaling

θ : (Â, B̂)↦ (A,B) ∶= (θAÂ, θBB̂) (5.13)

gives a Poisson diffeomorphism from (S(n, d),{ , }′κ) (5.3) to (S(n, d),{ , }+
κ) (1.21). Composing this with the map F from Theorem 5.1, we get

a local Poisson diffeomorphism,

θ ○ F : (S(n, 1),{ , }κ)
×d
→ (S(n, d),{ , }+

κ). (5.14)

This map enjoys the following identity:
(1n + κAB) ○ θ ○ F = G−1

+ G−. (5.15)
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The observation that (1n + κAB) can be realized by applying mapping (2.13) on the inverse (G+,G−)−1 of a Poisson map (G+,G−) into
(GL(n,C)∗,{ , }κ∗) played an important role in the derivation of the trigonometric complex spin Ruijsenaars–Schneider model by Arutyunov
and Olivucci.2 [To be precise, they locally realized (G+,G−) as a moment map generating a Poisson–Lie action of (GL(n,C),{ , }κG) on
(S(n, d),{ , }+

κ).] Our result (5.15) provides decoupled variables ((aα, bα) for α = 1, . . ., d) that give such a realization explicitly. These new
variables (a, b) are expected to be useful for further studies of the reduction treatment of the complex spin Ruijsenaars–Schneider model,
similarly as proved to be the case for the real form of this important integrable Hamiltonian system.3

VI. CONCLUSION
In this paper, we presented a detailed analysis of the GL(n,C) × GL(d,C) covariant Poisson structures (1.4) and (1.21) on the linear

space S(n, d) (1.1) for arbitrary natural numbers n and d. Our main results are encapsulated by Theorem 1.1 and Theorem 5.1 with Corollary
5.3 that provide new realizations of the corresponding Poisson algebras in terms of d independent copies of “elementary spin variables” living
in S(n, 1). The Appendix highlights further relevant properties of these Poisson structures, especially by giving the underlying symplectic form
on a dense open subset of S(n, 1). These results may contribute, for example, to deepening the understanding of Ruijsenaars–Schneider-type
integrable many-body models with spin having hidden GL(n,C) Poisson–Lie symmetry. It is also an interesting open question to search for
their quantum mechanical analogs in the future.
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APPENDIX: ADDITIONAL PROPERTIES OF THE POISSON BRACKET ON S (n, d )
In this appendix, we show that the Poisson bracket (1.4) on S(n, 1) can be seen as a particular example of the complexification of

Zakrzewski’s U(n) covariant Poisson brackets on Cn.12 We also point out that the Poisson bracket (1.4) on S(n, d) is never globally symplectic
and present the symplectic form that corresponds to this Poisson bracket in a neighborhood of 0.

1. The Zakrzewski Poisson brackets
Let us introduce a real anti-symmetric biderivation on Cn

≃ R2n, which is written on the components of u ∈ Cn as

{ui, uj} = − ϵi sgn(i − j)uiuj,

{ui, ūl} = − ϵiδilF + ϵiGuiūl − ϵiδil

n

∑
r=1

sgn(r − i)∣ur ∣
2,

(A1)

where ϵ ∈ R∗ and F = F(|u|2), G = G(|u|2) are two arbitrary functions. Denote by F′, G′ the derivatives F′(t) = d
dt F(t), G′(t) = d

dt G(t). We
recall the following result due to Zakrzewski.

Lemma A.1 (Ref. 12). The anti-symmetric biderivation (A1) is always Poisson for n = 1, while for n ≥ 2, it is Poisson if and only if

FF′ + G(F − F′∣u∣2) = ∣u∣2. (A2)

Furthermore, the action U(n)×Cn
→ Cn defined by left multiplication yields a Poisson map if U(n) is equipped with the multiplicative Poisson

bracket, satisfying {g1, g2}U(n) = −2iϵ[g1g2, rn
].

In complete analogy, we define an anti-symmetric, holomorphic biderivation on C2n endowed with coordinates (ai, bi) (where we see a
and b, respectively, as a vector and a covector) by

{ai, aj} =
κ
2

sgn(i − j)aiaj, {bi, bj} = −
κ
2

sgn(i − j)bibj, (A3a)

{ai, bl} =
κ
2
δilF −

κ
2

Gaibl +
κ
2
δil

n

∑
r=1

sgn(r − i)arbr , (A3b)

where κ ∈ C∗ and F = F(t), G = G(t) are two arbitrary holomorphic functions of t ∶= ∑n
r=1 arbr . We denote by F′, G′ the derivatives of F, G

with respect to t. The following result can then be proved as Lemma A.1.
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Lemma A.2. The anti-symmetric biderivations (A3a) and (A3b) are always Poisson for n = 1, while for n ≥ 2, it is Poisson if and only if

FF′ + G(F − F′t) = t, t ∶=
n

∑
r=1

arbr . (A4)

Furthermore, the action

τ : GL(n,C) ×C2n
→ C2n, τg(a, b) = (ga, bg−1

) (A5)

is a Poisson map when GL(n,C) is equipped with the Poisson bracket (1.6).

The Poisson bracket (1.4) on S(n, 1) is an example of the complex Zakrzewski Poisson brackets of Lemma A.2 since it corresponds to the
cases F(t) = 2 + t and G(t) = −1.

Remark A.3. The involution

ι : C2n
→ C2n, ι(a, b) = (bT , aT

) (A6)

is an anti-Poisson automorphism. This follows from a direct verification of this property on the evaluation functions ai, bi; see (A3a) and
(A3b).

2. Degeneracy of the Poisson bracket
We note that the Poisson bracket (1.4) on S(n, d) can be written in the coordinates Aα

i ∶= Aiα, Bα
i ∶= Bαi as

{Aα
i , Aβ

k} =
κ
2

sgn(i − k)Aα
k Aβ

i −
κ
2

sgn(α − β)Aα
k Aβ

i , (A7a)

{Bα
i , Bβ

k} = −
κ
2

sgn(i − k)Bα
k Bβ

i +
κ
2

sgn(α − β)Bα
k Bβ

i , (A7b)

{Aα
i , Bβ

k} =
κ
2
δikAα

i Bβ
k + κδik∑

s>i
Aα

s Bβ
s

+
κ
2
δαβAα

i Bβ
k + κδαβ∑

μ<α
Aμ

i Bμ
k + κδαβδik. (A7c)

If we consider a point p ∈ S(n, d) contained in the one-dimensional subset where

1 + A1
nB1

n = 0, Aα
j , Bα

j = 0 for (j,α) ≠ (n, 1), (A8)

we directly see that the Poisson brackets (A7a) and (A7b) evaluated at p are 0. Furthermore, decomposing (A7c) as

{Aα
i , Bβ

k} = 0, i ≠ k,α ≠ β, (A9a)

{Aα
i , Bα

k} =
κ
2

Aα
i Bα

k + κ∑
μ<α

Aμ
i Bμ

k , i ≠ k, α = β, (A9b)

{Aα
i , Bβ

i } =
κ
2

Aα
i Bβ

k + κ∑
s>i

Aα
s Bβ

s , i = k, α ≠ β, (A9c)

{Aα
i , Bα

i } = κAα
i Bα

i + κ∑
s>i

Aα
s Bα

s + κ∑
μ<α

Aμ
i Bμ

i + κ, i = k, α = β, (A9d)

we get that (A9a)–(A9c) vanish at p, while we can write (A9d) as

{Aα
i , Bα

i }(p) = κ[1 − δin] [1 − δα1]. (A10)

Hence, at p, the rank of the Poisson structure is 2(n − 1) (d − 1) and the Poisson bracket (1.4) is not globally non-degenerate.
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3. The symplectic form on a dense open subset
The holomorphic Poisson bracket (1.4) is non-degenerate on a dense subset of S(n, d) since it is non-degenerate at the origin. We now

present the corresponding symplectic form for d = 1. For d ≥ 2, the symplectic form can be obtained around the origin by combining this
result with Theorem 1.1.

Proposition A.4. Consider S(n, 1) with the Poisson bracket (1.4), and denote its elements by (a, b). On the open subset where

Gi ∶= 1 +∑
r≥i

arbr ≠ 0, ∀ 1 ≤ i ≤ n, (A11)

the Poisson structure is non-degenerate, and the associated symplectic form can be written as

ω = −
1
κ

n

∑
i=1

dai ∧ dbi

Gi
+

1
2κ

n

∑
i=1
∑
s>i

1
GiGi+1

(bidai − aidbi) ∧ (bsdas + asdbs), (A12)

where we set an+1 = bn+1 = 0 and Gn+1 = 1.

Proof. Without loss of generality, we take κ = 2. We will prove using the two-form (A12) that for any 1 ≤ j ≤ n,

ιXaj
ω = −daj, (A13)

where Xaj = {−, aj} denotes the Hamiltonian vector field of aj, which is given by

Xaj =∑
l≠j

sgn(l − j)ajal
∂

∂al
−∑

l≠j
ajbl

∂

∂bl
− 2Gj

∂

∂bj
. (A14)

By symmetry between a and b, we will also have that ιXbj
ω = −dbj. These conditions then imply that ω is non-degenerate and corresponds to

the Poisson bracket on S(n, 1); hence, it is also closed.
To prove (A13), let us denote the three terms appearing in the vector field (A14) as X1, X2, X3. Contracting with the two-form, we

compute

ιX1ω = −
1
2∑l≠j

sgn(l − j)
ajal

Gl
dbl

+
1
4∑l≠j

sgn(l − j)∑
s>l

aj
albl

GlGl+1
(bsdas + asdbs)

−
1
4∑l≠j

sgn(l − j)∑
i<l

aj
albl

GiGi+1
(bidai − aidbi),

(A15)

then

ιX2ω = −
1
2∑l≠j

ajbl

Gl
dal +

1
4∑l≠j

∑
s>l

aj
albl

GlGl+1
(bsdas + asdbs)

+
1
4∑l≠j

∑
i<l

aj
albl

GiGi+1
(bidai − aidbi),

(A16)

and finally

ιX3ω = − daj +
1
2∑s>j

aj
1

Gj+1
(bsdas + asdbs)

+
1
2∑i<j

aj
Gj

GiGi+1
(bidai − aidbi).

(A17)

After summing together the last two terms from (A15) and (A16), we find

ιXaj
ω = − daj −

1
2∑s≠j

sgn(s − j)
ajas

Gs
dbs −

1
2∑s≠j

ajbs

Gs
das

+
1
2 ∑s>l>j

aj
albl

GlGl+1
(bsdas + asdbs) +

1
2 ∑s<l<j

aj
albl

GsGs+1
(bsdas − asdbs)

+
1
2∑s>j

aj
1

Gj+1
(bsdas + asdbs) +

1
2∑s<j

aj
Gj

GsGs+1
(bsdas − asdbs).

(A18)
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For fixed s, j, we note the following identities:

s−1

∑
l=j+1

albl

GlGl+1
=

1
Gs
−

1
Gj+1

,
j−1

∑
l=s+1

albl = Gs+1 −Gj, (A19)

which allow us to write the line in the middle of (A18) as

+
1
2∑s>j

aj(
1

Gs
−

1
Gj+1
)(bsdas + asdbs) +

1
2∑s<j

aj
Gs+1 −Gj

GsGs+1
(bsdas − asdbs). (A20)

This can be simplified with the last line of (A18), and we get

ιXaj
ω = − daj −

1
2∑s≠j

sgn(s − j)
ajas

Gs
dbs −

1
2∑s≠j

ajbs

Gs
das

+
1
2∑s>j

aj
asbs

Gs
(

das

as
+

dbs

bs
) +

1
2∑s<j

aj
asbs

Gs
(

das

as
−

dbs

bs
),

(A21)

which is just −daj as the other four terms cancel out. ◽

Remark A.5. It can be shown that the Poisson tensor corresponding to the bracket (1.4) on S(n, 1) is degenerate precisely on the zero
set of the function∏n

i=1 Gi, which is the complement of the set considered in Proposition A.4. If in (A12), we put bj = āj and κ = 2i, then we
recover the real symplectic form on Cn

≃ R2n given by Ref. 3, Proposition A.6, from which our formula was obtained by complexification.
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