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Optical Tweezers with Integrated 
Multiplane Microscopy (OpTIMuM): 
a new tool for 3D microrheology
Andrew B. Matheson1, Lynn Paterson1, Amanda J. Wright2, Tania Mendonca2, 
Manlio Tassieri3 & Paul A. Dalgarno1*

We introduce a novel 3D microrheology system that combines for the first time Optical Tweezers 
with Integrated Multiplane Microscopy (OpTIMuM). The system allows the 3D tracking of an optically 
trapped bead, with ~ 20 nm accuracy along the optical axis. This is achieved without the need for a high 
precision z-stage, separate calibration sample, nor a priori knowledge of either the bead size or the 
optical properties of the suspending medium. Instead, we have developed a simple yet effective in situ 
spatial calibration method using image sharpness and exploiting the fact we image at multiple planes 
simultaneously. These features make OpTIMuM an ideal system for microrheology measurements, and 
we corroborate the effectiveness of this novel microrheology tool by measuring the viscosity of water 
in three dimensions, simultaneously.

Microrheology is the study of the flow of matter at micron length scales. It can be performed either in situ of envi-
ronments commonly inaccessible to conventional bulk rheology techniques (e.g. in vivo1), or in vitro requiring 
only a few microliters of sample volume. This is attractive for biophysical and biomedical studies, where rare or 
precious samples are often investigated. A common aim of microrheology techniques is to determine the rheo-
logical properties of fluids via a statistical mechanics analysis of the trajectory of tracer particles suspended in the 
 sample2. These have been successfully used to gather new insights on how living systems such as  cells3,4,  bacteria5 
and  phytoplankton6 are affected by the rheological properties of the local environment and vice versa. Micror-
heology techniques can be broadly classified into two families, ‘passive’ and ‘active’ microrheology depending 
on whether the motion of the tracer particles is thermally driven or governed by an external force, respectively.

In the specific case of passive microrheology with optical tweezers (MOT), also defined as hybrid micro-
rheology because of the presence of a confining  force7, analysis of the Brownian motion (or less commonly 
the  rotation8) of a micron-sized tracer bead reveals (i) the strength of the constraining optical trap and (ii) the 
viscoelastic properties of the suspending medium directly surrounding the  bead9. An advantage of MOT when 
working with fluid samples is the confining force which prevents the tracer bead diffusing out of the field of view, 
allowing the bead to be tracked for longer periods of time and hence over a wider range of frequencies. MOT has 
the additional benefit of allowing the positioning of the probe particle at a location of interest within the liquid 
sample; e.g., close to a boundary wall or next to a  cell6. The accuracy to which MOT can evaluate the strength of 
the optical trap and the viscoelastic properties of the suspending medium is directly related to the precision to 
which the bead position can be detected. This is commonly achieved very effectively in two-dimensions (i.e. in 
the imaging plane of the microscope, which is commonly equivalent to the x–y plane perpendicular to the laser 
beam axis) using either a high speed camera or a quadrant photodiode (QPD)10. However, optically trapped 
particles actually experience Brownian motion in 3D, where the  3rd dimension of the motion (coincident with 
the optical axis, i.e. the z-direction) is largely ignored in microrheology studies, despite its potential importance 
when characterising non-uniform samples or performing measurements in proximity to a surface parallel to the 
x–y plane. The different options for 3D imaging of trapped beads are discussed in much detail in the thorough 
review by Liang et al.11. The most commonly used methods for performing 3D imaging are optical sectioning 
techniques, such as confocal microscopy, where a piezo-electric scanner is used to move either the objective or 
the sample in the z-direction allowing a 3D image stack to be generated.

These methods are not typically suitable for MOT because they come with the following caveats: (i) when 
the z-scan is achieved by moving the microscope objective or specialised optics placed directly behind the 
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 objective12,13 the position of the trapping beam waist and therefore of the optically trapped particle is also altered; 
(ii) when it is achieved by moving the sample holder, disruptive vibrations may overshadow the thermal fluctua-
tions; and (iii) piezo scanners are commonly limited to speeds ≤ 100 Hz 14, which would significantly hinder the 
highest accessible experimental frequency to which the viscoelastic properties of the material could be deduced. 
An alternative approach that doesn’t suffer from any of these problems is to use a QPD. The Gouy phase shift 
obtained from a QPD can allow beads to be effectively tracked in 3D over small distances in  z15,16. This has been 
combined with optical trapping to allow for 3D imaging of soft structures, to great  effect17. However, QPD’s 
can be challenging to calibrate, and only operate over a short range in z. In the literature, several other imaging 
techniques have been reported that also extend the tracking of a bead to 3D and, in principle, they could be 
employed for MOT; these include using electrically tunable  lenses18,  interferometry19, and stereo-microscopy20,21. 
One other option is to use holographic microscopy, as demonstrated in the microrheology system of Cheong 
et al.22. This system gives excellent microrheology results, but in doing so replaces the standard illumination with 
a HeNe laser to produce the holographic image. This makes the system less convenient for probing ultra-local 
properties in biological systems, where it may be useful to simultaneously use transmission images to see how 
close the probe bead is to e.g.  cells6.

The system we present here is based upon multiplane microscopy. Multiplane microscopy is a potent imag-
ing technique that allows us to capture images at multiple different focal planes simultaneously. Conventionally, 
multiplane microscopy techniques can be classified into two categories: (i) those that split the image with beam 
splitters and then use lenses to change the focal depth for each beam  path23, and (ii) those where diffractive 
optical elements are  employed24. In this work we have used the latter approach to simultaneously image a single 
optically trapped microsphere at nine different focal planes and thus perform microrheology measurements in 
three dimensions. A significant advantage that OpTIMuM has over many of the aforementioned 3D imaging 
techniques is its simplicity, as it requires only the addition of passive optical components into the optical path 
between the microscope and the camera. Previous multiplane microscopy work by this group used a look-up 
table approach to track sub-diffraction limit sized beads in  3D25. This is a procedure that, in common with other 
look-up table approaches requires the generation of a calibration data set on a bead and sample system which 
must match the optical and the physical properties of the bead being used for measurements. These properties 
include, bead size, bead refractive index, fluid homogeneity and illumination. Generally the measurements will 
be carried out using the same tracer bead that the calibration data set was made with.

The ability to gain spatial information in the z-direction makes OpTIMuM a valuable tool for a variety of 
studies throughout the applied sciences. These include, but are not limited to, exploring the properties of 3D cell 
 cultures3,26, elucidating the mechanical proprieties of materials with highly anisotropic  structures27, and investi-
gating the complex interactions at the solid–liquid interface of planes and/or biochemically treated  surfaces28,29.

Our approach to 3D localisation may equally be applied to studies of complex interactions and processes 
involving cells, macromolecules and  pathogens30–33, where the combination of high frame rates, no moving parts 
and compatibility with optical trapping would make it highly effective.

Methods
The system was designed using an Olympus IX73 inverted wide field microscope with an Olympus 60 × water 
immersion lens (Olympus UPLSAPO60XW) having a numerical aperture (NA) of 1.2. Images were taken in 
transmission, using a green LED (Thorlabs LED-C13) for the illumination and then filtering the images using a 
narrow bandpass filter (Thorlabs, FWHM = 3 nm) centred on 532 nm. The narrow filter is required to minimize 
chromatic aberrations due to the gratings. Images were captured using a Hamumatsu Orca Flash 4.0 camera at 67 
frames per second. To test the capability of the z-localisation we used a piezo microscope stage (Mad. City Labs 
Nanodrive 85) to move the stage in z. We worked in transmission rather than fluorescence to avoid photobleach-
ing the optically trapped particle, which would have had increased the complexity of the z-localisation process. 
A schematic diagram for the system is shown in Fig. 1a. For the optical trap, we used the output of a 1064 nm 
laser (Opus, Laser Quantum). In our system, as in most optical tweezer platforms, a beam expander consisting 
of two lenses (L1 (30 mm) and L2 (200 mm)) ensured that the trapping laser over-fills the back aperture of the 
objective and makes best use of its NA. By adjusting the position of lens 2 relative to lens 1 via a manually oper-
ated Thorlabs CT1translation mount, any bead trapped by the laser would move in the z-direction relative to 
the planes of the imaging system. Similar configurations have been employed in optical tweezers experiments 
 previously29. To avoid the effects of laser heating on the sample we used a 1064 nm laser which is only very weakly 
absorbed by water and kept trap power ≤ 20 mW throughout.

The multiplane system used in this work is similar to the one described in refs.25,34,35. To briefly summarise, 
we have attached a 4f image relay system (consisting of two 300 mm lenses) to the camera output port. The 4f 
system allows us to place the multiplane grating in the telecentric position and thus maintain a consistent level 
of magnification in each of the imaging focal planes. The multiplane grating itself is a quadratically distorted 
diffraction grating etched into a quartz substrate by Photronics UK Ltd. A schematic representation of the etch 
pattern is shown in Fig. 1b, although the real gratings have a much shorter etch period than shown. The optics 
underpinning the operation of the multiplane system are described at length in  ref36, but in simplest terms the 
object planes from different depths in z are spatially separated on a single camera. A single grating may be used 
to separate an image into three sub-images, corresponding to the m = 0, ± 1 diffraction orders. By using two 
gratings with orthogonal etch patterns, it is possible to split a single image into nine different sub-images, which 
due to the quadritic distortion of the gratings have each corresponding to a different image depth, as shown in 
Fig. 2a. In our system we have used a relay and grating combination that gives plane separation of Δz = 0.88 µm, 
a short explanation of why this spacing was chosen can be found in the “Z-localisation” section where we discuss 
how sharpness may be used to localize the bead in z. The plane spacing was measured by moving fixed beads of 
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varying sizes in different samples and under differing illumination conditions up and down a known distance 
using the piezo z-stage, and checking the stage-position which maximized the value of Sharpness in each image 
plane. This characterisation of the plane spacings is performed upon installation of the system, and there is 
no further need for a high precision stage during measurements, unless the objective or gratings are changed.

The image processing is represented schematically by the flowchart shown in Fig. 2b. To summarise, raw 
images captured by the camera are segmented into the nine different sub-images each corresponding to a  zplane = n 
Δz, for n =  ± 4,3,2,1,0, where the central plane is n = 0. Each segmented image stack is then processed with the 
“multithresh” function in Matlab [Matlab 2019b; MathWorks, Natick, MA]. This uses Otsu’s method to find a 
threshold value which maximises inter-class intensity variance and minimises intra-class intensity  variance37. 
This threshold is then applied to the segmented images to create a black background, and the x, y coordinates 
calculated by performing centre of mass analysis. The segmented images without the threshold are retained, 
a background level is subtracted, and the absolute value of the pixel intensities taken. These are then used to 
calculate the z-position of the particle as described in the “Results” section.

The underlying principles of the microrheology analysis performed on the particle trajectory is extensively 
described in  references9  and10. Briefly, we calculate the normalized mean squared displacement (NMSD) of the 
bead in x, y and z directions, which is related to the normalized position autocorrelation function (NPAF) by 
the following equation: NMSD = 1− NPAF = 1− exp

(

−
κiτ
6πηr

)

 , where κ = trap stiffness, defined as 
κx = kBT/ < x2 > (where x may be replaced by y or z, T is the absolute temperature and kB is Boltzmann constant) 
and i = x, y, z . Bead radius is given by r, τ is lag-time and η is the unknown fluid viscosity that could be measured 
as described in the “Results” section. Note that the last equality of the above equation is valid only in the case of 
Newtonian fluids.

To test our z-localisation method, we used a bead embedded in a stiff agarose gel such that its thermal motion 
in z is negligible compared to the 50 nm steps of the piezo stage. This was achieved by dispersing a low melting 
point agarose (TopVision, R0801) in warm (> 65 °C) distilled water and then adding a very dilute suspension 
of beads into the melt, before pipetting a small amount of sample onto a microscope slide and letting it set at 
room temperature. The sample was then mounted on the microscope, a single bead brought into focus, and 
measurements performed by moving the sample through a known distance via the piezo z-stage. Several different 
batches of beads were used with a range of different diameters; d = 2.1 µm (Polysciences Inc, 19508), d = 3 µm 
(Polysciences Inc, 17134), d = 4.5 µm (Polysciences Inc, 17135), nominal d = 5 µm (ThermoScientific 35–2, these 
beads were actually highly polydisperse, d = 5–8 µm ) and d = 9 µm (Invitrogen, N37464).

Results and discussion
Z-localisation. In order to perform microrheology measurements, an accurate localisation of the trapped 
bead is needed. In x and y directions, this is typically achieved by thresholding the image and then taking the 
centre of mass of the bead intensity profile in each dimension, as defined by Eq. (1). Here  Ixy is the intensity of 
the pixel with indices x and y in each dimension and the sum is over all pixel indices.

However, as shown in Fig. 3a, for a colloidal bead imaged in transmission, the sum of the image intensity 
has poor signal to noise ratio (blue curve) and does not peak when the bead is sharply in focus. Therefore, the 
centre of mass method used in x and y cannot simply be extended to the z-dimension, and a different approach 
must be used, as described below.
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Figure 1.  (a) Schematic diagram of our optical system. A 60 × objective collects transmitted light (green) and 
delivers the trap laser (red). Lenses L1 and L2 are used as a beam expander to over-fill the back aperture of the 
60X objective. L2 is mounted on a translation stage to allow the position of the focus and hence the trapped 
particle to be adjusted in z. L3 and L4 are used to create a 4f system with the camera at 4f and grating at 3f from 
the image plane of the microscope. (b) Schematic representation of the etch patterns of the gratings used to split 
images to perform multiplane microscopy. Two orthogonal gratings with etched surfaces facing each other and 
placed as close together as possible are necessary to view nine different focal planes.
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The image sharpness is defined by Eq. (2), which is a single metric that peaks when there are minimal aber-
rations and falls off rapidly as aberrations  increase38. Our system has narrow spectral filtering, uses high quality 
optics and is carefully aligned to minimise aberrations, so the shape of the sharpness curve will be dominated 
by defocus. In Fig. 3a we show the sharpness curve for a bead being scanned in z (orange curve).

Figure 2.  (a) A single frame showing a bead of ~ 4 µm radius trapped in gel and imaged at nine depths 
simultaneously. The top-left corner of each image reports the relative distance between that specific image plane 
and the plane in the centre (0), in multiples of the plane spacing Δz = 0.88 µm. The scale bar, shown in the 
central plane (0) is 10 µm. Contrast and brightness have been adjusted for clarity (Matlab 2019b; MathWorks, 
Natick, MA, https ://uk.mathw orks.com/produ cts/matla b.html). (b) A flowchart of the image processing 
algorithm used to extract x, y, and z coordinates of the bead. Steps on the blue background relate to x and y 
localisation, whereas those on the gold background relate to z localisation; those on the green background 
represent initial processing steps common to x, y and z.

https://uk.mathworks.com/products/matlab.html
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In a previous work by this  group34, a fixed bead was repeatedly moved by a known distance in z and the 
sharpness in each plane measured. This created a matrix of known sharpness values for each image plane in each 
stage position that was then used as a calibration dataset. By using statistical techniques based around maximum 
likelihood estimation, it was possible to calculate the position of this bead by comparing the measured Sharpness 
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Figure 3.  (a) Sharpness (orange) and summed intensity (blue) lines  taken from the central plane images 
of a 3 µm diameter bead as it was moved through z, with steps of 50 nm. (b) Cross-sections taken through 
the centre of the image of the 3 µm bead in the central plane as the bead is moved through z. The red dashed 
lines correspond to the spacing of the different segmented planes. Contrast and brightness adjusted for clarity. 
(Matlab 2019b; MathWorks, Natick, MA, https ://uk.mathw orks.com/produ cts/matla b.html) (c)The calculated 
z-position of the bead using the sharpest plane (z.S.P, blue), centre of sharpness  (zC.S, red), rescaled centre of 
sharpness  (zR.C.S, green) approaches to determine the z position versus stage position in z. Stage position is also 
plotted as a dashed black line as a comparison. (d) Residuals of the  zR.C.S data shown in (c).

https://uk.mathworks.com/products/matlab.html
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values to the calibration set and finding the z value most likely to produce those Sharpness values. This offered 
excellent precision, when used for sub-diffraction-limit sized beads rather than the 1 – 10 µm diameter beads 
commonly used in optical trapping based microrheology. Similar “look up table” based approaches have also 
been used for larger beads, and based on other metrics such as radial profile rather than  sharpness39–41. However, 
regardless of the metric used, such approaches strongly rely on the ability of the user to generate their calibration 
by simply scanning their objective through z while holding the bead stationary. This is achievable for magnetic 
tweezers measurements, where the position of the trapped object can be controlled independently of the imaging 
plane, but for the majority of optical tweezers systems imaging and trapping are performed via the same objective 
lens which makes this far more challenging as it is not straight forward to move the bead relative to the image 
plane. A possible alternative would be to generate a calibration set using a different bead from the one which 
will be used for measurements. However, this depends on the assumption that the behaviour of the metric in the 
calibration set will be identical to those of the measurement. In reality, optical properties vary greatly depend-
ing on the depth being imaged at and the inhomogeneity of the sample microstructure (this is especially true 
of complex biological samples), and there will always be a degree of polydispersity in bead size (the Sharpness 
function is strongly dependent on bead size, as shown in Fig. S1).

Therefore, instead of using Sharpness directly as a metric for a look-up-table, we have explored the use of 
Sharpness as a weighting function for a centre of mass calculation in the z direction (similarly to how Intensity 
is used in the x–y plane) returning Eq. (3), where  zC.S is the centre of sharpness.

In Fig. 3c we show a comparison between  zC.S (red line) and the actual z position taken from the piezo control-
ler (black dashed line), for a ~ 3 μm diameter bead fixed in agar and imaged in transmission with 15 ms exposure, 
as the stage is moved in the z direction in 50 nm increments. It is clear that  zC.S significantly underestimates the 
degree of motion of the bead, as the gradient of  zC.S (~ 0.2) is much lower than the gradient of 1 exhibited by 
 zstage. This is because with only nine planes in z we are significantly undersampling the function (see Fig. 3b), 
and hence biasing  zC.S to be too close to zero.

An alternative approach is to identify the plane that has the highest Sharpness value at any given time  (zsharpest) 
and take the z value of this object plane relative to the mid-plane to be the bead position. This method is accurate, 
but offers very low precision, equal only to the plane spacing. This can be improved by finding the plane with the 
second highest Sharpness value  (z2nd-sharpest), and assuming that the bead must lay between these two planes, but 
closer to the sharpest plane. We define this as the ‘Sharpest Plane’ approach and  zS.P as in Eq. (4).

Equation (4) returns the same values as  zsharpest but shifted by ± Δz/4 depending upon whether  z2nd-Sharpest is 
the plane above or below  zsharpest This results in even step sizes of Δz/2 as the bead moves in z. Although  zS.P is 
more precise than  zsharpest, it still only returns a resolution of half our plane spacing, as shown in Fig. 3b by the 
blue step-wise line. This approach lacks the spatial resolution of < 100 nm essential for microrheology studies.

In order to achieve the required spatial resolution, we have combined the two methods outlined above. Spe-
cifically, we have used  zS.P as a calibration to linearly rescale  zC.S. We have taken some additional steps to avoid 
the effects of non-linearity when the bead has moved far from equilibrium, and to reduce biasing (which we 
detail in Sect. 3 of the SI), to perform a linear fit of the stepped  zS.P data as a function of  zC.S. For the data shown 
in Fig. 3 this returns a gradient of 5.26, which we take as a rescaling factor specific to a bead of this size under 
this illumination, i.e.  zR.C.S = 5.26  zC.S. It can be seen that  zR.C.S (green line) follows the actual stage position (black 
dashed line) very closely, as quantified by the residual plot. Notice that Fig. 3b was generated by moving the stage 
a total distance of only 4 µm. The calculated z position matches the stage position very well over this range, with 
a mean residual of ~ 40 nm. However, it must be highlighted that in actual hybrid optical trapping microrheology 
experiments where trap strengths are generally between 1 ×  10–6 and 1 ×  10–8  Nm−1, an optically trapped bead will 
typically move less than ± 1 µm in any dimension during a measurement performed at room temperature. This is 
confirmed in Fig. 4a,b, where the scatter plots of an optically trapped bead of ~ 4 µm radius are reported. Notice 
that the bead travels only ~ 1 µm in any direction from the centre of the optical trap. Therefore, when considering 
the accuracy of this method as it will be used in microrheology measurements, it is more relevant to consider 
the error in detecting the bead position for displacements of + /- 1 µm from the centre. In this region we obtain a 
mean absolute residual between  zR.C.S and  zstage of 

∣

∣zstage−zR.C.S
∣

∣ ~ 30 nm for the d = 3 µm bead shown in Fig. 3d.
In order for this method to be effective, the plane separation must be large enough to adequately sample 

the peak and drop off of the sharpness function. This is demonstrated in Figs. S2–S5 where we show plots of 
the same type as Fig. 3c,d, but for beads of different sizes. For all the bead sizes explored, there is a region in 
which  zRCS scales linearly with stage position. For larger beads, within this central region the method is more 
accurate, and residuals are smaller. However, it must be noted that as bead size becomes larger, the range of  zstage 
values over which  zCS behaves linearly becomes narrower, even as the residuals within these regions decrease 
(see Fig. S6). This clearly demonstrates that one must optimize bead size for plane separation as larger beads 
will give less random noise but may introduce systematic error if a very weak optical trap is used, such that the 
bead regularly travels over a range wider than this linear region. For the Δz = 0.88 µm plane spacing employed 
in this work, we conclude that using a 9 µm bead may risk introducing systematic underestimation of z motion 
into MOT experiments, whereas the other beads tested would safely give linear behavior over the full extent 
of the optical trap. The ThermoScientific beads with diameters ranging from 5–8 µm offered a precision of 
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∣

∣zstage−zR.C.S
∣

∣ ~ 20 nm (see Fig. S4) within the ± 1 µm region, therefore, we have used beads from this batch for 
the measurements reported hereafter.

The proposed methodology depends on moving the bead up and down at the start of the measurement to 
generate the  zS.P function required to perform the in situ self-calibration procedure. This can be achieved in 
different ways depending on the nature of the sample under investigation. For instance, in the case of a bead 
embedded in a very stiff media capable of holding it in place (such as a gel), the use of any standard z-stage with 
step precision ~ Δz/2 or capable of continuous motion in z will allow this task to be accomplished. This is more 
complex for microrheology measurements of fluids, because the trapping laser and transmitted illumination light 
travel through the same objective. Therefore, moving the sample or the objective would not change the relative 
position of the trap (i.e., the bead) to that of the imaging planes. However, by moving lens L2 (as described in the 
method section and indicated in Fig. 1a) it is possible to adjust the position of the laser beam waist independent 
of the imaging plane. This allows us to move the bead over a distance of ± 4Δz, which is more than sufficient to 
obtain  zC.S values at a range of different values of  zS.P, thus allowing a correct rescaling of  zC.S to generate  zR.C.S. 
This is demonstrated in Fig. S6, which shows  zC.S,  zS.P and  zR.C.S for the self-calibration step followed by the initial 
part of a microrheology measurement.

3D Microrheology with optical trapping. In order to corroborate our method, we performed prelimi-
nary microrheology measurements in water, a Newtonian fluid. Here we continue to operate at 67 Hz, which 
is adequate to analyse the viscous behavior of water. However, it important to highlight that, as there are no 
moving parts in the multiplane system, this speed is only limited by the camera acquisition rate. For instance, 
by using gratings with a larger etch period, or a shorter relay with gratings with higher curvature, we could 
reduce the field of view and thus the number of pixels in our images. We could then operate at ~ 500 Hz using 
the same camera. Figure 4a shows a 3D scatter plot of the trajectory of a bead confined within a 3D optical 
potential. The trajectory has been drawn by analysing 100,000 individual frames each recording 9 simultaneous 
z planes imaged during the measurement. This allows the visualization of the entire volume of the optical trap, 
which has a prolate spheroid shape stretched along the z-axis, due to the inherently weaker trap strength in the 
axial  direction43,44. The spatial distribution along the three axial directions has a full-width-half-maximum of 
0.45 µm, 0.45 µm and 0.76 µm in, x, y and z, respectively (Fig. 4b). The x, y and z coordinates versus time are 
plotted in Fig. 4c–e and do not show any significant drift, indicating a thermally and optically stable system. 
This is confirmed by looking at the Allan deviation of the bead position in each dimension which also shows no 
drift on the timescale of the experiment (see Fig. S7). Calculating the trap strength gives us κx ∼

= κy ∼= 1× 10−7 
 Nm-1 and κz ∼= 4× 10−8  Nm-1. The particle trajectory can be further exploited to evaluate its normalised mean 

Figure 4.  (a) 3D scatter plot of the trajectory of a ~ 7 µm diameter bead confined in space by an optical trap 
(Matlab 2019b; MathWorks, Natick, MA, https ://uk.mathw orks.com/produ cts/matla b.html). (b) Projections 
of the trajectory on the x–y and x–z planes. The bead trajectory is drawn from the image analysis of ~ 100,000 
frames. (c), (d) and (e) show the x, y, and z position respectively of the bead with time over the length of the 
experiment. (f) The bead NMSD versus lag-time τ evaluated for each dimension. (g) The particle NPAF for each 
dimension plotted against a dimensionless lag-time τ*42, derived from the scatter plots shown in (a). The solid 
line is at NPAF =  e-1.

https://uk.mathworks.com/products/matlab.html
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square displacement (NMSD)10 as a function of elapsed time (τ) for each spatial dimension (x, y, z), as shown 
in Fig. 4f. We can see that the NMSD curves evaluated in the x and y directions overlay almost perfectly on top 
of each other, as expected for a spherical particle in an isotropic fluid and a well aligned optical system. The 
NMSD curve in the z direction, however, is offset in the time axis because of the weaker trap strength. This offset 
can be compensated for by following the analytical approach introduced by Tassieri et al.42, and plotting either 
the NMSD or the NPAF against a dimensionless lag-time, τ* = τκ/(6πrηs), which takes into account the bulk 
viscosity of the solvent (ηs), as shown in Fig. 4g. We see that all the curves collapse onto a single master curve, 
as we are probing the same physical phenomenon, i.e. the Brownian motion of the same bead suspended in the 
same isotropic Newtonian fluid. Notably, this representation allows a direct measurement (‘at a glance’42) of the 
fluid relative viscosity ( ηr = η/ηs ), defined as the ratio of the fluid viscosity to that of the solvent. The relative 
viscosity will be the τ* value at which NPAF(τ*) =  e−1; the latter is marked by the solid horizontal line in Fig. 4g. 
Notably, the abscissa of the intercept of this line with all three NPAFs occurs at τ* ≅ 1, meaning that the meas-
ured relative viscosity is 1 as expected for pure water. Measurements were repeated on 5 beads with d ~ 6–8 µm 
and obtained ηx

r = 1.02 ± 0.04, ηy
r = 1.01 ± 0.05, ηz

r = 0.98 ± 0.07. This corroborates the overall effectiveness of the 
proposed experimental procedure.

Conclusion
In this work we have introduced a novel 3D microrheology system named “OpTIMuM” that combines, for 
the first time, optical tweezers and multiplane microscopy. OpTIMuM allows us to perform particle tracking 
microrheology in three dimensions with ~ 20 nm accuracy along the laser beam axis, without the need to gener-
ate a ‘look up table’ and without knowledge of the bead size, the optical properties of the suspending medium, 
nor the use of any high precision positioner during the measurement. A straightforward manual adjustment to 
the position of a lens prior to measurement is all that is required to calibrate the system. Notably, since multi-
ple planes are acquired simultaneously and not through a scanning process, the acquisition rate of our system 
is limited only by the camera frame rate. Using this system we were able to obtain the viscosity of water in all 
three spatial dimensions simultaneously. OpTiMuM provides a fast and effective method for exploring the full 
3D micro-environment of an optically trapped bead. We envisage it could also be useful when measuring the 
forces involved in cell-surface interactions studies or when looking at force extension relationships of single 
molecules, and could open new routes to topographical, chemical and bio-mimetical surface engineering stud-
ies for biomedical applications.
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