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Abstract  9 

Reconciling observations between ancient volcanogenic massive sulfide (VMS) and actively forming 10 

seafloor massive sulfide (SMS) deposits is critical for understanding the sources and processes that govern 11 

metal enrichment in marine hydrothermal systems. For a mafic VMS deposit, the Mala VMS mound located 12 

within the Troodos ophiolite, Cyprus, is unusual as pyrite is enriched in magmatic volatile elements (Au, 13 

Cu, Te and Se), sulfide δ34S values average -3.8‰ ± 1.9‰ (1σ, n=28), and gypsum averages +14.5‰ ± 2.0‰ 14 

(1σ, n=26) - in stark contrast to the bulk of Troodos VMS pyrite, which averages +4.6‰ ± 2.8‰. To date, 15 

this combination of features has only been observed in actively forming SMS deposits in immature, 16 

subduction-influenced environments and rarely in ancient VMS deposits hosted in felsic environments. 17 

Traditionally, the leaching of igneous rocks is considered as the primary source of metals in mafic VMS 18 

deposits. However, at Mala, and perhaps other active SMS deposits in mafic environments, we suggest 19 

that Au, Cu, Te and Se were initially sourced from the direct contribution of a magmatic volatile phase 20 

where SO2 underwent disproportionation, a signature that is later overprinted by reacted seawater during 21 

deposit maturation and is therefore not usually preserved in ancient analogues. Thus, the exceptional 22 

preservation of Mala provides evidence of a magmatic volatile contribution in the early stages of mafic 23 

VMS deposit formation. 24 
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1. Introduction  25 

Active SMS deposits form in a wide range of tectonic settings from mid-ocean ridges (Humphris et al., 26 

1995) to island arcs (de Ronde et al., 2011) and back-arc basins (Herzig et al., 1998a). Differences in metal 27 

enrichment among tectonic environments are recognised and are thought to relate to variations in both 28 

source rock metal content and magmatic volatile flux into the hydrothermal system; however, the relative 29 

contribution of metal from these two sources remains poorly constrained and actively debated 30 

(Hedenquist and Lowenstern, 1994; Large, 1992; Moss et al., 2001; Ohmoto, 1996; Patten et al., 2020; 31 

Stanton, 1984; Yang and Scott, 1996). Linking processes between ancient and active seafloor hydrothermal 32 

systems is key to understanding factors that control metal enrichment in ancient VMS deposits, how this 33 

varies with VMS deposit maturation, and how this signature is preserved in ancient on-land analogues - a 34 

tool that can be utilised in mineral exploration to assess the potential metal endowment of VMS deposits.  35 

A magmatic volatile phase in a hydrothermal system can potentially be a metal source, especially for 36 

metals such as Au, Cu, Te and Se (de Ronde et al., 2005; Keith et al., 2016a,2018a; Wohlgemuth-37 

Ueberwasser et al., 2015; Yang and Scott, 1996; 2002). Gold adds value to a deposit and can be critical in 38 

making it economic, while Te and Se are increasingly of interest because of their use in solar electricity 39 

generation, and for the fact they may represent potential environmental contaminants (He et al., 2018; 40 

Keith et al., 2018b; Moss et al., 2013). Enrichment in these metals relates to the volatile-rich nature of 41 

melts generated in subduction-influenced environments (i.e. arcs and back-arc basins) and their ability to 42 

exsolve a volatile phase rich in Au, Cu, Te and Se providing an additional source of these metals to the 43 

overlying hydrothermal system (e.g., Hedenquist and Lowenstern, 1994; Williams-Jones and Heinrich, 44 

2005; Yang and Scott, 1996). An enrichment in Au, Cu, Te and Se in active subduction-influenced 45 

hydrothermal fields is observed (Fuchs et al., 2019; Keith et al., 2016a; Wohlgemuth-Ueberwasser et al., 46 

2015) but evidence in ancient VMS deposits is much more limited, especially away from volatile-rich 47 

subduction related environments, and in mafic VMS deposits in particular (Keith et al., 2016b; Martin et 48 

al., 2019, 2020). The ability to identify if this process operated in ancient hydrothermal ore-forming 49 

systems, especially mafic VMS systems that are typically considered as volatile-poor (Hannington et al., 50 
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2005), would give greater confidence in predicting metal endowment and enrichment processes in active 51 

and ancient VMS deposits.  52 

Previous studies focused on ancient VMS deposits have suggested that the addition of a magmatic volatile 53 

phase may provide an important source of metals (e.g., Huston et al., 2011; Large, 1992); moreover, 54 

studies indicate that magmatic volatile influx decreases or changes over time in response to developing 55 

fluid flow regimes below the seafloor (Large, 1992). This variation is subsequently preserved as systematic 56 

variations in trace metal geochemistry that vary with VMS deposit maturity, most notably for volatile trace 57 

metals such as Te and Se that are enriched in immature deposits (Huston et al., 1995; Large, 1992; Martin 58 

et al., 2020; Rouxel et al., 2004). In hydrothermal systems that are long-lived, trace metals are remobilized 59 

and redistributed and the initial magmatic volatile signature is overprinted by later fluid flow during zone 60 

refining within the VMS mound (Goldfard et al., 1983). We hypothesise that the magmatic volatile 61 

signature in ancient mafic VMS deposits is not usually preserved because magmatic volatile influx 62 

decreases and is progressively overprinted and diluted by a seawater derived fluid signature during deposit 63 

maturation (Martin et al., 2020). 64 

In addition to an enrichment in volatile elements, low S-isotope ratios in sulfide (<-2‰) and sulfate 65 

minerals (<+18‰) are generated during the disproportionation of SO2 degassed from volatile-rich magmas 66 

in immature, subduction-influenced seafloor systems (e.g., McDermott et al., 2015). However, in active 67 

mafic SMS deposits that generally occur along mid-ocean ridges, the δ34S composition of sulfide minerals 68 

is less-variable than subduction-influenced environments with the δ34S composition of sulfide minerals 69 

falling between 0-10‰ (Hannington et al., 2005) indicating that sulfur was primarily sourced via 70 

thermochemical sulfate reduction (TSR) of seawater and through the leaching of sulfur from igneous 71 

lithologies (MORB; 0.1 ± 0.5‰ - Alt et al., 1993). Previous studies have shown that sulfur isotope 72 

systematics of Troodos VMS deposits are largely consistent with these processes with an average δ34S 73 

composition in VMS deposit sulfide minerals of +4.6‰ ± 2.8‰ (1σ, n=220) and a range of -5.5 to +13.2‰ 74 

(Hannington et al., 1998; Keith et al., 2016b; Martin et al., 2020; Pedersen et al., 2017). Sulfur isotope 75 

values that are lighter than the magmatic mean (0-1‰; Alt, 1994) occur sporadically in several of the 25 76 
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Troodos VMS deposits that have been sampled in previous studies (Keith et al., 2016b, Martin et al., 2020). 77 

These light sulfur isotope values have previously been interpreted as indicating an increased magmatic 78 

volatile influx in these deposits (Keith et al., 2016b; Martin et al., 2020).  79 

Here, we demonstrate that a volatile-rich signature has been identified in the Mala VMS deposit, which 80 

we interpret as the rare and exceptionally preserved expression of an immature volatile-rich mafic hosted 81 

VMS deposit. Sulfur isotope analysis of sulfate and sulfide minerals that retain primary seafloor textures, 82 

that are very rarely preserved in ancient VMS deposits confirm that Mala experienced an elevated 83 

magmatic volatile influx, resulting in low S-isotope ratios in sulfide and sulfate minerals with respect to the 84 

Troodos magmatic mean (Alt, 1994) and Cretaceous seawater (Kampschulte and Strauss, 2004), 85 

respectively. This signature is notably different from all other Troodos VMS deposits and other active and 86 

ancient mafic VMS deposit analogues, suggesting that metals and sulfur are sourced from the direct 87 

contribution of a magmatic volatile phase. Moreover, our data indicate an evolution in sulfide 88 

geochemistry from volatile-rich with low S-isotope ratios, toward a volatile poor composition with a heavy 89 

S-isotope signature, supporting previous studies focused on bi-modal VMS deposits that indicate a 90 

transition in metal and sulfur source(s) with deposit maturation (Huston et al., 1995: Large, 1992; Martin 91 

et al., 2020). 92 

2. Geological setting  93 

The Troodos ophiolite of Cyprus is Late Cretaceous in age (~92 Ma; Mukasa and Ludden, 1987) and formed 94 

in a supra-subduction zone environment, most likely a nascent fore-arc type setting (Miyashiro, 1973; 95 

Pearce and Robinson, 2010). Domical uplift in the Neogene focused under Mt. Olympus has led to the 96 

exposure of a complete ophiolite stratigraphy consisting of mantle peridotites, cumulate ultramafics, 97 

gabbro, plagiogranites, the sheeted dyke complex (SDC) and the extrusive sequence (Figure 1; Gass, 1968; 98 

Simonian and Gass, 1978; Varga and Moores, 1985). Massive sulfide deposits that range in size from 0.05 99 

to 15 Mt, with a typical grade of ~1.5 wt.% Cu (Hannington et al., 1998) occur at the periphery of the 100 

ophiolite within the extrusive sequence. The distribution of these deposits is controlled by seafloor fault 101 

networks that delineate three major graben structures that represent fossil spreading axes (Bettison-Varga 102 
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et al., 1992; Varga and Moores, 1985). From W-E these are; Solea, Mitsero and Larnaca grabens (Figure 1; 103 

Varga and Moores 1985). 104 

2.1 The Mala VMS deposit  105 

The Mala VMS deposit is located in SW Troodos within the Solea graben domain approximately 4.5 km E 106 

of Pano Panagia in the Pafos Forest region (047042-3864323, WGS 1984 - Figure 1). Mala is located deep 107 

in the lava stratigraphy at the basal-lower pillow lava (BG-LPL) transition (Figure 2A). The exposed deposit 108 

comprises a massive pyrite mound measuring approximately 8 x 12 m (width x height) (Figure 2A) that 109 

extends for ~100 m along strike with historic extraction of 200,000 tonnes of pyrite ore grading 0.45% Cu 110 

and 0.3% Zn (Brazilian Metals Group, 2013). The mound that is sampled in this study has a crudely banded 111 

appearance (Figure 2A and A1) containing abundant pyrite and gypsum. The mound is capped by a thin 112 

veneer (<2 m) of altered lava that indicates the burial of the VMS mound whilst it was still active (Figure 113 

2A1 and B). Lava flows enclosing the mound are less-altered than the lavas directly above the mound and 114 

locally contain mordenite and natrolite that are common throughout the Troodos lava stratigraphy (Gass 115 

and Smewing, 1973).  Within the VMS mound are crude laminations of fine-grained gypsum (10-60 cm 116 

thick) that occur parallel to the mound margins (Figure 2C-F). Gypsum is intergrown with disseminated 117 

euhedral pyrite (Figure 2C). Gypsum veins also occur in surrounding wall-rock associated with 118 

disseminated pyrite (Figure 2F).  Pyrite occurs in three distinct textures within the Mala mound; massive 119 

(Figure 2G and I), dendritic (Figure 2G and H) and as disseminated grains (Figure 2I). Disseminated pyrite 120 

forms within gypsum and surrounding wall-rock (Figure 2C and F) whilst massive and dendritic varieties 121 

occur in discrete pods (Figure 2A1 and E). The Mala VMS deposit remains of economic interest and has 122 

recently been investigated by the Brazilian Metals Group (BMG) as a potential Cu-Zn prospect with drilling 123 

intersections of massive pyrite, sphalerite and chalcopyrite grading 1.16% Cu and 1.14% Zn over a thickness 124 

of 18 m (BMG, 2013). 125 

3. Methods 126 

3.1 Sulfur isotope analysis  127 
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Sulfur isotope (δ34S) analysis was performed at the Natural Environmental Research Council (NERC) stable 128 

isotope laboratory at the Scottish Universities Environmental Research Centre (SUERC). Analyses were 129 

performed on mineral separates that were optically checked for purity. Each analysis used approximately 130 

4-5 mg of sample for pyrite and 10-12 mg for gypsum that was subsequently converted to SO2 by 131 

combustion with 200 mg of cuprous oxide. The released SO2 gas was then purified in a vacuum line utilising 132 

an acetone-CO2 slush trap to remove water and a standard n-pentane trap to separate SO2 from CO2 133 

following the method of Robinson and Kusakabe (1975). All SO2 samples were analysed using a VGA SIRA 134 

II gas source mass spectrometer at SUERC. Values are calculated relative to the Vienna-Canyon Diablo 135 

Troilite (V-CDT) reference material and are reported in standard notation (‰). Reproducibility was 136 

monitored through the analysis of standards NBS-123 (+17.1‰), IAEA-S-3 (-31.5‰), SUERC’s internal 137 

standard CP-1 (-4.6‰), NBS 127 (+20.3‰) and SUERC’s internal standard BIS (+27.2‰). Reproducibility is 138 

reported as better than 0.7‰ (1σ) for all analyses (see Appendix 1). 139 

3.2 Trace element geochemistry  140 

Laser Ablation ICP-MS (LA-ICP-MS) was used to determine the in situ trace element composition of pyrite. 141 

Measurements were carried out at Cardiff University utilising a New Wave Research UP213 UV laser 142 

coupled to an iCAP RQ ICP-MS. Spot analyses were performed with a nominal spot size of 55 μm in time-143 

resolved analysis mode at a frequency of 10 Hz. Acquisition lasted 45 seconds and a gas blank was 144 

measured for 20 seconds prior to ablation. Subtraction of gas blanks and internal standard corrections 145 

were performed using Thermo Plasmalab software. The repeated analysis of UQAC FeS-1 during the laser 146 

ablation study yielded <10% relative standard deviation (RSD) for Co, As, Se, Ag, Pb and Bi and between 147 

10-18% RSD for Cu, Zn, Sb, Te and Au. RSD for Cd was 26% (Appendix 2). For all analyses, 33S was used as 148 

an internal standard. A stoichiometric value of 53.5 wt.% S was used for all analyses and is within error of 149 

measured values for pyrite from Troodos VMS deposits (Martin et al., 2019).  150 

4. Results  151 

4.1 Sample characterisation   152 



7 
 

Both sulfide and sulfate minerals were sampled (Figure 2A-F; see Appendix 3). Towards the top of the VMS 153 

mound is a massive fine-grained (2-3 mm) gypsum horizon that is approximately 60-80 cm thick, and 154 

contains coarse (1-2 cm) euhedral pyrite grains (Figure 2C).  At the base of the mound, gypsum forms small 155 

1-5 cm coalescing veins that form a mesh texture (Figure 2A1 and D). Gypsum also occurs infilling or 156 

cementing pyrite breccia. Pyrite primarily occurs in two morphologies in the sulfide mound; as massive 157 

pods that contained dendritic and massive euhedral textured pyrite (Figure 2E, G, H and I) and as 158 

disseminated grains within gypsum and surrounding mineralized wall-rock (Figure 2C, F and J). Samples in 159 

this study were collected throughout the entire exposed sulfide mound, and are representative of mound-160 

scale hydrothermal processes (see Appendix 3). 161 

4.2 Sulfur isotopes 162 

We report the δ34S composition of pyrite (n=28) and gypsum (n=26) from the Mala VMS deposit (Figure 163 

3). The δ34S composition of pyrite ranges from -7.6‰ to +0.1‰ with a median composition of -4.3 ± 1.9‰ 164 

(1σ, n=28; Figure 3). The largest depletion in 34S of -7.6‰ occurs in disseminated pyrite hosted in the wall-165 

rock surrounding the sulfide mound (Figure 2F and J). There is no systematic variation in the sulfur isotopic 166 

composition of pyrite across the mound (from E-W) or with stratigraphic depth from top to bottom 167 

(Appendix 3). 168 

The sulfur isotopic composition of gypsum ranges from +10.2‰ to +18.1‰ with a median composition of 169 

+14.3 ± 2.1‰ (1σ, n=26; Figure 3). In some samples where both pyrite and gypsum co-exist (in hand 170 

specimen) fractionation between pyrite and gypsum was calculated (Δ34Ssulfate–sulfide) and ranges from 171 

15.9‰ to 21.0‰ with a median value of 17.8‰ (n=6 pairs) (Appendix 1). 172 

4.3 Trace elements in pyrite  173 

Trace element geochemistry of pyrite from the Mala VMS mound (n=61) is highly variable. Pyrite contains 174 

high concentrations of magmatic volatile elements with average concentrations of Au, Cu, Te and Se of 175 

1.2, 873, 40 and 878 ppm (n=61) (Figure 4). Selenium in pyrite ranges from 9,565 ppm to below the 176 

detection limit (~12 ppm) (Figure 4). Bismuth concentrations are low (<10 ppm) and do not exhibit any 177 
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correlation with Te (Figure 4). Notable correlation exists between Te and Se (R2=0.67), Co and Se (R2=0.85) 178 

and Ag and Au (R2=0.79) (Figure 4). 179 

5. Discussion  180 

5.1 Preservation of sulfate-sulfide relationships  181 

Primary mound-related sulfate minerals such as anhydrite are rarely preserved in ancient VMS deposits 182 

(Çagatay and Eastoe, 1995; Huston et al., 2011; Torró et al., 2018). This is especially true for Troodos VMS 183 

deposits where such large quantities of sulfate minerals, as we observe at Mala, have not been reported 184 

with the exception of minor gypsum at the Agrokipia B VMS deposit (Constantinou and Govett, 1973). This 185 

is due to the retrograde solubility of anhydrite in aqueous fluids <150˚C that leads to its dissolution upon 186 

cessation of hydrothermal activity within the sulfide mound (Blounot and Dickson, 1969; Mills et al., 1998; 187 

Ohmoto, 1996).  188 

More commonly in ancient VMS deposits, especially felsic hosted deposits (Ohmoto, 1996), barite is 189 

preserved due to its extremely low solubility in seawater relative to anhydrite (Averyt and Paytan, 2003; 190 

Jamieson et al., 2016). At the Mt. Lyell VMS deposit (Australia) barite forms veinlets in wall-rocks or more 191 

rarely 1-2 cm thick veins associated with pyrite (Walshe and Solomon, 1981). At the Saf’yanovka VMS 192 

deposit (Urals) barite occurs cementing breccias or as aggregates associated with sulfide minerals (Safina 193 

et al., 2016). 194 

Whilst no anhydrite or barite is preserved in the Mala mound, abundant gypsum persists. The gypsum is 195 

interpreted to have formed by the hydration of primary anhydrite that formed during hydrothermal 196 

activity in the Mala mound on the Cretaceous seafloor as sulfide-sulfate textural relationships are 197 

analogous to those observed in actively forming SMS deposits (Figure 5). Hydration of anhydrite to form 198 

gypsum was most likely driven by meteoric water infiltration during uplift and exposure of the deposit, 199 

however, further δ18O and δD isotope analysis of gypsum would be needed to confirm this (Matsubaya 200 

and Sakai, 1973).  201 
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A burial depth of 0.5 ± 0.2 km has been suggested to optimise the preservation potential of VMS deposits 202 

in Troodos; at this depth seawater ingress is minimal and destruction of the VMS deposit by later cross-203 

cutting dykes is reduced (Hall and Yang, 1994). However, this model fails to account for the effect of 204 

localised fault related fluid flow on VMS deposit preservation that would lead to the dissolution of 205 

anhydrite during low-temperature fluid interaction. Nevertheless, we suggest that the burial and sealing 206 

of the Mala VMS deposit whilst it was still hydrothermally active, as lavas above the exposed mound are 207 

highly altered (Figure 2B), was advantageous in the exceptional preservation of gypsum as it sealed the 208 

deposit from later off-axis low temperature fluid flow (Prichard and Maliotis, 1998). The exact mechanism 209 

of why and how gypsum was preserved in the Mala mound and not in other Troodos VMS deposits remains 210 

enigmatic. 211 

The preservation of primary textural relationships between pyrite and sulfate minerals are rare in ancient 212 

VMS deposits compared with actively forming SMS deposits. In the Mala mound the preserved sulfide-213 

sulfate relationships are comparable to textures recorded in active SMS deposits (e.g., TAG; Gemmell and 214 

Sharpe, 1998) (Figure 5). We sub-divide gypsum textures into (i) massive, (ii) veined (iii) mesh textured and 215 

(iv) brecciated morphologies (Figure 5). Towards the top of the VMS mound is a massive fine-grained (2-3 216 

mm) gypsum horizon that is approximately 60-80 cm thick, and contains coarse (1-2 cm) euhedral pyrite 217 

grains (Figure 5A).  At the base of the mound, gypsum forms small 1-5 cm coalescing veins that form a 218 

mesh texture (Figure 5B-C). Gypsum also occurs infilling or cementing pyrite breccia (Figure 5D). These 219 

relationships, preserved in a 90 million year old VMS deposit, are texturally analogous to known samples 220 

from active SMS deposits (Figure 3) (Gemmell and Sharpe, 1998; Humphris et al., 1995). Similar textural 221 

relationships between anhydrite-gypsum-barite and sulfide minerals are also rarely documented in 222 

ancient bi-modal and Kuroko VMS deposits where they are also interpreted as the preservation of 223 

hypogene seafloor textures (Cazañas et al., 2008; Eldridge et al., 1983; Ohmoto, 1996). Moreover, the 224 

preservation of dendritic and porous textured pyrite, both of which are common in SMS deposits, that do 225 

not exhibit any visible sign of recrystallization or oxidation, further support that pyrite textures are of 226 

seafloor origin and did not form via supergene replacement or recrystallization of earlier pyrite 227 
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generations (Grant et al., 2018; Herrington et al., 1998; Koski et al., 1984; Nozaki et al., 2016). Furthermore, 228 

the dissolution of anhydrite and later re-precipitation of secondary gypsum would form brecciated, vuggy 229 

or collapse textures as observed in other Troodos VMS deposits and this is not observed (Constantinou 230 

and Govett, 1973).  Thus, our data indicate that sulfide-sulfate mineral relationships at Mala reflect 231 

primary mineralising processes that occurred on the Cretaceous seafloor. We use sulfur isotope analysis 232 

of pyrite and gypsum to further constrain the source(s) of sulfur in the Mala VMS deposit.  233 

5.2 Assessing a variable magmatic volatile influx  234 

5.2.1 Sulfur isotope systematics 235 

Typically, in mafic hosted VMS deposits, metals are thought to be derived from the alteration of igneous 236 

rocks at high-temperatures >350°C during the formation of epidosites in the SDC (Jowitt et al., 2012; Patten 237 

et al., 2017; Richardson et al., 1987). In this scenario, both metals and sulfur are leached from the SDC 238 

during hydrothermal fluid circulation. VMS deposits formed via this processes are expected to preserve a 239 

δ34S signature in sulfide minerals that reflect the variable sourcing of sulfur from TSR of seawater (+18-240 

19‰ in the Cretaceous; Kampschulte and Strauss, 2004) and the leaching of primary magmatic 241 

sulfur/sulfide minerals (0-1‰, Troodos; Alt, 1994). In lower temperature environments (<120°C) microbial 242 

sulfate reduction (MSR) is an important process producing extremely light δ34S values in sulfide minerals 243 

as low as -38.9‰, however, in high temperature hydrothermal fluids (>120°C) MSR is absent or a minor 244 

component (McDermott et al., 2020; Nozaki et al., 2020). This leads to an average δ34S for sulfide minerals 245 

in all Troodos VMS deposits of +4.6‰ ± 2.8‰ (1σ)(Hannington et al., 1998; Keith et al., 2016b; Martin et 246 

al., 2020; Parvaz, 2004; Pedersen et al., 2017). The δ34S composition of sulfate minerals in actively forming 247 

mafic hosted SMS deposits generally reflects the composition of ambient seawater sulfate (+21‰ present 248 

day; Rees et al., 1978). This reflects the localised mixing of hydrothermal fluids with seawater to produce 249 

anhydrite in the VMS mound and surrounding area (Mills et al., 1998). We use the sulfur isotopic 250 

composition of pyrite and its relationship to gypsum as a proxy for the original conditions that produced 251 

anhydrite and pyrite in the Mala VMS deposit. 252 
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At Mala, δ34S in pyrite averages -3.8‰ ± 1.9‰ (1σ, n=28; Figure 3), which is considerably lighter than the 253 

Troodos magmatic mean (~0‰; Alt, 1994) and 8.4‰ lighter than the average for other Troodos VMS 254 

deposits (Figure 4). Thus, the Mala pyrite δ34S signature is not compatible with our current understanding 255 

of sulfur cycling in the Troodos ophiolite or mafic-hosted VMS deposits in general. Gypsum from the Mala 256 

mound yields values ranging from +10.2 to +18.1‰ with an average of +14.5‰ ± 2.0‰ (1σ, n=26; Figure 257 

3). These values are dominantly lighter than Cretaceous seawater sulfate (+18-19; Kampschulte and 258 

Strauss, 2004) indicating that the sulfur was not just sourced directly from local seawater, which is typically 259 

observed in active mid-ocean ridge hosted SMS deposits (Chiba et al., 1998; Kusakabe et al., 1982). Nor 260 

are the sulfur isotope data compatible with the formation of gypsum during sulfide weathering or during 261 

oxidation of sulfides during the waning stages of hydrothermal activity (Çagatay and Eastoe, 1995; Glynn 262 

et al., 2006), which would produce δ34S values in gypsum similar to pyrite. Secondary veins of gypsum that 263 

cross-cut massive sulfide at the Skouriotissa VMS deposit in Troodos average +6.6‰, a δ34S value that is 264 

indistinguishable from hypogene sulfide minerals (Parvaz, 2004). Furthermore, measured δ34S values from 265 

gypsum at Mala are indistinguishable from values for magmatic sulfate analysed in Troodos plagiogranites 266 

at +12.3‰ (Kawahata et al., 1997). Additional sulfur sources, such as sediment interaction and Miocene 267 

evaporites, can be discounted as the Troodos ophiolite formed in a sediment-free environment and 268 

gypsum formation during later uplift and exposure related fluid flow (e.g., Miocene evaporites) would lead 269 

to an enrichment in δ34S to approximately +22‰ (Alt, 1994) and this is not observed (Figure 6). 270 

The light δ34S values in sulfide and sulfate minerals, with respect to primary magmatic sulfur and 271 

Cretaceous seawater sulfate respectively, are attributed to a SO2-rich magmatic fluid or vapour that has 272 

undergone disproportionation via the reaction(s) (Holland, 1965; Kusakabe et al., 2000):  273 

3SO2 + 2H2O = 2H2SO4
- +S0 + 2H+         (1) 274 

4SO2 + 4H2O = 3HSO4
-+ H2S + 3H+        (2) 275 

Reaction 2 (equation 2), which produces H2S, occurs preferentially over reaction 1 (equation 1) in more 276 

reducing, high-temperature fluids in systems with low total sulfur (Kusakabe et al., 2000). Native sulfur is 277 

absent in the Mala VMS mound and surrounding rocks, indicating that fluids were reducing and high-278 



12 
 

temperature (>350°C), and that reaction 2 prevailed. Fractionation between SO4
2- and H2S leads to 279 

enrichment of 34S in SO4
2- and corresponding depletion of 34S in H2S relative to the initial bulk sulfur isotopic 280 

composition (i.e. 0-1‰ for Troodos; Figure 6) (Kusakabe et al., 2000; Ohmoto and Lasaga, 1982; Rye, 2005), 281 

consistent with the observed δ34S in pyrite and gypsum at Mala (Figure 6).  282 

Using the fractionation factor of Sakai (1968) pyrite-gypsum pairs from Mala (Appendix 1 and 3) yield 283 

geologically reasonable average equilibrium temperatures of 381˚C (range = 318-462°C) for VMS deposit 284 

formation. Furthermore, a sample located at the margin of the mound that is expected to experience lower 285 

temperature fluid flow, yielded the lowest temperature of 318˚C (Appendix 2). For comparison, formation 286 

temperatures estimated at the Skouriotissa VMS deposit are 411°C (Keith et al., 2016b), comparable to 287 

the average of 381°C estimated for Mala. The highest temperature estimated in this study at Mala of 462˚C 288 

perhaps indicates disequilibrium between some pairs (e.g., Hutchinson et al., 2020) as this temperature is 289 

too high to have formed in the VMS mound where vent fluid temperatures are typically <400°C (Von 290 

Damm, 1995). Moreover, at these high temperatures (>318°C) MSR of seawater can be discounted as a 291 

potential source of reduced sulfur as MSR does not occur at temperatures >120°C (McDermott et al., 2020; 292 

Takai et al., 2008). 293 

The sulfur isotopic composition of gypsum at Mala indicates that sulfate formed via the disproportionation 294 

of magmatic SO2 with only a minor seawater sulfate component (Figure 6). This is distinctly different from 295 

anhydrite sampled in mafic-hosted SMS deposits on mid-ocean ridges where sulfate minerals preserve the 296 

δ34S signature of ambient seawater sulfate (e.g., TAG or 21°N EPR; Chiba et al., 1998; Gemmell and Sharpe, 297 

1998; Herzig et al., 1998b; Kusakabe et al., 1982). If all the sulfate at Mala was produced from 298 

disproportionation of magmatic SO2, the expected sulfate δ34S value would be +10.5‰ at 350˚C, with a 299 

range of +11.3 to +7.4‰ in the temperature range calculated previously (318-462°C) for Mala (Figure 6; 300 

Sakai, 1968). The δ34S in gypsum at Mala is slightly heavier than this (average = +14.5‰), indicating a 301 

contribution of a 34S enriched source of sulfur derived from seawater mixing within the mound (Figure 6). 302 

However, this source is a minor component when compared to other mafic VMS deposits on mid-ocean 303 

ridges (Figure 7).  304 
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During the disproportion of SO2, highly acidic fluids are generated due to the production of H2SO4 305 

(Kusakabe et al., 2000; Ohmoto and Lasaga, 1982; Seewald et al., 2015). Interaction with these highly acidic 306 

fluids alter the surrounding rock to an advanced argillic mineral assemblage, such as those observed below 307 

the seafloor at the Brothers NW Caldera (de Ronde et al., 2019) and DESMOS caldera (Gena et al., 2001). 308 

No advanced argillic assemblage was observed surrounding the Mala VMS deposit as the VMS mound was 309 

covered by lava flows after the accumulation of massive sulfide on the seafloor; hence, the wall-rocks 310 

enclosing the deposit do not exhibit any evidence of high temperature (>300°C) alteration, instead 311 

containing only zeolite minerals that formed during near-surface convection of seawater forming 312 

mordenite and natrolite. However, we suggest that if advanced argillic alteration exists, it would be limited 313 

to the stockwork zone immediately underlying the VMS mound as this region experiences the most intense 314 

fluid flow during deposit formation, an area that is not currently exposed. 315 

So far, evidence of disproportionation has only been recorded in the most immature deposits in a few 316 

active subduction-related environments and in ancient deposits associated with bi-modal or felsic volcanic 317 

successions and rarely in VMS deposits associated with mafic host rocks. Similar light δ34S values in sulfide 318 

and sulfate minerals occur in active SMS deposits such the Conical Seamount, Lihir (Gemmell et al., 2004), 319 

PACMANUS, Manus back-arc basin (Kim et al., 2011; Roberts et al., 2003), SuSu Knolls, Manus back-arc 320 

basin (Yeats et al., 2014) and the Brothers Cone site, Kermadec arc (de Ronde et al., 2005; 2011)(Figure 7). 321 

Moreover, light δ34S values in sulfide minerals and more rarely sulfate minerals have also been reported 322 

for ancient VMS deposits, for example the bi-modal Mt. Lyell VMS deposit (Australia), El Cobre VMS 323 

deposit (Cuba) and the Romero VMS deposit (Dominican Republic), however the lighter δ34S composition 324 

of sulfate minerals is less-pronounced in these deposits compared to Mala (Cazañas et al., 2008; Torró et 325 

al., 2018; Walshe and Solomon, 1981).  326 

In Troodos VMS deposits, variation in sulfur source is demonstrated by comparing the δ34S composition of 327 

Mala pyrite with other Troodos VMS deposits (Hannington et al., 1998; Keith et al., 2016b; Martin et al., 328 

2020; Pedersen et al., 2017). To date, sulfide minerals from Troodos VMS deposits with a δ34S composition 329 

that is lighter than the Troodos magmatic mean (0-1‰; Alt, 1994) have only been identified in the 330 
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Skouriotissa and Sha VMS deposits in only a few isolated sulfide grains (Figure 7; Keith et al., 2016b; Martin 331 

et al., 2020). At Skouriotissa, deep stockwork pyrite has a δ34S composition of -1.4‰, compared with 332 

shallow stockwork at +6.1‰ and massive sulfide samples at +4.8‰ (Keith et al., 2016b; Figure 7). At Sha 333 

an isolated pyrite grain with a δ34S value of -5.5‰ was recorded, whilst all other samples averaged +2.8‰ 334 

(Martin et al., 2020). In both instances, a magmatic volatile influx and the disproportionation of SO2 is 335 

inferred as the source of isotopically light sulfur in pyrite producing a δ34S value that is below the Troodos 336 

magmatic mean (0-1‰; Alt, 1994).  337 

A decrease in magmatic volatile influx with deposit maturity is suggested to explain the transition in δ34S 338 

values from <0‰ in pyrite in immature VMS deposits to >0‰ in mature deposits (Herzig et al., 1998; 339 

Martin et al., 2020). In SMS deposits of the Valu Fa Ridge the youngest immature deposit, Hine Hina, that 340 

is located proximal to the subduction zone, is depleted in 34S with an average δ34S value of -5.2‰ in pyrite 341 

and +16.4‰ in barite (Herzig et al., 1998a). The most mature deposit (White Church) located distally to 342 

the subduction zone averages +4.8‰ in pyrite and +20.7‰ in barite (Herzig et al., 1998a; Figure 7). The 343 

magnitude of variation in δ34S values in pyrite in Troodos VMS deposits is comparable to that observed in 344 

SMS deposits of the Valu Fa Ridge (Hine Hina, Vai Lili and White Church; Figure 7); representing both a 345 

decrease in magmatic volatile influx and an increase in seawater ingress with deposit maturation (Herzig 346 

et al., 1998a). At the Brothers volcano, the δ34S composition of pyrite exhibits a systematic shift in 347 

composition towards heavy values with increasing age, further supporting variation in sulfur source with 348 

deposit maturity (de Ronde et al., 2011). In Troodos VMS deposits, the occurrence of isolated and 349 

randomly distributed light sulfur isotope values in some pyrite grains could indicate the preservation of an 350 

immature volatile-rich signature, indicating that magmatic volatile influx decreases with deposit 351 

maturation as seawater influx increases (Martin et al., 2020). The new data we present at Mala indicates 352 

a transition in sulfur source from one dominated by SO2 disproportionation in immature VMS deposits, to 353 

TSR and the leaching of igneous sulfur in mature VMS deposits. The latter signature is reflected in the 354 

average δ34S composition of sulfide minerals in Troodos VMS deposits of +4.6‰ (Martin et al., 2020).  355 
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Thus, we interpret the light sulfur isotope signature preserved in Mala pyrite and gypsum as representing 356 

an immature mafic VMS deposit with the δ34S signature of the deposit transitioning towards heavier δ34S 357 

values with increasing age, as preserved in other Troodos VMS deposits. We stress that the preservation 358 

of this immature sulfur isotope signature is exceptionally rare, out of 220 previously published δ34S 359 

analyses from sulfide minerals in Troodos VMS deposits, spanning 25 individual deposits, only 3 values 360 

(excluding Mala) lie significantly (<-1‰) below the Troodos magmatic mean (Hannington et al., 1998; Keith 361 

et al., 2016b; Martin et al., 2020; Pedersen et al., 2017). 362 

Sulfur isotope systematics in the Mala VMS deposit are distinctly different from all other Troodos VMS 363 

deposits. This primarily reflects the addition of sulfur from the disproportionation of SO2 compared with 364 

the leaching of host rocks and TSR in other Troodos VMS deposits and mafic hosted VMS more widely 365 

(Gemmell and Sharpe, 1998; Hannington et al., 1998; Keith et al., 2016a,b; Martin et al., 2020; Pedersen 366 

et al., 2017). In addition to the light sulfur isotope composition of sulfide minerals, active and ancient VMS 367 

deposits that experienced an increased magmatic volatile influx may be variably enriched in Te, Se, Au, Cu, 368 

Bi and As due to their volatile nature (de Ronde et al., 2011; Hannington et al., 1999; Huston et al., 1995, 369 

2011; Keith et al., 2016a; Layton-Matthews et al., 2008; Patten et al., 2020; Yang and Scott, 1996). If Mala 370 

did experience an increased magmatic volatile influx then an enrichment in these elements should be 371 

present. 372 

5.2.2 Pyrite trace element geochemistry  373 

Evidence of magmatic volatile influx in active and ancient VMS deposits is most prevalent in deposits that 374 

formed in a bi-modal or felsic environments such as those located in arcs and back-arc basins. In these 375 

environments magmas are volatile-rich and may contribute metals and sulfur to the overlying 376 

hydrothermal system (de Ronde et al., 2011; Hannington et al., 2005; Huston et al., 2011, 1995; Keith et 377 

al., 2016b; Ohmoto, 1996; Patten et al., 2020; Wohlgemuth-Ueberwasser et al., 2015). 378 

Mala pyrite exhibits notable enrichments in Au, Cu, Te and Se relative to other Troodos VMS deposits 379 

(Figure 8A). Mala pyrite contains average concentrations of Au, Cu, Te and Se in pyrite of 1.2, 873, 40 and 380 
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878 ppm (n=61), respectively, whilst all other Troodos VMS deposits have average concentrations in pyrite 381 

of 0.3, 480, 7.2 and 178 ppm, respectively (n=1497; Martin et al., 2019, 2020) (Figure 8A). We suggest that 382 

the enrichment of Au, Cu, Te and Se indicates that Mala experienced an increased magmatic volatile influx 383 

relative to other Troodos VMS deposits. Se concentration and in particular Se/S ratios (expressed as Se/S 384 

x106) have been widely used as an indicator of magmatic volatile influx (Huston et al., 1995; Layton-385 

Matthews et al., 2008). At Mala, we report the highest Se concentration in pyrite of  9,565 ppm, a 386 

concentration that is notably higher than the maximum reported in pyrite from the Se-rich Skouriotissa 387 

and Apkili VMS deposits at 1,886 ppm and 4,953 ppm, respectively (Keith et al., 2016b; Martin et al., 2020). 388 

This concentration is also notably higher than the maximum Se concentration measured in active 389 

subduction-influenced vent sites for example pyrite at the Brothers volcano (max = 4,102 ppm) or Hine 390 

Hina (max = 121 ppm) (Keith et al., 2016a). Consequently, this leads to Se/S ratios in pyrite at Mala that 391 

average 1,641 (maximum = 17,879), this is well above the suggested magmatic threshold of >500, further 392 

supporting the addition of magmatic volatiles in the Mala VMS deposit (Layton-Matthews et al., 2008). 393 

Typically, mafic hosted hydrothermal systems such as those preserved in Troodos are considered as 394 

volatile-poor relative to subduction-influenced environments that contain both felsic and mafic lithologies 395 

(Hannington et al., 2005). In addition to an enrichment in certain metals, correlation between magmatic 396 

volatile elements at Mala is distinctly different from a typical Troodos VMS deposit (Figure 8B and C) where 397 

Te-Se exhibit no correlation (R2= <0.05; Martin et al., 2019). At Mala they exhibit a moderate positive 398 

correlation (R2=0.67; Figure 8B), suggesting a coupled relationship between Te-Se, possibly related to their 399 

volatile nature and common source (Huston et al., 1995; Keith et al., 2018a). Furthermore, we suggest that 400 

a strong positive correlation between Se and Co (R2=0.85; Figure 8C) and a moderate positive correlation 401 

between Co and Te (not shown; R2=0.62) possibly represents evidence of a renewed pulse of magmatic 402 

volatile-rich fluid into the Mala hydrothermal system. From observations in active systems, a renewed 403 

magmatic influx can cause an increase in vent fluid temperature and volatile species in the vent fluid such 404 

as H2S (cf. Butterfield et al., 2011, 1994; Von Damm et al., 1995). At Mala, we suggest that an increase in 405 

Co concentration in pyrite is evidence for an increase in fluid temperature as Co is enriched in high-406 
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temperature zones of active SMS deposits (e.g., TAG; Grant et al., 2018) and ancient Troodos VMS deposits 407 

(e.g., Skouriotissa; Keith et al., 2016b). Thus, a strong correlation between volatile elements Se-(Te) and 408 

Co could indicate the introduction of a renewed magmatic volatile phase into the hydrothermal system at 409 

Mala.  410 

We suggest that differences in the trace element signature of pyrite between Mala and other Troodos 411 

VMS deposits are related to an increased magmatic contribution at Mala that decreases with deposit 412 

maturity, explaining the lower concentrations of Au, Cu, Te and Se in pyrite from other Troodos VMS 413 

deposits. A similar trend in Au enrichment in active SMS deposits is observed where deposits located in 414 

immature back-arc rifts contain elevated concentrations of Au relative to deposits in mature back-arcs, 415 

suggesting a decrease in the contribution of Au from magmatic volatiles with deposit maturity (Herzig and 416 

Hannington, 1995).  417 

In Troodos VMS deposits, pyrite could undergo zone refining (Goldfarb et al., 1983) leading to 418 

remobilisation and expulsion of volatile metals in mature deposits if “over zone refining” occurred; a 419 

process suggested for the TAG SMS deposit (Hanninton et al., 1998). However, the effect of zone refining 420 

on trace metals such as Te and Se remains poorly characterised. The initial volatile-rich signature in pyrite 421 

could also be diluted during the growth of the sulfide mound. As the mound grows, immature, volatile-422 

rich pyrite becomes fragmented and is cross-cut by later volatile-poor mature pyrite generations leading 423 

to the preservation of small areas of immature pyrite in a larger deposit; similar to the isolated immature 424 

pyrite grains with light δ34S values (<0‰) previously analysed at the Sha and Skouriotssa VMS deposits 425 

(Keith et al., 2016b; Martin et al., 2020).  426 

5.3 Implications for mafic VMS deposits 427 

The Mala VMS deposit  provides the rare opportunity to study sulfide-sulfate relationships in an immature 428 

VMS deposit that are otherwise generally only preserved in active systems. The exceptional preservation 429 

of seafloor sulfide-sulfate relationships at Mala demonstrates a robust link between light sulfur isotope 430 

values in pyrite and gypsum and Au, Cu, Te and Se enrichment in an ancient mafic VMS analogue, indicating 431 
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a magmatic volatile dominated source (Figure 9). So far, hydrothermal processes such as volatile influx and 432 

disproportionation of SO2 have only been recognised in active and ancient, bi-modal or felsic hosted, 433 

subduction-influenced environments. The magmatic volatile contribution in basaltic/basaltic-andesite 434 

hosted VMS deposits is expected to be minor in comparison to bi-modal or felsic hosted deposits, due to 435 

a lower volatile content of the magma (Wallace, 2005; Wyllie 1979), however, data from the Mala VMS 436 

deposit demonstrates the significance of a magmatic volatile phase as an additional source of metal and 437 

sulfur in a mafic-hosted VMS deposit, a processes that had not previously been recognised in mafic VMS 438 

deposits (e.g., Huston et al., 1995). We suggest that the volatile-dominated signature preserved at Mala 439 

could represent the initial stage of VMS formation in basaltic/basaltic-andesite hosted mafic hydrothermal 440 

systems (Figure 9). This supports previously proposed models (Martin et al., 2020) that indicate a transition 441 

in metal source with VMS deposit maturity in mafic VMS deposits from an early magmatic volatile phase 442 

to epidotisation and host rock leaching with increasing maturity of the hydrothermal system (Figure 9), 443 

highlighting the significance of a magmatic volatile phase as a source of metal and sulfur in mafic VMS 444 

deposits. Mafic VMS deposits are conventionally considered as volatile poor, with ore forming processes 445 

analogous to mid-ocean ridge hosted SMS deposits (Hannington et al., 1998). Evidence from Mala, 446 

however, suggest that this is not universally true. The textural and geochemical similarities to modern SMS 447 

deposits presented here imply that Mala offers a new and readily accessible analogue to active SMS 448 

deposits in volatile-rich environments (Figure 9). Consequently, we propose that an initial enrichment in 449 

Au, Cu, Te and Se coupled with light δ34S values in sulfide and sulfate minerals may be widespread in mafic 450 

VMS deposits but is rarely preserved.  451 

As the hydrothermal system matures, seawater ingress increases and volatile influx decreases and is 452 

diluted, leading to the preservation of a “typical” mafic VMS deposit signature characterised by δ34S >0‰ 453 

and a depletion in magmatic volatile elements in pyrite (especially Te, Se and Au). This mature isotopic 454 

signature is widely preserved in many Troodos VMS deposits where the average δ34S composition of all 455 

sulfide minerals excluding Mala is +4.6‰ (n=220; Hannington et al., 1998; Keith et al., 2016b; Martin et 456 

al., 2020; Pedersen et al., 2017). This has important implications for the metal endowment of mafic VMS 457 
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deposits, suggesting that economically important metals such as Au, Cu and high-tech metals Te and Se 458 

are initially enriched in pyrite in immature, low-tonnage deposits and decrease in concentration in pyrite 459 

with time and system maturity. This leads to the preservation of localised and isolated grains of pyrite that 460 

are enriched in volatile elements with a light δ34S signature (<0‰) surrounded by volatile poor pyrite with 461 

a δ34S signature >0‰. This signature of enrichment could be widespread but not readily preserved or 462 

sampled on the seafloor as actively forming deposits, and especially the interior of active SMS mounds are 463 

relatively underexplored.  464 

5.4 Troodos as an analogue for actively forming mafic VMS deposits  465 

Ophiolite complexes such as Troodos are considered as the on-land type locality for actively forming mafic, 466 

Cu-Zn or Cyprus-type VMS deposits (Barrie and Hannington, 1997; Franklin et al., 2005; Galley et al., 2007; 467 

Herrington et al., 2005; Large, 1992; Piercey, 2011). However, it has long been recognised that ophiolites 468 

do not represent fragments of oceanic crust formed at mid-ocean ridges, instead representing oceanic 469 

crust that formed in a supra-subduction environment (e.g., fore arc; Miyashiro, 1973; Pearce and 470 

Robinson, 2010). VMS deposits hosted in ophiolite terrains are considered analogous to actively forming 471 

deposits that form along mid-ocean ridges, immature fore-arcs or mature back-arcs, for example the TAG 472 

hydrothermal field on the MAR (Hannington et al., 1998; Piercey, 2011). These environments consist 473 

dominantly of mafic lithologies (basalts) with a minor or absent felsic component (Barrie and Hannington, 474 

1997; Galley et al., 2007; Piercey, 2011).   475 

In this study we provide compelling isotopic and geochemical evidence that ore forming processes in some 476 

ophiolite hosted VMS deposits are comparable to SMS deposits forming along immature back-arc rifts 477 

(e.g., Hine Hina; Herzig et al., 1998a). This has important implications for metal enrichment in ophiolites, 478 

most notably the significance of a magmatic volatile phase as a potential source of metals in mafic VMS 479 

deposits that until now has only been widely documented in SMS/VMS deposits associated with bi-modal 480 

lithologies (Keith et al., 2016b; Martin et al., 2020, 2019; Patten et al., 2020). Whilst this magmatic volatile 481 

dominated signature is by no means unique to the Mala VMS deposit, occurring in ancient (Huston et al., 482 

2011) and actively forming bi-modal or felsic hosted deposits (de Ronde et al., 2011b Herzig et al., 1998a 483 
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Yeats et al., 2014), it has rarely been recognised in ancient or actively forming mafic-hosted VMS deposits 484 

(Hannington et al., 1998; Keith et al., 2016a; Martin et al., 2020). This reflects the higher primarily volatile 485 

content of magmas generated in subduction zones relative to mid-ocean ridge environments (cf. Wallace, 486 

2005) and the ability of these melts to reach volatile saturation and contribute metals to the overlying 487 

hydrothermal systems (de Ronde et al., 2005; Huston et al., 2011; Keith et al., 2018a; Patten et al., 2020; 488 

Sun et al., 2004; Yang and Scott, 1996, 2002). 489 

It is widely accepted that the Troodos ophiolite formed in a supra-subduction zone environment and not 490 

at a mid-ocean ridge (Miyashiro, 1973; Muenow et al., 1990; Rautenschlein et al., 1985), most likely 491 

representing a nascent fore-arc setting (Pearce and Robinson, 2010). This is in line with elevated H2O 492 

contents (Cameron, 1985; Fonseca et al., 2017; Muenow et al., 1990) and the more oxidizing nature of 493 

Troodos melts relative to mid-ocean ridge basalts (FMQ +1.5; Jenner et al., 2010; Patten et al., 2017). 494 

Furthermore, the composition of Troodos lava is different from mid-ocean ridge environments that are 495 

generally basaltic, Troodos contains a suite of lithologies ranging from picrite to basaltic-andesite and 496 

minor dacite (Cameron, 1985; Rautenschlein et al., 1985). Additionally, plagiogranite intrusions contain 497 

magmatic brine inclusions indicating the possible exsolution of a magmatic volatile phase (Kelley et al., 498 

1992; Kelley and Früh-Green, 2000; Kelley and Robinson, 1990) that may have formed a source of metals 499 

in overlying VMS deposits (Martin et al., 2020).  500 

Therefore, caution should be exercised when comparing between ophiolite hosted VMS deposits and 501 

actively forming mafic hosted SMS deposits, especially those hosted in mid-ocean ridge environments. 502 

Despite the affiliation of Troodos VMS deposits with mafic lithologies, Mala demonstrates that the source 503 

and processes that control metal enrichment in some mafic VMS deposits may be more analogous to 504 

processes recognised in bi-modal subduction-influenced environments and not mid-ocean ridges, or that 505 

a magmatic volatile source of metals is also present in mid-ocean ridge hosted SMS deposits but is rarely 506 

detected or indeed preserved.  507 

6. Summary and Conclusions 508 
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In this study we demonstrate the significance of magmatic volatiles as a potential source of metals and 509 

sulfur in mafic VMS deposits. We show that in an environment that is typically considered as being volatile 510 

poor, that the disproportionation of magmatic SO2 is the principal source of sulfur in an immature mafic 511 

VMS deposit. This signature is exceptionally preserved in the Mala VMS mound where the average sulfur 512 

isotope composition of pyrite is -3.8‰ and gypsum +14.5‰; this is significantly less than the Troodos 513 

magmatic mean and Cretaceous seawater, respectively. Previously, such a sulfur isotopic signature has 514 

only been observed in ancient bi-modal hosted VMS deposits and in immature active SMS deposits in arc 515 

and back-arc basins. Here, we demonstrate that the influx of magmatic volatiles is responsible for the 516 

enrichment of Se, Te, Au and Cu in pyrite during the initial stages of VMS deposit formation. As the VMS 517 

deposit matures the initial volatile-rich signature is overprinted and diluted, hence it may be widespread 518 

in actively forming and ancient mafic-hosted VMS deposits but is rarely preserved. 519 
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 891 

FIGURE CAPTIONS 892 

Figure 1: Simplified map of the Troodos ophiolite, Cyprus. Dashed lines represent fossil spreading axes. 893 

The Mala VMS deposit is located in the SW of the Massif. Inset image shows the location of the Troodos 894 

ophiolite within the island of Cyprus (after Martin et al., 2018). 895 

Figure 2: Field observations from the Mala VMS deposit. A) The exposed Mala massive sulfide mound 896 

formed from crudely layered gypsum and pyrite. A1) Idealised stratigraphic section (not to scale) through 897 

the Mala mound. *?? Probable location of advanced argillic alteration assemblage below the mound, an 898 

area not currently exposed. Inset boxes and letters relate to the location of each subsequent image within 899 
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the mound.  B) Altered volcanic veneer that overlies the Mala VMS mound and is approximately ~2 m thick. 900 

C) Massive bedded gypsum horizon (60-80 cm thick) surrounded by pyrite. C1 and C2) Euhedral pyrite in 901 

gypsum. D) Veined/mesh texture gypsum intergrown with pyrite. E) Massive pyrite lens containing 902 

abundant dendritic pyrite (see image G and I). F) Gypsum veins cross-cutting altered wall-rock that contains 903 

finely disseminated pyrite. G-J) Photomicrographs of pyrite in reflected light. G) Massive (Mas) and 904 

dendritic (Den) pyrite. H) Close-up image of dendritic pyrite. I) Typical massive pyrite with porous regions 905 

(left) overgrown by later euhedral pyrite (right). J) Disseminated euhedral pyrite within surrounding lava. 906 

Figure 3: Sulfur isotope (δ34S) analysis of pyrite and gypsum from the Mala VMS mound (see Appendix 1 907 

and 3 for sample location). Values in pyrite at Mala are below the Troodos Ophiolite magmatic mean of 0-908 

1‰ (TO; Alt, 1994) and less-than other Troodos VMS pyrite (*Hannington et al., 1998; Keith et al., 2016b; 909 

Martin et al., 2020; Pederesen et al., 2017). Gypsum yields values between the Troodos magmatic mean 910 

and Cretaceous seawater (SW; Kampschulte and Strauss, 2004). 911 

Figure 4: Pyrite chemistry analysed via LA-ICP-MS for the Mala VMS deposit. A) Te vs. Bi, B) Co vs. Se, C) 912 

Au vs. Ag, D) Te vs. Se. Dashed grey line represents the best fit regression line for presented data. Analyses 913 

that are below detection limit are taken as the detection limit (see Appendix 2). 914 

Figure 5: Sulfide-sulfate relationships from the fossil Mala mound (A-D) and actively forming TAG deposit 915 

(A1-D1). Textures preserved in the Mala VMS mound are comparable to those found in active SMS 916 

deposits. A) Massive, bedded, fine-grained gypsum with euhedral pyrite. B) Veined gypsum containing 917 

fine-grained (<2 mm) disseminated euhedral pyrite. C) Mesh textured gypsum veins enclosing discrete 918 

pyrite pods. D) Breccia infill, sub-angular pyrite clasts cemented by gypsum. A1) Massive laminated 919 

anhydrite with finely disseminated pyrite. B1) Veined anhydrite with interstitial to crudely banded pyrite. 920 

C1) Pyrite with cross-cutting anhydrite veins. D1) Sub-angular pyrite clasts in an anhydrite matrix. 921 

GYP=gypsum, ANH=anhydrite, PY=pyrite (TAG images: ODP Leg 158, Hole 957C, Core 7N- photographed 922 

intervals in Appendix 4).  923 

Figure 6: Sulfur isotope systematics for pyrite and gypsum at the Mala VMS deposit. Values in white boxes 924 

are the fractionation factors between SO2 and pyrite/SO4
2- at 350 and 400°C (Sakai, 1968). Grey boxes 925 
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indicate potential sulfur sources: Troodos (TO) magmatic mean (0-1‰; Alt, 1994), Cretaceous seawater 926 

(SW) (+18-19‰; Kampschulte and Strauss, 2004) and Miocene evaporites (+22‰; Alt, 1994). The expected 927 

fraction between SO2 and pyrite/SO4
2- at 350-400°C should produce pyrite with a δ34S composition 928 

between -7.5‰ and -8.6‰ and sulfate between +8.9‰ and 10.5‰. Values at Mala are heavier than 929 

expected if disproportionation was the only source of sulfur.  930 

Figure 7: Sulfur isotope composition of sulfide and sulfate minerals from Troodos VMS deposits, arc and 931 

back-arc basin hosted SMS deposits and mid-ocean ridge SMS deposits. Light values <0‰ occur at Mala 932 

and only rarely in other Troodos VMS deposits at Skouriotissa and Sha. Arc/back-arc basin hosted SMS 933 

deposits have a variable δ34S signature in both sulfide and sulfate minerals. Mid-ocean ridge hosted 934 

deposits are less-variable. (Data: Anderson et al., 2019; Arnold and Sheppard, 1981; Chiba et al., 1998; de 935 

Ronde et al., 2011; Gemmell et al., 2004; Hannington et al., 2005; Herzig et al., 1998a,b; Keith et al., 2016b; 936 

Kim et al., 2011; Martin et al., 2020; Styrt et al., 1981; Yeats et al., 2014). 937 

Figure 8: Trace element analysis of pyrite. A) Ratio of trace elements in pyrite at Mala (n=61) to all other 938 

Troodos VMS (TO) (Martin et al., 2019, 2020). B) Te vs. Se and C) Co vs. Se for the Mala vs. a ‘typical’ 939 

Troodos deposit – Skouriotissa (Martin et al., 2019). Note varying correlation trends between Mala and 940 

Skouriotissa.  941 

Figure 9: Metal sourcing in mafic-hosted VMS deposits. A) The traditional model of metal sourcing in mafic 942 

environments (Franklin et al., 2005; Galley et al., 2007). Metal and sulfur are primarily sourced through 943 

the leaching of igneous lithologies, epidosite formation and TSR. B) New proposed model for immature 944 

mafic VMS deposits, metals are sourced primarily from the contribution of a magmatic volatile phase. The 945 

disproportionation of magmatic SO2 provides the main source of sulfur, TSR the leaching of igneous sulfur 946 

and epidosite formation are minor components.  947 
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