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Radio & BH Load-aware Multi-Objective Clustering
in Multi-cell MIMO Cooperative Networks
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Muhammad A. Imran, Senior Member, IEEE

Abstract—Coordinated Multipoint (CoMP) is one of the key
technologies identified for future wireless networks to mitigate
inter-cell interference, especially in a dense deployment scenario.
However, CoMP can’t be realized for the whole network due to its
computational complexity, synchronization between coordinating
base stations (BSs) and high backhaul (BH) capacity requirement.
BSs need to be clustered into smaller groups and CoMP can be
activated within these smaller clusters. In this paper, we develop
a multi-objective, dynamic clustering model for multi-user, joint-
transmission CoMP to jointly optimize spectral efficiency (SE),
radio access network (RAN) load and BH load. We formulate
our load-aware model as two coalitional sub-games for small cell
and user equipment clustering, respectively. Merge/split/transfer
actions for each sub-game are defined and a complexity and
stability analysis is provided. Extensive simulation results show
that our model provides as good SE in low load when compared
to a greedy model, and significantly better load balancing with
a reduced number of unsatisfied users and increased throughput
in high load scenario. On average 49% increase in the overall
system throughput is observed in our simulations when compared
to the greedy model.

Index Terms—Backhaul-aware, coalitional sub-games, coordi-
nated multipoint system, load-aware, multi-objective clustering.

I. INTRODUCTION

The fifth generation (5G) cellular systems are being de-
ployed aiming at 1000 times more capacity than the fourth
generation (4G) to cope with increasing mobile data traffic [1].
Interference mitigation plays an important role in improv-
ing the much needed overall capacity, especially in highly
interference-limited 5G dense deployment scenarios [2].

Coordinated Multipoint (CoMP) is identified as a promis-
ing interference mitigation technique in which multiple base
stations (BSs) cooperate for joint transmission/reception. This
is achieved by exchanging user/control data, thus, realizing
joint signal processing which mitigates inter-cell interference
and even exploits it as a useful signal. CoMP is already a
key feature of long term evolution-advanced (LTE-A) [3] and
is an essential function for 5G [1], [4]. 5G test-bed results
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from Qualcomm demonstrate the ability of CoMP to increase
capacity by exploiting spatial multiplexing and to provide
ultra-reliable connectivity by exploiting spatial diversity (i.e.,
transmitting the same data from each transmission point) [5].
Furthermore, new network architectures such as centralized
radio access network (C-RAN) [6] and ultra-dense small cell
(SC) networks facilitate the deployment of CoMP and enhance
its benefits [7]. However, coordination among a high number
of BSs necessitates high capacity, low latency backhaul (BH)
links for sharing the required signaling and user data. On the
other hand, multi BSs coordination requires the computation
of precoding matrices which get larger as the number of
BSs increases. Moreover, channel estimation relies on pilot
channels and the resulting overhead also increases as the
number of coordinating BSs increases [8], [9]. Due to these
bottlenecks, CoMP is only feasible within small BS clusters
which limits the potential gain. Consequently, BSs need to be
intelligently grouped into small clusters within which CoMP
can be operational while the gain is maximized.

A. Literature Review
The problem of network clustering to maximize CoMP

efficiency has been extensively studied in the literature [10].
A comprehensive CoMP clustering solution needs to jointly
optimize multiple key objectives, e.g., spectral efficiency (SE),
RAN load and BH availability. However, most of the current
works adopt SE as a single primary objective with network-
centric clustering solutions [11], [12]. User-centric solutions
are proposed in [13]–[15] with double objectives: SE and
throughput at the cell edge, however do not consider BH
limitations or other objectives. There are other solutions in
the literature which optimize RAN load and BH availability,
however, these objectives are studied in isolation, lacking a
comprehensive multi-objective clustering approach.

BH capacity and latency are some of the biggest challenges
for the realization of CoMP in future networks [16], [17]. The
impact of BH limitations, clock synchronization, and imperfect
channel state information (CSI) on CoMP performance are
evaluated in [18]. The resulting field tests show a significant
impact on the achievable SE under these conditions. Realistic
network clustering solutions will need to take BH availability
into consideration for network clustering to maximize CoMP
gain. Required BH capacity is taken as one of the key
objectives in [19] where soft frequency reuse (SFR) and CoMP
are employed together to improve cell edge user performance.
An analytical framework is driven to optimize SFR param-
eters to maximize the overall cluster capacity and cell edge
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user throughput while minimizing the required BH capacity.
In [20], the feasibility of deploying coordinated schedul-
ing CoMP (CS-CoMP) under different BH infrastructures is
analyzed in terms of convergence delay when exchanging
scheduling information between SCs. The same authors further
enhance this work in [21] and propose a bandwidth allocation
scheme to prioritize inter-SC (X2) traffic for CS-CoMP and,
hence, reduce scheduling information exchange latency in
a BH limited 5G network. Limited fronthaul availability is
studied in [22] for C-RAN architecture where user-centric
clusters of remote radio heads are optimized to minimize the
total transmission power while maintaining user’s quality of
service (QoS). More recently, limited BH capacity and per-
BS power constraints are taken into account to optimize user-
centric clusters and design transmit precoding for maximizing
the sum rate in [23]. Both of these works present a user-
centric clustering model but the proposed methods rely on
high precoding complexity and tight BS synchronization.

Emerging mobile edge computing (MEC) and popular data
caching at the BS is a promising concept for reducing the
CoMP related BH requirements [24]. Caching data on the
MEC servers eliminates the need for transmitting popular data
from the core network over the BH. Consequently, during high
load traffic, the BH capacity is available to support CoMP
without compromising latency. In [25], authors propose to
utilize user data caching at the BS to reduce BH load and im-
prove CSI knowledge accuracy with improved BH availability.
In [26], all BSs in the same cluster aim to cache identical data
at BS, and an opportunistic joint transmission (JT) CoMP is
employed for users where user-data is available at each BS.
Otherwise, coordinated beamforming (CB) CoMP is employed
where only CSI is shared between BSs for joint precoding. A
number of studies in the literature utilize cached data at the BS
to optimize user-centric CoMP clusters to reduce BH traffic
demand in isolation [27], [28]. A further user-centric clustering
is studied in [29] where cached data at SCs are utilized to form
optimum user-centric clusters to reduce BH traffic and increase
network throughput for a given maximum cluster size (CS). In
these works, BH limitation is studied in isolation for CoMP
clustering, without considering other network metrics i.e. SE,
RAN load, etc. Furthermore, as pointed out earlier, precoding
and synchronization complexity increases as the network size
increases for user-centric clustering solutions, and hence these
solutions are not scalable for larger networks. Realistic CoMP
deployment will require network-centric clustering solutions
to reduce these complexities and deploy user-centric solutions
within each network-centric cluster to optimize gain.

RAN load is another key dependency that needs to be
taken into account for CoMP clustering. CoMP is likely to be
deployed in interference-limited, highly dense deployment sce-
narios where hotspot areas will form at certain times. CoMP
clusters need to dynamically adjust to balance the load and
shift traffic from highly loaded BSs to lightly-loaded BSs. In
our previous work [30], we proposed a user-centric clustering
algorithm where RAN load is taken into consideration for
user-centric clusters. To form load-aware clusters, UEs at
the cell edge of congested BSs are dynamically moved to
relatively lightly-loaded BSs, thus, shifting traffic from highly

loaded BSs to lightly loaded BSs. In [31], RAN load-aware
user-centric clusters are formed by utilizing game theory for
non-coherent CoMP in an ultra-dense heterogeneous network
(HetNet) scenario. In both solutions, user-centric clusters are
presented but these are not scalable for large networks due to
their inherent increased complexity. To avoid the complexity
of user-centric clusters, we proposed a novel, low-complexity,
merge-split coalition game model to form RAN load-aware
network-centric clusters in our previous work [32]. However
this solution also lacks BH capacity awareness.

In this paper, we present a dynamic CoMP clustering
algorithm that jointly optimizes BH load, RAN load and
SE based on changing network conditions. We consider our
solution as an improved mobility load balancing functionality
within self-organizing networks (SON) framework [33]. SON
is an important concept which aims to provide automated self-
configuration, self-optimization and self-healing functions to
dynamically adapt the network to changing conditions. Some
SON features are currently deployed in existing networks
whilst the 3rd Generation Partnership Project (3GPP) foresees
a key role for SON in 5G deployments [34], [35]. Dynamic
CoMP clustering function [10] is a typical application that
would benefit from SON functionality, as recently shown in a
3GPP report on SON-based CoMP clustering with BH latency
limitations in [36]. Similarly, the novel solution proposed in
this manuscript for a multi-objective dynamic CoMP clustering
algorithm could as well be deployed within a SON platform.

B. Contributions
BH limitation, RAN load and SE objectives have been stud-

ied for CoMP clustering but each objective studied in isolation.
There is no CoMP clustering solution in the literature that
jointly optimizes and analyzes the trade-off between SE and
BH/RAN load. Furthermore, most of the BH-aware models
utilize user-centric clustering models which are not scalable
for larger networks. To this end, we propose a scheme that
jointly accounts for BH/RAN load and SE objectives whilst
offering a coalition game-based scalable implementation. The
contributions of this paper can be summarised as follows:

1) Based on the authors’ knowledge, this is the first scheme
for the design of a comprehensive CoMP clustering
framework that jointly optimizes multiple objectives, i.e.
SE, RAN load and BH load. Each of these objectives
has been studied in isolation, but there is no work in the
literature which jointly optimizes all three objectives.

2) All BH-aware clustering models in the literature propose
user-centric solutions. The downside of such solutions
becomes dominant when the network size increases as the
computational complexity hinders their scalability. On the
other hand, current network-centric solutions overcome
the scalability issues but do not account for constrained
BH. In this paper, we provide the first network-centric
(hence scalable) clustering model that optimizes BH load
alongside RAN load and SE.

In our proposed model, we design two coalition sub-games:
1) a SC clustering sub-game to form RAN/BH load-aware
SC clusters by merge/split/transfer actions, 2) a novel user
transfer sub-game to move users between SC clusters to
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Table I: Table of Acronyms.

3GPP 3rd Generation Parternship Project
AWGN Additive White Gaussian Noise
BH Backhaul
BS Base Station
CB Coordinated Beamforming
CoMP Coordinated Multipoint
C-RAN Centralised Radio Acess Network
CS Cluster Size
CS-CoMP Coordinated Scheduling - CoMP
CSI Channel State Information
EPA Extended Pedestrian-A
GBR Guaranteed Bit Rate
HetNet Heterogeneous Network
HN Homogeneous Network
JT Joint-transmission
JT-CoMP Joint Transmission CoMP
LBH-GA RAN and BH load-aware game
L-GA RAN load-aware game
LTE-A Long Term Evolution - Advanced
MBS Macro base station
MEC Mobile Edge Computing
MIMO Multiple Input Multiple Output
MU Multi-User
NLOS None Line of Sight
PPP Poisson Point Process
PRB Physical Resource Block
QoS Quality of Service
RAN Radio Access Network
RN Random Network
SC Small Cell
SE Spectrum Efficiency
SE-GR Greedy model employing SE based utility
SFR Soft Frequency Reuse
SINR Signal to Interference Noise Ratio
UE User Equipment
VDSL2 Very high-speed Digital Subscriber Line 2

improve load balancing further. Extensive simulation results
for multiple scenarios are presented to show the performance
of the proposed method under different BH availability con-
ditions. Results are benchmarked against an improved version
of our previous work on RAN load-aware clustering model
presented in [32] and a greedy algorithm in [37]. We show
that our multi-objective model provides an average of 49.9%
increase in overall system throughput when compared to a
greedy model across all different BH availability scenarios.
This results in 41.7% and 18.4% less unsatisfied users when
compared to a greedy model and RAN load-aware model,
respectively, in the case of all SCs having limited BH.

The rest of the paper is organized as follows. In Section II,
we introduce the system model. Key CoMP performance
factors are defined in Section III and the optimization problem
formulation is presented in Section IV. In Section V, we
describe our clustering model as SC clustering and UE transfer
sub-games and discuss its stability and complexity. Simulation
results with insights are presented in Section VI and finally, we
summarize the findings and conclude the paper in Section VII.
Table I represents a list of all acronyms used in this paper.

II. SYSTEM MODEL

We consider a HetNet scenario, as shown in Figure 1,
where a group of SCs, SC = {SC1, . . . , SCn}, are distributed
within the coverage area of one macro base station (MBS).

Figure 1: System model showing a heterogeneous network
with network-centric SC clusters and corresponding UE clus-
ters. The bottom diagram shows the formation of user-centric
clusters within the network-centric cluster C1.

We assume distinct and non-overlapping frequency bandwidth
for SC and MBS layers, hence no inter-layer interference is
expected. All SCs in the network are grouped into network-
centric CoMP clusters such as cluster Ci which comprises a
number of SCs, i.e., Ci = {SCi1, SCi2, ..., SCiz}. Therefore,
the complete list of SCs in the network can be expressed as
a set of clusters C = {C1, . . . , Cs}. Each user is assigned to a
cluster Ci, and all users that are assigned to the same cluster Ci
form a user cluster Ui. Thus, we define the set of user clusters
U = {U1, . . . ,Us} which as assigned to the SC clusters
C = {C1, . . . , Cs} respectively. An example of network-centric
clustering of SCs in a HetNet and corresponding user clusters
is shown in Figure 1. Moreover, we define a user-centric SC
cluster C

k

i
as a sub-cluster of Ci (i.e., C

k

i
✓ Ci) for a user

UEk whose best server is SCim 2 Ci. We define best server
SCim for UEk where the best average received signal at UEk

is from SCim. We consider a larger time window (seconds,
minutes) for clustering decisions to respond to spatio-temporal
changes in the network and user profiles, consequently average
received signal power and average signal to-interference-plus-
noise ratio (SINR) are considered for clustering decisions as
detailed in Subsection II-D. Let p

kj
and p

km
be the average

signal power values received at UEk from SCij 2 Ci and SCim,
respectively. Then, for all SCij 2 Ci, we consider SCij 2 C

k

i

if p
kj
/p

km
> P� and p

kj
> Pmin (P� and Pmin are user-

defined parameters as described in Table II). An example of the
formation of user-centric clusters is presented in the bottom
diagram of Figure 1, which shows user-centric clusters C

1
1 ,

C
2
1 , and C

3
1 , all subsets of the network-centric cluster C1 and

corresponding to users UE1, UE2, and UE3, respectively.
In this work, we consider multi-user joint transmission

(MU) JT-CoMP where multiple users within the same cluster
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are scheduled to the same physical resource block (PRB). In
other words, user-data for UEk is made available at each SC
within C

k

i
. In the following sections, we further elaborate on

the BH last mile considerations, the BH-aware CoMP gain
computation, and the cluster formation that we propose.

A. Backhaul considerations
The MBS is assumed to have an ideal BH connection

to the core network and to act as an aggregation point for
the SC BH links. Thus, the SC BH last mile is the link
from the MBS to the SC. In this work, we assume two
possible technologies for the BH last mile: VDSL2 (Very
high-speed Digital Subscriber Line 2) or fiber-based. Fiber
technology offers quasi-ideal BH performance in terms of
capacity > 10 Gbps and latency < 1 msec. However, VDSL2
technology offers limited performance where the capacity is
capped at 100 Mbps and the latency is at least 3 msec [17].
Both BH technologies are considered to be robust, hence
the outage probability can be ignored. For each SC, the BH
throughput demand is calculated based on the radio access
user throughput. An additional overhead of 30% is added to
the user throughput to account for BH specific control plane
traffic [38], [39]. Thus, the overall cell load value is derived
by accounting for both radio access capacity and BH capacity
limitation (particularly for VDSL2-based last mile).

B. CoMP gain with ideal Backhaul
Consider a group of UEs U

k

i
which are assigned a user-

centric cluster C
k

i
and scheduled in the same PRB at each

SC in C
k

i
. We assume one antenna for both UE and SCs for

simplicity, however, our coalitional game model is applicable
to a network with multiple antennas at the SC and UE.
Similar one antenna assumption has been made in other CoMP
clustering studies [31], [40], [41]. With the assumption of one
antenna for UE and SCs, a virtual MIMO system is formed
with |C

k

i
| = T transmitters and |U

k

i
| = R receivers. For each

UE in U
k

i
, the received signal can be expressed as:

y = HWx+ n, (1)

where H 2 CR⇥T
,W 2 CT⇥R. The channel matrix can be

expressed as H =
⇥
h1h2 . . .hR

⇤T while the channel vector
at UEk is given by:

hk =
⇥
hk1hk2 . . . hkT

⇤
(2)

Further, the precoding matrix W =
⇥
w1w2 . . .wR

⇤
and

beamforming vector for UEk can be expressed as:

wk =
⇥
w1kw2k . . . wTk

⇤T (3)

Moreover, the received signal yk at UEk can be expressed as:

yk = h
Ck

i

k
w

Ck

i

k
xk +

P
i2Uk

i
/k

h
Ck

i

k
w

Ck

i

i
xi +

P
j2U/Uk

i

ĥ
C/Ck

i

k
wjxj + nk (4)

In (4), the first term represents the desired signal from each
of the SCs within C

k

i
, the second term represents the inter-

ference from within the cluster C
k

i
, followed by interference

from outside of C
k

i
and the final term is the additive white

Gaussian noise (AWGN). The dimension for hk is 1⇥T as it
represents the channel vector from all SCs within C

k

i
to UEk

and the dimension for ĥk is 1⇥(N�T ) as this term represents

the channel matrix from all SCs outside C
k

i
to UEk where N

is the total number of SCs in the system. Consequently, the
SINR at UEk can be obtained as:

SINRk =
|hCk

i

k
w

Ck

i

k
xk|

2

P
i2Uk

i
/k

|h
Ck

i

k
w

Ck

i

i
xi|

2

+
P

j2U/Uk

i

|ĥ
C/Ck

i

k
wjxj |

2

+|nk|2
(5)

Let the total transmit power for each SC PTx be the same and
that for each PRB be equal, then (5) can be simplified to:

ˆSINRk =
PTx

P
i2Ck

i

|hki|
2

PTx

P
j2C/Ck

i

|hkj |
2 + N0Btot

(6)

where N0 is the noise spectral density, Btot is the total system
bandwidth. The channel coefficient hki is made up of 2 terms,
the static distance-based path loss component with shadow
fading, gki, and the fast fading complex coefficients fki such
that hki = g

ki
f
ki

. In an ideal BH scenario that assumes fiber
BH for each SC within C

k

i
, intra-cluster interference would

be negligible with highly accurate knowledge of the CSI and
very low latency at the MBS.

It is common and best practice to assume equal power
distribution among PRBs and the same power setting to all SCs
when conducting network-level simulations for CoMP cluster-
ing [42], [43]. Indeed, where link-level simulations necessitate
accurate representation of actual power distribution, network-
level simulations often assume simplified link-level results to
limit the complexity level of the problem. Unequal power
distribution would alter the computation of SE and impact
RAN/BH load, thus, we anticipate that the algorithm would
respond with clustering changes to reflect the updated SE.

C. CoMP gain with constrained Backhaul

In reality, not all SCs would afford a fiber-based last mile
during deployment, hence some would have an alternative con-
strained BH. In our model, copper-based VDSL2 technology
is considered for the alternative last mile. In addition to the
throughput limit of this technology, the high latency (3 msec)
causes imperfect CSI, hence intra-cluster interference does not
get canceled completely resulting, thus, in degraded SINR.
The impact of various latency values is analyzed in [44] for
downlink JT-CoMP where an average 15% throughput loss is
observed for 3 msec latency. As such, we consider 15% loss
in SE when compared to perfect CSI (very low latency fiber-
based last mile) for UEk when C

k

i
contains at least one SC

with VDSL2 last-mile link to the MBS.

D. CoMP clustering with fading considerations

We propose that clustering decisions are made based on
average SINR to respond to spatio-temporal changes in the
network and user profiles (in seconds, minutes), but not to fast
fading changes (in milliseconds). This provides additional re-
silience for incorrect clustering decisions due to imperfect CSI
knowledge and prevents additional signaling overhead incurred
from frequent re-clustering decisions [45]. For average SINR,
the term hki in (6) can be simplified to the distance-based
path-loss and shadow fading component only, i.e., ĥki = g

ki

where fast fading component f
ki

is averaged out over time.



5

III. COMP PERFORMANCE FACTORS

In this section, we define the main CoMP performance
metrics and utilize these metrics later in our coalitional game
model. Assume UEk is assigned a network-centric cluster Ci

and user-centric cluster C
k

i
where C

k

i
✓ Ci and let dk be the

guaranteed bit rate (GBR) requirement for UEk. The required
number of PRBs for UEk in no CoMP scenario would be
rk = dk/(ykBPRB) where BPRB is the user-data bandwidth
in a single PRB, y

k
= log2(1 + ˆSINRk) and ˆSINRk is as

defined in (6) with the special case of one SC only in the
CoMP cluster i.e. |Ck

i
| = 1. In MU-JT CoMP, a number of

UEs (Uk

i
) are scheduled on the same PRB at each cell in C

k

i
so

we define an estimated dedicated PRB count for UEk at each
SC in C

k

i
as r̂k = rk/nk, assuming |C

k

i
| = |U

k

i
| = nk [32].

A. RAN and BH Load
The main aim for CoMP is to improve SE, hence provide

the required throughput with less radio resources and reduce
RAN load for the cell. For MU JT-CoMP, increasing CoMP
CS improves inter-cell interference cancellation and, therefore
SE. However, as CS increases, additional pilot channels are re-
quired for CSI estimation which occupy parts of the bandwidth
otherwise used for user data. As the available bandwidth for
user data reduces, RAN load for the cell increases. So RAN
load is one of the key metrics to measure CoMP performance
where it implicitly reflects on SE improvement and also the
CoMP pilot overhead. We define the RAN load metric for
SCm for MU JT-CoMP scenario as [32]:

l̂
RAN

im
=

P
k2Uim

r̂k
Rtot

(7)

where Uim is the associated active UEs in SCm and Rtot is
the total number of PRBs for each SC, assuming all SCs have
same total bandwidth.

A more realistic load metric should also consider BH load
alongside RAN load. In a network where some SCs have
constrained BH links, the overall cell load may be limited by
the BH and not the radio access. In MU JT-CoMP scenario,
user data for all users within U

k

i
needs to be available at all

SCs within C
k

i
. As such, it is expected that an increase in CS

results in an increase in BH load. Moreover, additional latency
due to non-ideal BH will introduce delay in CSI estimation
for precoding and hence reduce SE gain and increase RAN
load. In summary, alongside RAN load, BH load is another
key metric that needs to be considered in CoMP clustering.

To define the BH load l̂
BH

im
, firstly, we define the RAN

throughput demand on SCm in Ci as dRAN

im
=

P
k2Uim

dk.
Similar throughput demand and cell load definitions are
adopted in [32], [46]. The BH throughput demand dBH

im
is then

computed with an average overhead factor of 1.3 to account for
additional traffic on BH for X2 user/control plane and transport
and security overheads [38], [39], i.e., dBH

im
= dRAN

im
⇥ 1.3.

Once dBH

im
is known, l̂

BH

im
can then be defined as:

l̂
BH

im
=

dBH

im

fBH

im

(8)

where fBH

im
is the BH capacity. When BH gets congested

i.e. dBH

im
> fBH

im
, then the effective capacity fBH

im
goes down

further due to retransmissions [39]. In the case of VDSL2
link congestion, we consider 10% retransmission rate, i.e., the
effective capacity of the VDSL2 link fBH

im
= 90Mbps. This is

in-line with the assumptions made in [39].
A more realistic SC load definition needs to consider both

the BH and RAN loads. Effectively, the overlall load is the
limiting one which is the highest of the two, defined as:

l̂im = max(l̂
RAN

im
, l̂

BH

im
) (9)

B. Cell Throughput
In MU JT-CoMP, the user data is transmitted from all of the

SCs in C
k

i
. Consequently, the total RAN throughput demand

dRAN

im
, as defined in Section III-A, accounts for user UEk

throughput multiple times (in all SCs in C
k

i
). As such, an esti-

mated dedicated RAN throughput demand is defined for SCm

in Ci to reflect the actual cumulative throughput as perceived
by end-users: d̂

RAN

im
=

P
k2Uim

dk/nk where |C
k

i
| = nk.

Based on estimated dedicated RAN throughput demand d̂
RAN

im

for SCm, the estimated dedicated cell throughput t̂im for each
SCm in Ci can then be defined as:

t̂im =

(
d̂
RAN

im
l̂im < 1

d̂RAN

im

l̂im
l̂im � 1

(10)

C. Unsatisfied Users
Metrics that quantify the level of dissatisfaction of users as

a result of high load are used in the literature as a means of
user-centric performance indicators [30], [46]. In this work,
we adopt the unsatisfied users metric as defined in [32] for
MU JT-CoMP scenario as follows:

ẑim = max

✓
0, ûim

✓
1�

1

l̂im

◆◆
(11)

where ûim is the estimated dedicated user count at SCm as:

ûim =
X

k2Uim

1/nk (12)

The estimated dedicated user count at each cell is driven from
the total number of users connected at each cell Uim to account
for users that are connected to multiple SCs in MU JT-CoMP.

D. Pilot Overhead
To account for the additional pilot channel overhead, we

adopt the pilot overhead estimation for multi-antenna channels
in [47], as follows:

↵ =

s

(1 + SNR)
Ċ(SNR)
C(SNR)

2nT fD

�
✓
(1 + SNR)

C̈(SNR)

Ċ(SNR)
+ 2 +

1
2SNR

Z +1

�1

d⇠

S̃H(⇠)

◆
nT fD

+O(f3/2
D

)
(13)

where:
C(SNR) = E[log2(1 + SNR|H|

2)],
Ċ(SNR) = 1

SNR

⇣
log2 e�

C(SNR)
SNR

⌘
,

C̈(SNR) = 1
SNR2

h
log2 e+ Ċ(SNR� 2C(SNR)

SNR

i
,
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SNR is the signal to noise ratio on the pilot channel,
S̃H(⇠) is the Doppler spectrum of the wireless channel,
fD is the normalised Doppler frequency and
nT is the number of transmit antennas.

We assume Extended Pedestrian-A (EPA-A) wireless chan-
nel from 3GPP [48] for Clarke-Jakes spectrum, where fD =
0.000357 and the term

R +1
�1

d⇠

S̃H(⇠)
simplifies to ⇡

2
/2. We

assume one antenna per SC, i.e. nT = |Ci| and SNR=10dB
for pilot overhead estimation.

As CS |Ci| increases, the pilot overhead increases and hence
the bandwidth for user data is reduced on each PRB. Thus,
the PRB bandwidth available for user data can be defined as
bPRB = BPRB(1� ↵).

IV. PROBLEM FORMULATION

Our optimization problem is to find the best clustering
structure to maximize SE and also balance the RAN/BH
load. We maximize user satisfaction by moving traffic from
highly loaded clusters to lightly loaded ones. As discussed, in
Section III-A, RAN/BH load is a key metric that implicitly
includes SE improvement and CoMP pilot overhead as CS
increases. We define a utility function as the main objective
function of our optimization problem. The utility function
captures the overall CoMP gain including the SE improvement,
the RAN/BH load balance and the CoMP overheads.

The utility function for SCm is defined as:

v1(SCm, Ci) =

( �(l̂im)
1�c(|Ci|) ûim l̂im < 1
�(l̂im)3

1�c(|Ci|) ûim l̂im � 1
(14)

where l̂im is the overall cell RAN/BH load at SCm as defined
in (9), ûim is the estimated dedicated user count at SCm as
defined in (12), and c(|Ci|) is the complexity function defined
as = 1

1+e
�(|Ci|�Cn

max
) .

Complexity function c(|Ci|) represents the additional over-
head for CoMP, such as precoding processing complexity, syn-
chronization issues and additional BH capacity requirement.
As the additional overheads for CoMP increase when CS in-
creases, the complexity function is designed to introduce a soft
limit to the maximum CS, Cn

max
, based on the requirements of

the network for the right trade-off between additional SE/load
gain and CoMP overheads.

Our utility function in (14) is inversely proportional to SC
load, i.e. SC utility gain is reduced as the SC load increase,
and it is further penalized for any SC load increase in the
high load range (l̂im � 1). The overall system utility function
encourages load distribution from highly loaded SCs into
lightly loaded SCs. This is enforced as the utility gain for
reducing the load in the high load range (l̂im � 1) is higher
than the utility loss for increasing load in the low load range
(l̂im < 1). In other words, the overall system utility gain is
increased when the load is shifted from highly loaded SCs to
lightly loaded SCs. Furthermore, (14) is directly proportional
to ûim, the estimated dedicated user count at SCm. The utility
reduction due to load increase for SCs with higher user count is
more than the SCs with lower user count. This gives priority to
SCs with higher user count, i.e. better utility gain is achieved

in the case of reducing the load on cells serving a higher
number of users.

The overall system utility function for a given set of SC
clusters C and associated user clusters of U is then defined as
the sum of all SC utility gain in the system such that:

v1(C,U) =
nX

i=1

v1(SCi, C) (15)

The objective of our clustering problem is to find the best
SC/user clusters, i.e. SC clusters C

f = {C
f

1 , . . . , C
f

s
} and

associated user clusters U
f = {U

f

1 , . . . ,U
f

s
} where the over-

all system utility is maximized. Therefore our optimization
problem can be formulated as:

max
(C,U)

v1(C,U) (16a)

subject to 8i 6= j, Ci \ Cj = ?, (16b)
[
s

i=1 Ci = C, (16c)
8i 6= j,Ui \ Uj = ?, (16d)
[
s

i=1 Ui = U . (16e)

As (16b) refers, we consider non-overlapping clusters, so
each SC can be part of one cluster only and all SCs in the
system should be included in a cluster as referred to in (16c).
Similarly, each user can only be in one user cluster, and all
users should be part of a user cluster as referred to in (16d)
and (16e), respectively.

The presented optimization problem increases in complexity
as the number of SCs and the number of UEs in the system
increase. The number of all possible clusters for a given
set of SCs is given by the Bell number1 [49] which
increases exponentially as the number of SCs increases.
As an example, the number of all possible cluster sets for
a network with SC count = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are
1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,
respectively. Therefore, the number of possible cluster sets
increases to more than four million for a network of 12 SCs.
Additionally, a similar complexity arises in finding the best
user-centric cluster where the number of users is expected to
be much higher than the number of SCs. To overcome this
complexity, we propose a novel coalition game theoretical
framework to find the near-optimal clustering solution with
significantly reduced complexity. We discuss the details of
our coalition game model in the following section.

V. COALITION GAME FOR MULTI-OBJECTIVE
CLUSTERING

Applications of coalitional game theory have recently be-
come popular in cooperative wireless networks for self-
organizing techniques to form CoMP clusters [50], [51]. A
merge/split coalition formation game is employed in form-
ing user clusters for uplink time division multiple access

1Bell number is defined as the number of all the possible partitions
for a given set of players. For example, for a given set of 3 players
C = {a, b, c}, total number of all possible partitions are 5 i.e. B3=5 and all
possible partitions are as follows: C1 = {{a, b, c}}, C2 = {{a}, {b}, {c}},
C3 = {{a}, {b, c}}, C4 = {{b}, {a, c}},, C5 = {{c}, {a, b}}.
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cooperative network scenario in [40]. A similar merge/split
game is utilized in forming BS clusters in the downlink
CoMP for the CRAN scenario in [41]. A transfer game is
employed alongside a collage admission game for the uplink
user association problem in the HetNet scenario in [52]. In our
previous work, we presented a merge/split game model to form
load-aware clusters where both SE and RAN loads are jointly
optimized [32]. In this paper, we formulate two coalitional
sub-games to jointly optimize the overall load (BH and RAN)
and SE. First, we extend our coalitional game model from
our previous work in [32] to combine merge/split and transfer
games into a single SC clustering sub-game to form clusters
of SCs. Secondly, we drive an additional user transfer sub-
game for user groups to transfer users between SC clusters for
load distribution. In this section, we formulate and discuss the
properties of each sub-game and analyze the overall stability
and complexity of the proposed solution.

A. Coalitional Game Model for SC Clustering Sub-game

In this section, we formulate the SC clustering sub-game
where SC clusters are formed and dynamically updated based
on spatio-temporal changes in the network and/or user profiles.
Let C = {SC1, . . . , SCn} be the set of players of our coalition
game, i.e. small cells in the network, and assume that they
are grouped into clusters C = {C1, . . . , Cs}. A coalition is
defined as the groups of players in the same cluster, i.e., Ci =
{SCi1, SCi2...SCiz} and a partition is defined as the set of
coalitions {C

a

1 , C
a

2 , ..., C
a

k
} where 8i 6= j, C

a

i
\ C

a

j
= ? and

[
k

i=1C
a

i
= C. The players in C dynamically move between

coalitions, forming different partitions. Different partitions of
the same set of players C are represented as C

a
, C

b
, ..., C

n.
The payoff for any coalition Ci in partition C is defined by
the utility function v(Ci, C) and the overall SC clustering sub-
game is defined by the pair (C, v). The utility function reflects
the overall gain for cooperation including multiple objectives
of CoMP deployment (e.g. SE and BH/RAN load balancing)
and also the various cost factors of cooperation (e.g. additional
pilot requirement, signal processing complexity).

We employ the main objective function (14) of our opti-
mization problem defined in Section IV as the main utility
function of our coalitional game model. We name (14) as our
load-aware utility in the rest of the paper. We also introduce
a SE-based utility which is adopted in a greedy clustering
algorithm presented in [37] for benchmarking purposes. This
utility does not consider cell load but aims to maximize SE
only [32]. The SE-based utility function is defined as follows:

v2(SCm, Ci) =
X

k2Ûim

y
k
(1� c(|Ci|)) (17)

where Ûim is the list of users where SCm is the best serving
cell based on average received signal power, i.e. a subset of
the associated users Uim at the SCm, and y

k
is the SE achieved

at UEk, i.e. y
k
= log2(1 + ˆSINRk).

The presented load-aware and SE-based utility functions
provide sample utilities aiming to optimize SE and load jointly,
and SE in isolation, respectively. Further adjustments can be
made in these utilities to favor one of the objectives. Other
network objectives, such as energy efficiency, can also be
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Figure 2: Sample network for example CoMP clustering

accounted for by the utility function with weights that reflect
the specific network priorities. Our novel game-theoretical
clustering model can be utilized with any utility function for
an optimal CoMP clustering solution.

To compare the utility of two different partitions C
a =

{C
a

1 , C
a

2 , ..., C
a

k
} and C

b = {C
b

1, C
b

2, ..., C
b

z
}, we define a com-

parison relation . where C
a
. C

b states that partition C
a is

preferable to C
b. Several comparison relations are discussed

in [50]. We employ the utilitarian comparison relation which
aims to maximize the overall utility of all players (SCs) regard-
less of any utility reduction for some of the players. Therefore,
partition C

a is defined as preferable to partition Cb i.e. Ca
.C

b

if
P

k

i=1 v(Ca

i
) >

P
z

i=1 v(Cb

i
) where the utility of any coalition

v(Ci) is defined as the sum of all SC utilities within that
coalition. In other words, C

a is preferable to C
b only when

the total utility of all SCs in the system is increased as a
result of this change i.e.

P
n

i=1 v(SCi, C
a) >

P
n

i=1 v(SCi, C
b),

regardless of possible utility reduction for any individual SCm

i.e. v(SCm, C
a) < v(SCm, C

b) [32], [50].
In the proposed scheme, SC coalitions are formed and dy-

namically adapted to changing network/user profile conditions
by three different clustering actions:

• Merge: Players (SCs) in any two or more coali-
tions {C1, C2, ..., Cz} prefer to merge into one coalition
F = [

z

i=1Ci i.e. [
z

i=1Ci . {C1, C2, ..., Cz}, if v(F) >P
z

i=1 v(Ci) following the utilitarian order.
• Split: Players (SCs) prefer to split from any coalition
Ci into smaller coalitions {Ci1, Ci2, ..., Ciy} where Ci =
[
y

j=1Cij i.e. {Ci1, Ci2, ..., Ciy}.Ci if
P

y

j=1 v(Cij) > v(Ci)
following utilitarian order.

• Transfer: Any player in Ci, i.e. SCix ✓ Ci prefers to
transfer from coalition Ci to Cj i.e. {Ci\SCix, Cj[SCix}.

{Ci, Cj} if (v(Ci\SCix)+v(Cj[SCix)) > (v(Ci)+v(Cj)).
Assume C

a = {C
a

1 , C
a

2 , ..., C
a

k
} is a partition of C, i.e. the

current network clustering structure. We propose to start with
a split operation, followed by a merge operation and then a
transfer operation afterwards. Split/merge/transfer operations
are repeated until there is no more re-clustering action possible
to improve overall utility. To explain the SC clustering sub-
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game with an example, we look into the possible game actions
for a sample network of nine SCs C = {1, 2, 3, 4, 5, 6, 7, 8, 9}
where there are three coalitions in the partition C i.e. C1 =
{1, 2, 3}, C2 = {4, 7}, C3 = {5, 6, 8, 9}, as shown in Figure 2.
In the sample network, we have a high density of users within
C3 and low density of users in other coalitions.

Split operation checks possible split options for 8Ca

i
in C

a,
and implements the split operation when it finds a suitable split
option based on utilitarian order i.e. (

P
y

j=1 v(Ca

ij
) > v(Ca

i
).

For example, in our sample network, there are four split
options for C1 i.e. C11 = {{1, 2}, {3}}, C12 = {{1, 3}, {2}},
C13 = {{1}, {2, 3}} and C14 = {{1}, {2}, {3}}. Split options
are checked and once any split option with additional payoff is
found, it will be implemented without checking the rest of the
split options. Other coalitions are then checked for possible
split options and this operation is repeated until no further
split is possible, as detailed in Algorithm 1.

A new partition C
b is formed after the split operation. Cb

is then subject to merge operation as detailed in Algorithm 2.
Merge operation starts with coalition C

b

i
with the maximum

absolute payoff value and looks for merge options to its
neighbor coalitions. We avoid the exhaustive search of possible
merge with every other coalition in the network which reduces
the algorithm complexity significantly. The merge operation
is implemented for (Cb

i
, C

b

j
) coalition pair where C

b

j
is the

neighbor coalition for Cb

i
with maximum additional payoff in

the case of a possible merge operation. Neighbor coalitions are
defined based on the reported average received signal power
from the users. For any user UEk within the serving area
of SCm ✓ C

b

m
, a neighbor rank value is incremented for

{C
b

m
, C

b

j
} pair if p

kj
/p

km
> Pnei

� and p
kj

> Pnei

min
, where

p
km

and p
kj

are the average signal power values received
from UEk for SCm ✓ C

b

m
and SCj ✓ C

b

j
, respectively.

A similar neighbor cluster concept is used in our previous
work in [32]. Merge operation continues for 8C

b

i
in C

b and
is repeated for the whole partition until no other merge is
possible. In our sample network, assuming the same partition
in Figure 2, the merge operation is likely to start with C3 as
it will have the maximum absolute payoff value. As absolute
payoff value is directly proportional to the number of users
served in both utility functions, merge operation prioritizes
the coalitions with the highest users. The possible merge
operation is checked with neighbor coalitions, i.e., C1 and
C2 and merge operation is implemented on the coalition pair
with maximum additional payoff. In a typical larger network,
the total number of SCs/coalitions is much higher, however,
our proposed merge algorithm only looks for the neighbor
coalitions for a possible merge which is likely to be few
coalitions around the main coalition, rather than checking all
coalitions. Assuming a merge operation on (C3, C1) pair, the
total number of coalitions in the sample network will reduce
to two and the resultant two coalitions are checked for any
further merge operations until no other merge is possible.

Once the merge stage is completed, the transfer operation
starts with the resulting new partition C

d. For 8C
d

i
2 C

d,
each SCix 2 C

d

i
are checked for a possible transfer to one

of the neighbor coalition C
d

j
i.e. T (SCix, C

d

i
, C

d

j
). Within each

coalition C
d

i
, all possible transfer operations are ranked and

transfer operation T (SCix, C
d

i
, C

d

j
) is implemented for the

one with the maximum additional payoff. Transfer operation
continues for all 8C

d

i
2 C

d and is repeated for the newly
formed partition until there is no further transfer possible
with additional payoff, as detailed in Algorithm 3. In our
sample network, assuming the same partition in Figure 2, each
coalition is checked to find the SC with maximum additional
payoff gain for a possible coalition transfer. For example, in
C1, all three SCs are checked for a possible transfer operation
to neighbor coalitions i.e. C2 and C3. In a typical larger
network, there would be a higher number of coalitions but
these are not checked for each transfer operation unless they
are neighbor coalitions. Transfer operation is implemented for
the SC with the maximum additional payoff if it exists. For
example, SC3 in C1 may prefer to transfer to C3 and form new
coalitions C1 = {1, 2} and C3 = {3, 5, 6, 8, 9}. SC transfer
operations are then repeated in each coalition until no further
SC transfer operation is possible.

Once, SC transfer operation is completed, split, merge
and transfer operations are then repeated until there are no
further SC coalition actions possible. The order of game
actions is arbitrarily selected as split/merge/transfer, as these
actions are re-iterated within the SC clustering sub-game until
there is no further game action possible. In other words, the
algorithm controls which game action will be utilized more
than others depending on the existing clustering structure and
the re-clustering changes required to adapt to spatio-temporal
changes in user/network profile.

Algorithm 1 Split Operation

For any given network clustering state C = {C1, C2, ..., Cs},
8Ci 2 C, set Ci.splitpossible=1
Split-ongoing=1
while Split-ongoing do

Split-ongoing=0
for all Ci where (Ci.split-possible=1 and |Ci| > 1) do

Update Ci.Split-options
Ci.split-possible=0
for all Ci.Split-Options do

if Any split option is possible i.e. (
P

y

j=1 v(Cij) >

v(Ci) then
Split(Ci to {Ci1, Ci2, ..., Ciy}

Split-ongoing=1
8Cij , set Cij .split-possible=1
Break for-loop and continue with next Ci

end if
end for

end for
end while

B. Coalitional Game Model for User Transfers Sub-game

Assume C
e = {C

e

1 , C
e

2 , ..., C
e

p
} be the SC partition of C

resulting from the SC clustering sub-game (C, v). The list of
users U = {UE1, . . . ,UEq} can be expressed as coalitions of
users assigned to each SC cluster, i.e., Ue = {U

e

1 , . . . ,U
e

p
},
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Algorithm 2 Merge Operation

For any given network clustering state C = {C1, C2, ..., Cs},
8Ci 2 C, set Ci.clustered=0
Merge-ongoing=1
while Merge-ongoing do

Merge-ongoing=0
Sort 8Ci 2 C based on |v(Ci)| in descending order
for all Ci where Ci.clustered=0 do

Update Ci.nei
for all Cj in Ci.nei where Cj .clustered=0 do

Update payoff gain for possible merge(Ci, Cj) i.e.
�vij = v(Ci [ Cj)� {v(Ci) + v(Cj)}

end for
Find Cm 2 Ci.nei where �vim = max

Cj2Ci.nei

(�vij ) and

�vim > 0
while Cm exist do

Merge(Ci, Cm)
Cm.clustered=1
Update Ci.nei
for all Cj in Ci.nei where Cj .clustered=0 do

Update payoff gain for possible merge(Ci, Cj) i.e.
�vij = v(Ci [ Cj)� {v(Ci) + v(Cj)}

end for
Find Cm 2 Ci.nei where �vim = max

Cj2Ci.nei

(�vij ) and

�vim > 0
end while
Ci.clustered=1
if Any merge operation with Ci then

Break for-loop and continue with while-loop
Merge-ongoing=1

end if
end for

end while

where users in U
e

i
are assigned to SC coalition C

e

i
. We formu-

late here a user transfer sub-game (U , v) which distributes SC
clusters’ loads by transferring users between user coalitions.

Transfer operation introduced in SC clustering sub-game in
Section V-A is deployed for the user transfer sub-game, i.e.,
any user UEix ✓ U

e

i
prefer to transfer from coalition U

e

i
to

U
e

j
i.e. {Ue

i
\UEix,U

e

j
[ UEix} . {U

e

i
,U

e

j
} if v({Ue

i
\UEix) +

v(Ue

j
[ UEix) > {v(Ue

i
) + v(Ue

j
)} following utilitarian order.

We utilize the load-aware utility in (14) for user transfer sub-
game and transfer users to re-assign to another cluster if the
overall utility is improved. The neighbor concept introduced
in the SC clustering sub-game is employed in the user transfer
sub-game too at the user level, so that each user only looks for
the neighbor coalitions instead of all coalitions for a possible
transfer. A list of SC clusters is kept as neighbors for UEk

based on the received average reference signal level. For any
user UEk within the serving area of SCm ✓ Cm, Cj is included
in the neighbor list if p

kj
/p

km
> Pnei

� and p
kj

> Pnei

min
where

p
km

and p
kj

are the average signal power values received at
UEk from SCm ✓ Cm and SCj ✓ Cj , respectively.

For each user coalition U
e

i
2 U

e, users are checked for
possible user transfer operation to all of its neighbor coalitions.

Algorithm 3 Transfer Operation

For any given network clustering state C = {C1, C2, ..., Cs}

Transfer-ongoing=1
while Transfer-ongoing do

Transfer-ongoing=0
for all Ci 2 C do

Update Ci.nei
for all SCix ⇢ Ci do

for all Cj in Ci.nei do
Update payoff gain for possible
Transfer(SCix, Ci, Cj) i.e. �vixj

= {v(Ci\SCix) +
v(Cj [ SCix)}� {v(Ci) + v(Cj)}

end for
end for
Find (SCix, Ci, Cj) where �vixj

= max
Cj2Ci.nei

SCix2Ci

(�vxij
) and

�vxij
> 0

if (SCix, Ci, Cj) exist then
Transfer(SCix, Ci, Cj)
Transfer-ongoing=1

end if
end for

end while

The best transfer option with maximum additional payoff is
implemented for UEix from U

e

i
to U

e

j
and user coalitions

are updated. All other user coalitions are then checked for
any possible user transfer and single user from each coalition
with maximum payoff gain is transferred in a similar way.
User transfers are limited to the ones with certain additional
payoff ��. This is introduced as an input parameter in the
algorithm for the right balance between the number of user
transfers and additional overall system payoff. User transfer
operation is repeated for all user coalitions until no further
user transfer is possible, as detailed in Algorithm 4. In our
sample network, assuming the same SC partition in Figure 2,
users in each coalition are checked for a possible transfer to
other coalitions. Users at the cluster boundary are likely to be
transferred to other coalitions if the additional payoff created
in the current coalition is more than the payoff loss in the
destination coalition. Based on load-aware utility (14), moving
users from highly loaded coalitions generates more payoff
than the payoff loss in lightly loaded destination coalitions.
Consequently, the transfers of users located at the coalition
edge are encouraged from highly loaded coalitions to lightly
loaded coalitions. For example, UE3x in Figure 2 is located at
the coalition edge in between the coalitions C3 and C1 where
C3 is highly loaded and the destination coalition C1 is lightly
loaded. If UE3x is the best candidate for user transfer with
the maximum additional payoff in C3, then this user transfer
is implemented. Other coalitions C1 and C2 are then checked
for any possible user transfers and this is repeated for each
coalition until no further user transfers are possible.

At the end of the user transfer sub-game, a new user
partition U

f = {U
f

1 , . . . ,U
f

p
} is formed where user coalition

U
f

j
represents the associated users in SC cluster C

e

j
. After
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forming the new user partition U
f , SC clustering sub-game is

re-deployed for further merge/split/transfer operations where
both SC and user partitions are updated. For any SC merge
operation, Cx = [

z

i=1Ci, the associated user coalitions are
also merged Ux = [

z

i=1Ui. In the case of a SC cluster split
operation of Ci into smaller coalitions {Ci1, Ci2, ..., Ciy}, then
associated user coalition Ui is also split to {Ui1,Ui2, ...,Uiy}

based on each user’s best serving SC within the cluster (not
necessarily the best serving SC in the network as the user may
have been transferred to non-best serving SC coalition during
user transfer sub-game). For example, assume SCix 2 Ci is
the best serving SC within Ci for UEk 2 Ui, then in the case
when Ci splits and SCix falls in the new coalition Cix, then
user coalition Ui is split similarly where UEk 2 Uix. Similarly,
for transfer operation of SCix ✓ Ci transferring from coalition
Ci to Cj , users in Ci where SCix is the best serving SC within
Ci are transferred from Ui to Uj .

Both SC clustering and user-transfer sub-games are repeated
until there is no further SC cluster or user cluster changes.
As the utility for both sub-games is the same, each SC/UE
coalition change improves the overall utility and converges to
a final SC/user partition. The final partition is the clustering
solution for the current network/user status. To adapt to the
dynamic spatio-temporal changes in the network and user
profiles, the algorithm is proposed to run regularly in set
time intervals and adapt SC/user clusters to these changes
accordingly. As discussed in Section II, re-clustering changes
are proposed in seconds/minutes as opposed to milliseconds
to avoid too frequent clustering decisions based on fast fading
changes. In the next sub-section, we discuss the stability and
complexity of our algorithm.

Algorithm 4 User Transfer Operation

For any given network clustering state C = {C1, C2, ..., Cs}

and corresponding user coalitions U = {U1,U2, ...,Us}

UserTransfer-ongoing=1
while UserTransfer-ongoing do

UserTransfer-ongoing=0
for all Ui 2 U do

for all UEix ⇢ Ui do
for all Uj in UEix.nei where i 6= j do

Update payoff gain for possible
Transfer(UEix,Ui,Uj) i.e. �vxij

=
{v(Ui\UEix) + v(Uj [ UEix)}� {v(Ui) + v(Uj)}

end for
end for
Find (UEix,Ui,Uj) where �vxij

= max
Uj2UEix.nei

UEix2Ui

(�vxij
)

and �vxij
> ��

if (UEix,Ui,Uj) exist then
Transfer(UEix,Ui,Uj)
UserTransfer-ongoing=1

end if
end for

end while

C. Algorithm Stability
In this subsection, we prove that both SC clustering and

user transfers sub-games always converge to a final partition
and analyze the overall game stability.

Assume that the current state of the SC partition is C
1 =

{C
1
1 , C

1
2 , ..., C

1
s
}. In SC clustering sub-game, partition C

1 is
subject to merge-split-transfer operations which will transfer
the network partition to C

n following a sequence of partitions.

C
1
! C

2
!, ...,! C

n (18)

Any merge/split/transfer operation between coalitions Ci

and Cj increases the overall utility of the involved
SCs/coalitions following utilitarian preference order, i.e.,
v(Merge/Split/Transfer(C1

i
, C

1
j
)) > (v(C1

i
) + U(C1

j
)). As

detailed in Section II, we assume that clustering decisions
are made in longer time intervals (seconds, minutes), fast
fading component of the signal is averaged out for cluster-
ing decision and hence the interference created from any
SC 2 (C1

i
[ C

1
j
) to the rest of the network is the same

regardless of any merge/split/transfer changes within (C1
i
[C

1
j
).

Hence, v(C1
\(C1

i
[ C

1
j
)) is unchanged when there is any

merge/split/transfer operation between coalitions C
1
i

and C
1
j

.
As v(Merge/Split/Transfer(C1

i
, C

1
j
)) > (v(C1

i
) + v(C1

j
)), and

there is no change for the rest of the network as a result of
this operation, then the overall system utility always increases
with every partition in sequence (18), i.e.

v(Cn) > v(Cn�1)...v(C2) > v(C1) (19)

where C
i
6= C

j
, i 6= j. As the overall system utility is always

increased with every partition in the sequence, i.e., the same
partition is never visited again and there is a finite number
of partitions limited by the Bell number, then the sequence in
(18) is guaranteed to converge to a final SC partition.

For a given fixed SC partition C = {C1, C2, ..., Cs}, the
associated user coalitions U

1 = {U
1
1 , . . . ,U

1
s
} are subject to

user transfers which will transform the user coalitions into U
t

and the overall system utility of SC partition C will increase
with every user partition change as per the definition of user
transfer rule following utilitarian order, i.e.,

v(U t) > v(U t�1)... > v(U2) > v(U1) (20)

where U
i
6= U

j
, i 6= j. Similar to SC partition convergence,

as there is a finite number of user partitions limited by the
Bell number, and user partitions will always evolve to a better
utility, then the user partition sequence is guaranteed to con-
verge to a final partition. When both sub-games are employed
jointly, the overall system utility is always increased with every
SC/user partition changes, and hence the same SC and user
partition will never be re-visited. There will be a finite number
of possible SC/user partitions and therefore the overall SC/user
partition will always converge to a final SC/user partition. As
such, the proposed coalition-based multi-objective approach is
bound to improve the CoMP performance and always converge
to a final partition which is an equilibrium state with respect to
defined game actions. However, until a tractable and precise
system-level analytical modeling becomes feasible, it is not
possible to demonstrate the existence of a Nash equilibrium
state that guarantees the optimum setting.
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D. Algorithm Complexity
An exhaustive search for the optimum SC clustering with

multi-objective considerations is a highly complex task where
the number of possibilities increases exponentially as the
network size increases. We propose a coalition-game approach
to allow for a practical clustering method that outperforms
existing methods yet with bounded complexity. The approach
is composed of two sub-games: the first relates to clustering
of the SCs while the second relates to clustering of users.

1) SC Clustering Sub-game: The SC clustering sub-game
consists of three different steps: Split, Merge, and Transfer.
The Split algorithm is first conducted over all the clusters in
the network. For each cluster, all split options are considered.
As seen in Algorithm 1, the Split operation requires the
evaluation of a constant multiple of |C| = n possibilities,
where C is the set of SCs in the network and n is the number
of SCs. This upper bound is only reached in case no split
option is found before the last evaluation. Thus, the asymptotic
complexity of the split operation is linear in the order of O(n).

Once the split step is completed, the merge operation is
initiated, as described in Algorithm 2. All clusters resulting
from the split step are evaluated for a possible merge, hence
an upper bound of n/Cmax clusters are visited, where Cmax is
the soft max user-defined value to limit the size of clusters.
For each cluster, the possible merge evaluations are limited
to its neighboring clusters, as defined in the neighboring list.
As the number of allowed neighbors is user-controlled, the
asymptotic complexity of the Merge step also leads to O(n).
If it were not for the neighbor list that limits the search for
merge options, the merge algorithm would have had quadratic
complexity (i.e., O(n2)) instead of linear.

The last step is the transfer operation, as described in Algo-
rithm 3. The transfer operation checks each cell in each cluster
for a possible transfer to one of the neighbor coalitions. Thus,
there is a total of n cells that are evaluated for options within
the neighbor coalition list, leading to an asymptotic algorithm
complexity in the order of O(n) as opposed to quadratic
O(n2) (if no neighbor restriction were implemented). The
three operations are repeated until convergence, which is
reached within a finite number of iterations, as shown in Sec-
tion V-C (see Figure 8). However, the algorithmic complexity
of the Split operation is further reduced with every iteration,
as detailed in Section V-C. Indeed, any split operation for Ci

does not depend on the structures of other coalitions. Thus,
any coalition Ci that is found to not have a split possibility in
one iteration will not be checked again in following iterations
unless the Merge or Transfer operations resulted in changes
in that same coalition Ci.

In summary, the algorithm complexity of the first sub-game
is reduced from quadratic to linear owing to the neighbor
SC/coalition concept. The user-defined neighbor thresholds
can be adjusted for a more relaxed/tight neighbor definition
and increased/reduced merge/transfer options for the right
balance between additional CoMP gain and complexity.

2) Users Transfer Sub-game: The user transfer sub-game
looks at each user in each user cluster and evaluates its transfer
options within the neighbor list. Thus, the algorithm has a
linear complexity which is a function of the number of users

O(|U|), where U is the set of users and |U| is the number of
users. Similar to the first sub-game, the the neighbor concept
in the user transfer coalition game reduces the algorithm
complexity from quadratic O(|U|2) to linear O(|U|). Once
the user transfer sub-game is completed, the SC clustering
sub-game is revisited, followed by the user transfer sub-game
until convergence. Thus the overall complexity of the proposed
scheme can be expressed as O(n + |U|). Accordingly, the
proposed scheme is scalable and can be implemented in large
networks, thus realizing the true potential of CoMP.

VI. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the performance of the novel clustering model (LBH-GA)
introduced in this work that jointly optimizes RAN and BH
loads while maximizing SE. The novel model is benchmarked
against two solutions: 1) L-GA, an improved version of the
RAN load-aware solution presented in [32] and 2) SE-GR,
a greedy model from [37]. The first model L-GA represents
an improved version of the RAN-only load-aware clustering
solution previously presented in [32]. In this case, the novel
two-stage coalitional game model is followed but the load-
aware utility function (14) is based on RAN-only considera-
tions (not BH). For a fair comparison with the greedy solution
(SE-GR), we adapt our SE-based utility function (17) in the
greedy model and lift the hard CS limit where an implicit
soft CS limit is employed via the cost function in the utility
(17). Additionally, the neighbor concept introduced for our
RAN/BH load-aware model (LBH-GA) is also employed in
the greedy algorithm. The SE-based greedy algorithm (SE-GR)
used in this work for benchmarking is presented in detail in
our previous work [32]. In the rest of the paper, the following
abbreviations are used for the presented clustering models:

• SE-GR: Greedy model employing SE based utility (17).
• L-GA: RAN load-aware game-theoretic model with load

based utility (14) considering RAN load only.
• LBH-GA: RAN and BH load-aware game-theoretic

model with load-based utility (14) considering combined
RAN and BH load.

For each of the three listed algorithms, we consider two
scenarios: Homogeneous network (HN) and Random network
(RN). The HN scenario considers hotspots and investigates the
formation of clusters by each algorithm in these conditions.
We then run extensive simulations for the RN scenario with
and without hotspots. As described in Section II, we assume a
HetNet composed of one MBS overlaid with SCs, where each
SC is a single cell with an omni-directional antenna.

Our simulation platform is built in MatLab and each sce-
nario for each clustering model is repeated for 100 snapshots.
The simulations are run on a machine with Windows 10
Enterprise 64-bit operating system, Inter(R) Core(TM) i5-
8350U CPU @ 1.70GHz 1.90GHz processor and 8.00GB
RAM. For a RN scenario without hotspots, the average time
for the clustering solution to converge to the final clusters
(starting from a no-clustering state) is 90.54 and 11.13 seconds
for LBH-GA and SE-GR models, respectively. The additional
time required for LBH-GA to converge is due to the additional
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SC merge/split/transfer actions and user transfer actions which
provide the additional capacity gain compared to the greedy
model, as discussed in the rest of this section. The time
required to achieve the final cluster state is expected to be
lower when the model is applied to an existing clustering
solution which would require minimal changes in comparison
to a no-clustering state starting point. Additionally, processing
capacity is expected to be much higher in a real network
scenario which will reduce the processing time. As discussed
in Section II-D, we aim to respond to user profile/network
changes rather than fast fading changes, and, hence, the
time scale between two consecutive re-clustering operations
is expected to be in the order of several minutes to reflect
pertinent dynamics in user/network profiles. As presented
in Section V-D, the complexity of our model is reduced
significantly by avoiding exhaustive search as a result of the
introduction of the neighbor concept.

Firstly, we run simulations in HN deployment with a hotspot
scenario to illustrate the clusters formed by each algorithm. In
HN scenario, 25 SCs are deployed in 500mx500m simulation
area with 100m inter-site distance. 300 UEs are distributed
in the whole area, following a uniform random distribution.
In addition, 200 UEs are also uniformly distributed with a
100mx100m area to simulate a hotspot scenario. All SCs
are assumed to have fiber BH connection to the MBS ex-
cept one with a VDSL2 BH link. Each UE is assumed to
have a fixed GBR requirement of 2048kbps. The pathloss
model is adapted from ITU-R microcell urban non-line-of-
site (NLOS) model [53] as follows: PL = 36.7 log10(d) +
22.7 + 26 log10(fc), where d is the distance in meters and fc

is the carrier frequency in GHz. The rest of the simulation
parameters are summarized in Table II.

Figure 3a depicts the clusters formed by the SE-GR al-
gorithm in HN deployment scenario with hotpot. As SE-GR
clustering starts from a random SC, it fails to achieve a
cluster around the loaded cells. As shown in Figure 3b, L-
GA algorithm forms the cluster around the hotspot area as
the algorithm utility takes cell load into account, and gives
priority to loaded SCs for clustering. Furthermore, L-GA CS
is increased around the hotpot, giving better SE and hence
reduced load. Figure 3c shows clusters formed by the LBH-
GA model where a cluster is formed around the hotspot, but
the only one VDSL2 site is excluded from this cluster as BH
capacity limitation introduces a higher BH load than RAN
load, thus reducing the utility gain for forming a cluster.

We performed extensive simulations in a more realistic RN
scenario with and without hotspots. In our simulation setup, we
deployed SCs randomly following the Poisson point process
(PPP) distribution with density parameter (�C) within a circle
of 0.4m radius. UEs are also randomly distributed following
PPP distribution. In RN with hotspot scenario, we simulate
a hotspot area in an inner circle with 0.1m radius. A high
density �Uhigh

of UEs are deployed in the inner circle and
a lower density of UEs �Ulow

are deployed in the outer ring
where the radius is set to 0.5m. UE deployment area is set to
a bigger radius than the SC deployment area to make sure that
UEs are distributed to the whole coverage area of the SCs. The
GBR for UEs within the hotspot is set to 2048kbps and for
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(a) SE-GR Clusters in HN with hotspot.
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(b) L-GA Clusters in HN with hotspot.
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(c) LBH-GA Clusters in HN with hotspots.

Figure 3: Snapshot of SE-GR, L-GA and LBH-GA clusters in
HN with hotspot scenario.
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Table II: Simulation Parameters

Parameter Name Parameter Value

Simulation Enviroment Urban Microcell [53]
Frequency Carrier 5 GHz
Channel Bandwidth 20 MHz
PRB Bandwidth (BPRB) 180kHz
Number of PRBs/SC (Rtot 100
Shadow fading std 4 dB [53]
UE Antenna Gain 0 dBi
UE Thermal Noise Density -174 dBm/Hz
TP Total Transmit Power (PTx) 41dBm [53]
UE Noise Figure 7dB
TP Noise Figure (inc cable loss) 5dB
SC antenna gain (boresight) 17dBi
User-centric cluster: Min RX Power (Pmin) -110dBm
User-centric cluster: Max RX power offset (P�) 20dB
Min RX power for Neighbor Def. (Pnei

min
) -110dBm

Max RX power offset for Neighbor Def. (Pnei

� ) -20dB
Min payoff gain for user transfer operation (��) 10
RN Simulation Area Radius 0.5km
RN SC deployment Area Radius 0.4km
RN Hotspot Area Radius 0.1km
SC Density for RN (�C) 80SC/km2

UE Density within hotspot in RN Scenario (�Uhigh
) 6000UE/km2

UE Density outside hotspot in RN Scenario (�Ulow
) 200UE/km2

UE Density in RN Scenario without Hotspot (�Ulow
) 200UE/km2

GBR for UEs in the hotspot in RN Scenario 2048 kbps
GBR for UEs outside the hotspot in RN Scenario 256 kbps
GBR for UEs in RN Scenario without hotspot 256 kbps
GBR for UEs in HN Scenario 2048 kbps

UEs outside of the hotspot ring to 256kbps. For RN without
hotspot scenario, UE density is set to �Ulow

for both inner and
outer ring areas and GBR is set to 256kbps for all UEs.

We first analyze the results in RN without hotspot scenario.
We ran our simulation for 100 snapshots where 33% of the
SCs are assumed to have VDSL2 BH and the remaining
have fiber BH. Table III shows the achieved SE and CS,
respectively, for the three algorithms. We observe that L-GA
performs similar to SE-GR when there is no hotspot with a
marginal difference in achieved SE and CS. LBH-GA achieves
a slightly lower CS value when compared to L-GA as it
accounts for the BH limitations on some sites. As observed
in HN clustering scenario, LBH-GA tends to exclude sites
with VDSL2 connection. For SCs with VDSL2, RAN load is
the limiting factor in low CS, and as the CS increases, BH
load becomes the limiting factor in our simulation setup with
20MHz channel bandwidth. Unlike RAN load, any CS increase
for the VDSL2 site will always increase the BH load. Indeed,
when additional users are scheduled within VDSL2 site, the
user-data for the additional users will be added to the BH load
regardless of the SE improvement. Once BH load is higher
than RAN load, any CS increase will increase the overall
load for VDSL2 sites which introduces extra cost in the utility
function i.e. reduction in payoff for the VDSL2 site. When BH
load is the limiting factor, VDSL2 site only enters into a CoMP
set when the additional payoff for other SCs with fiber is
greater than the payoff loss for the VDSL2 site. In other words,
when BH load is taken into account i.e. for LBH-GA model, it
is harder to get BH-limited SCs within CoMP clusters. Overall,
without hotpots, L-GA achieves similar results to SE-GR and
LBH-GA achieves marginally less CS due to not promoting
CoMP on sites with VDSL2.

Table III: Average SE and CS in RN without hotspot scenario
when VDSL2 rate=33%.

SE-GR L-GA LBH-GA
SE (bits/Hz/sec) 2.6783 2.6339 2.5036
Cluster Size 2.9950 3.0743 2.8426

We run further simulations in RN with hotspot scenario for
different rates of fiber connection available in the network.
Seven different fiber/VDSL2 availability rates are considered
and 100 snapshots of simulations are run for each scenario.
Figure 4 shows the average CS for each VDSL2 rate in a
hotspot scenario where L-GA CS is consistently higher than
SE-GR. This is in-line with HN simulations and the clustering
snapshot shown in Figure 3 where L-GA CS is increased
when there is high load to improve SE and reduce the load.
LBH-GA starts with the same CS as L-GA with 0% VDSL2
availability and average CS is reduced as the VDSL2 rate
increases. LBH-GA tends to form clusters without the SCs
with VDSL2 for the same reasons we discussed in RN without
hotspot scenario. As shown in Figure 5, a similar trend is
observed in average SE, following average achieved CS as
expected. Intuitively, increased CS helps in eliminating further
inter-cell interference and hence improve SE. Figure 6 depicts
the unsatisfied UE count for each of the algorithms at different
VDSL2 rate scenarios. L-GA model reduces the unsatisfied
users by 80.6% when compared to SE-GR model when there is
no SC with VDSL2 connection. As the VDSL2 rate increases,
unsatisfied users increase in all models as expected, however
LBH-GA model results in the lowest unsatisfied users with
41.7% and 18.4% less unsatisfied users when compared to
SE-GR and L-GA, respectively, in the case when all SCs are
connected with VDSL2. LBH-GA model achieves a better
load-balanced network with less unsatisfied users while CS is
kept low and hence low computational complexity for CoMP
deployment. Similar to unsatisfied UEs, system throughput is
also significantly improved in LBH-GA model when compared
to SE-GR model as depicted in Figure 7. An average of 49.9%
increase in overall system throughput is observed with LBH-
GA when compared to SE-GR across all BH scenarios. As
the VDSL2 rate increase, LBH-GA throughput gets better
when compared to L-GA as LBH-GA model clustering takes
BH availability into account where SCs with VDSL2 is not
preferred in clusters of highly loaded cells. LBH-GA achieves
21.9% higher overall throughput when compared to L-GA in
the case when all SCs have VDSL2 BH.

We further look at an example scenario of 50% VDSL2
rate in RN with hotspot and analyze the details of each sub-
game actions (i.e. SC merge/split/transfer actions and UE
transfers) and the changes in SE, unsatisfied UEs and game
payoff during the iterations. Figure 8 shows the changes in
the average number of unsatisfied UEs and the total number
of each game action at each iteration for the 100 snapshots run
in this scenario. At the start of the game, the average number
of unsatisfied UEs are sharply reduced as the initial clusters are
formed and SE is improved with merge operations. Later iter-
ations of merge operations only give marginal improvements
and other game actions start increasing. SC transfer actions are
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Figure 4: Cluster size comparison for all BH cases.
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Figure 5: SE comparison for all BH cases.
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Figure 6: Unsatisfied UEs comparison for all BH cases.

0% 16% 33% 50% 66% 83% 100%

VDSL rate%

1

1.5

2

2.5

3

3.5

4

4.5

T
h

ro
u

g
h

p
u

t 
(k

b
p

s)

10
5

Demand
SE-GR
L-GA
LBH-GA

Figure 7: System throughput comparison for all BH cases.

significantly high at the next stage where unsatisfied users are

further reduced significantly. It can be noted that the number
of split operations is relatively low when compared to other
SC game actions. UE transfer actions are also relatively high
numbers and can be controlled with �� parameter to allow
only the most significant UE transfer actions, as discussed in
Section V-D. Figure 9 shows the average changes in SE and
the number of unsatisfied UEs at each iteration. SE is increased
sharply with the initial merge actions but reduced marginally
in the later actions. This is due to the high associated priority
on load balancing actions which may not be necessarily the
best action for increasing SE. The number of unsatisfied UEs
continues to reduce at each game action. Overall system payoff
is depicted in Figure 10 where a similar pattern to the number
of unsatisfied UEs is observed where a sharp improvement
is observed in the initial merge actions and it continues to
improve in smaller intervals in following game actions.
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Figure 8: LBH-GA Game Actions vs. Unsatisfied UEs for 50%
VDSL2 rate.
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rate.

The resulting overall load distribution of all SCs in all three
algorithms is shown in Figure 11a for the 50% VDSL2 rate
case. LBH-GA model clearly achieves better load distribution
owing to the traffic transfer to lightly loaded SCs. Figure 11b
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shows the BH load distribution for all SCs, and it is clear
that BH load increases sharply when CoMP is enabled as user
data needs to be available in multiple SCs in our JT-CoMP
scenario. A significantly better BH load distribution with a
low number of SCs with high load is achieved with LBH-GA
resulting in better system throughput and higher capacity.
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(a) SC Overall load distribution for 50% VDSL2 rate.
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Figure 11: SC load distribution for 50% VDSL2 rate.

VII. CONCLUSION

We have presented a novel low-complexity, multi-objective
clustering model in the MU JT-CoMP scenario where SE,
RAN load and BH load are optimized collectively. An SC
merge/split/transfer coalitional sub-game and a UE transfer

coalitional sub-game are designed. Game properties, complex-
ity and stability analysis are presented. It is shown that our
novel LBH-GA algorithm is a low complexity model that is
scalable and always converges to a final optimum cluster. Sim-
ulation results are compared to a RAN load-aware model (L-
GA) and an SE based greedy (SE-GR) algorithm to show the
impact of BH awareness. We show that LBH-GA successfully
forms clusters dynamically around the hotspots and excludes
BH limited SCs when possible to improve the SE and reduce
overall load. In a hotspot scenario where throughput demand is
higher than the overall capacity, the average system throughput
is increased by 49.9% with LBH-GA when compared to the
SE-GR model. The average throughput is also increased by
21.9% when compared to the L-GA model in the case of all
SCs being BH-limited (VDSL2). LBH-GA model is also effec-
tive in scenarios without hotpots, dynamically adjusting the CS
based on BH availability and load conditions. Our presented
model provides a low complexity, stable framework where it
can be enhanced further with improved utility functions to
include additional network objectives and provide the right
balance between CoMP overhead costs and various objectives
based on network requirements.
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