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The mitochondrial intermembrane space (IMS) is the most constricted sub-
mitochondrial compartment, housing only about 5% of the mitochondrial
proteome, and yet is endowed with the largest variability of protein
import mechanisms. In this review, we summarize our current knowledge
of the major IMS import pathway based on the oxidative protein folding
pathway and discuss the stunning variability of other IMS protein import
pathways. As IMS-localized proteins only have to cross the outer mitochon-
drial membrane, they do not require energy sources like ATP hydrolysis in
the mitochondrial matrix or the inner membrane electrochemical potential
which are critical for import into the matrix or insertion into the inner mem-
brane. We also explore several atypical IMS import pathways that are still
not very well understood and are guided by poorly defined or completely
unknown targeting peptides. Importantly, many of the IMS proteins are
linked to several human diseases, and it is therefore crucial to understand
how they reach their normal site of function in the IMS. In the final part
of this review, we discuss current understanding of how such IMS protein
underpin a large spectrum of human disorders.

1. Introduction

The mitochondrion is a relatively small yet complex organelle responsible for a
plethora of cellular activities, the production of 95% of the cell’s ATP being
just one of them. Mitochondria are key players in apoptosis, phospholipid
biosynthesis, haem biosynthesis and calcium homeostasis [1]. “The powerhouse
of the cell’ has an outer and an inner membrane separating two aqueous
sub-compartments, the matrix and intermembrane space (IMS). The IMS is
the smallest of the two aqueous sub-compartments (the other one being the
innermost matrix of mitochondria), but it is responsible for several of the afore-
mentioned functions within mitochondria. 99% of the proteins that reside in
mitochondria are nuclear-encoded and have to be imported into the organelle
via different protein translocases and import complexes that direct each protein
to the correct compartment. All of the 51 yeast and 53 human IMS proteins are
nuclear-encoded [2—4] and hence imported from the cytosol. The difference in
the annotation of 127 proteins as human IMS proteins in MitoCarta 2.0 [2]
arises from (i) the fact that IMS-APEX2 proximity biotinylation used in [3]
labels IMS as well as these in the mitochondrial OM and IM that are accessible
to the IMS biotin label, and (ii) the fact that some proteins that are in the IMS
during their biogenesis have been annotated in [4] as IM proteins if they
mature to be part of a complex in the IM. Interestingly, the IMS has numerous
distinct import pathways, in contrast to the mitochondrial matrix that is reached
by mitochondrial preproteins following a single default import pathway.
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Figure 1. The import of Miad0 substrates. (a) Import of Mia40 substrates proteins first requires translocation through the outer membrane TOM complex. The
cysteine containing intermembrane space targeting signal (ITS) subsequently binds to Mia40 via a disulfide intermediate. This intermolecular disulfide bond is
substituted for an intramolecular disulfide bond within the substrate protein. Mia40 is then re-oxidized via an electron transfer reaction from the sulfhydryl oxidase
Erv1. Erv1 can transfer electrons to cytochrome ¢, H,0, or Osm1 under anaerobic conditions. (b) The TOM complex can be found in two oligomeric states, trimeric
and dimeric. The trimeric complex is the predominant complex and preferentially imports of matrix and inner membrane proteins. The dimeric complex is thought to
favour Miad0 substrate protein import. This dimer—trimer TOM complexes are reqgulated by the small Tom protein Tom6 and the voltage gated anion channel, Porin.
Tomé retains the core Tom receptor Tom22 within the trimeric TOM complex while Porin is responsible for binding Tom22 to facilitate the formation of the dimeric
TOM complex. (¢) Tom5 is responsible for manoeuvring the N-terminal o-helix of Tom40 which occludes the major pore of the translocase out of the way to

facilitate the import of Miad0 substrates into the IMS.

In this review, we discuss each of the several IMS import
pathways including the Mia40, cytochrome b2, cytochrome c,
cytochrome ¢ haem lyase (CCHL) and UCP import pathways.
Furthermore, we highlight some of the atypical IMS import
pathways and speculate on the as yet unknown IMS import
pathways. The IMS contains many rather small but structurally
distinct proteins that are implicated in several human diseases
including several mitochondriopathies, amyotrophic lateral
sclerosis (ALS), Parkinson’s disease and Alzheimer’s disease
(AS). The roles of dysfunctional mitochondrial IMS proteins in
underpinning these diseases are also discussed in this review.

2. The Mia40 import pathway

A large portion of the 51 IMS proteins in yeast (53 in humans)
are small in size and contain no N-terminal mitochondrial
targeting sequence [2,3]. Instead, many of them possess
twin cysteine motifs typically of CX3C and CX9C configur-
ations which mould the structural characteristics of these
proteins that fold in a helix-turn-helix structure with two
structural cysteine disulfide bonds connecting the CX3C or
CX9C motifs between the two helices [5-7]. These proteins
are imported and folded in the IMS via an oxidative folding
system (also called a disulfide relay system), the key com-
ponents of which are the oxidoreductase Mia40 and
sulfhydryl oxidase Ervl [7-12].

In Saccharomyces cerevisize, Mia40 is an inner membrane
anchored protein that faces the aqueous IMS. Interestingly,
in metazoans Mia40 (CHCHD4 in humans) is a soluble
protein found in the bulk IMS. CHCHD4 still remains near
the inner membrane like in yeast, as it interacts with the
protein apoptosis inducing factor 1 (AIFM1). AIFM1 is also
responsible for the import of CHCHD4 via the N-terminus
of CHCHD4, which interacts with the dimeric form of
AIFM1 [13,14]. The substrate binding domain of Mia40 is

highly conserved from yeast to humans and comprises 6
cysteine residues, four of which contribute to the folded
helix-turn-helix structure of the protein, while the remaining
two are responsible for its function [7,15]. This redox-active
semi-oxidized ‘CPC’ motif binds covalently the substrate
proteins after their translocation through the translocase of
the outer membrane (TOM) complex in an unfolded and
reduced state [16]. An intermolecular disulfide bond is
formed between the substrate protein and the second cysteine
of the CPC motif of Mia40 [7,17]. This second cysteine of
Mia40 is then substituted via nucleophilic attack for the
second cysteine residue in the substrate protein thus creating
an intramolecular disulfide bond within the substrate
imported protein [7,16,18,19]. This is followed by release
of the folded substrate protein into the IMS (figure 1a).
Interestingly, both Mia40 and Erv1 require Mia40 for import
and folding [20,21]. Ervl is imported and folded by Mia40
via its CX16C motif which is critical for its structure [21].
Ervl has three cysteine motifs, closest to the N-terminus is
a shuttle cysteine motif which is responsible for interaction
and reoxidation of Mia40. A second catalytic cysteine
motif binds the cofactor flavin adenine dinucleotide (FAD)
and the structural CX16C is the final cysteine motif. The
N-terminal shuttle motif is not required for its import. On
the other hand, yeast Mia40 is imported in an unconventional
manner. Mia40 possesses an N-terminal signal stop-transfer
sequence that is imported via the Tim23 complex whereby
Tim23 integrates Mia40 into the inner membrane. Endo-
genous Mia40 is then required for the oxidation and folding
of the functional IMS domain of Mia40 [20].

In order for Mia40 to continually function, recycling is
required via an electron transfer reaction. Initially the shuttle
cysteine motif of Ervl re-oxidizes Mia40 [10,11,21]. The elec-
trons are then shuttled from this motif to a central CXXC
motif within Erv1 and then onto FAD which is non-covalently
bound to Ervl [21-23]. Completion of the reaction requires

7000LZ :LL ‘joig uadp  qosi/jeunol/bio buysigndAianosiefos H



transfer of the electrons to a final acceptor. To fulfil this role,
there are four known terminal electron acceptors. The typical
electron acceptors are cytochrome ¢, cytochrome c oxidase
and cytochrome ¢ peroxidase [24-27]. Erv1 can also transfer
its electron directly to molecular oxygen which subsequently
generates hydrogen peroxide (H;O,). Under anaerobic con-
ditions Ervl is known to transfer the electrons to Osm1 and
fumarate [28]. Ervl has been shown to be an efficient
enzyme under normal conditions but it contributes to H,O,
production within the IMS and it also has a tendency aggre-
gate, particularly at elevated temperatures [10,29]. This Ervl
dysfunction results in degradation by the IMS protease Ymel
and could potentially distort the redox balance of Mia40 result-
ing in decreased substrate protein import [29]. The yeast thiol
peroxidase Gpx3 was recently found to be capable of re-oxidiz-
ing Mia40, suggesting other means of maintaining the redox
state of Mia40 in a variety of conditions [30]. Further studies
arerequired to determine if other proteins are capable of re-oxi-
dizing Mia40 and whether other electron acceptors exist. There
are two accounts of proteins responsible for maintaining opti-
mal activity of Mia40. The zinc binding protein Hot13 is
capable of chelating zinc ions to enable efficient reoxidation
of Mia40 [31]. In addition to this, the glutaredoxin system is
involved in the maintenance of the redox state of Mia40 and
is thought to be involved in Mia40 substrate proofreading as
it prevents stalling of substrate proteins covalently attached
to Mia40 via reduction and retro-translocation [32-34]. Mia40
substrate retro-translocation has been reported whereby the
intermolecular disulfide bond is reduced and the substrate
proteins are retro-translocated through the TOM complex
back out into the cytosol where they are degraded by the pro-
teasome [34,35]. In yeast cells, the critical reduction step was
effected by the addition of chemical reductants [34]. However,
in human cells overexpression of the protein glutaredoxinl, a
reducing protein found in the IMS, showed that this retro-
translocation probably occurs in vivo. The two critical regula-
tors of such an event are the length of time the substrate is
covalently attached to Mia40 and the redox state of the
IMS [33]. The balanced effect of these two determinants results
in either successful disulfide bond formation and retention
of the substrate in the IMS or retro-translocation and
degradation in the cytosol. In yeast, the glutaredoxin or thior-
edoxin system could potentially fulfil this reducing role and
facilitate retro-translocation of Mia40 substrates in the event
of substrate protein stalling.

3. Mia40 substrate translocation and
recognition

Mia40 substrates are translated on cytosolic ribosomes and
imported via the TOM complex. Until recently, the mechanistic
aspects of this import process were not fully understood.
Mia40 substrates do not require the TOM complex receptors
Tom?20, Tom22 and Tom70 which 95% of mitochondrial pro-
teins depend on for their import [2,36,37]. Instead it has been
shown that the TOM receptor Tom5 is involved in the
import of Mia40 substrates [37,38]. The recent elucidation of
the atomic structure of the TOM complex by cryo-EM shed
light on the reasons why this is the case [38,39]. The channel-
forming core subunit of the TOM complex, Tom40, has an
N-terminal o-helical extension that faces the IMS and partially
blocks the trans side of the Tom40 pore [38,39]. This extension

+3 +4 +7
CXX[Hy][Hy]XX[Ar]X
ITS(MISS) Motif

hydrophobic cleft

Figure 2. The intermembrane space targeting signal (ITS). The ITS comprises
a conserved motif that binds to the hydrophobic binding cleft of Mia40 in a
particular way. The hydrophobic residues of the ITS motif interact with
specific hydrophobic residues found within Mia40 to orientate the substrate
protein in such a way to optimize disulfide bond formation. The structure is
from RCSB: 2LOY [47].

interacts with Mia40 and Tomb to facilitate early stage sub-
strate translocation and docking with Mia40 (figure 1c) [38].
Secondly, the positioning of the N-terminal o-helical extension
is critical for the late stage complete import and folding of the
substrate protein within the IMS [38]. This aspect is controlled
by key residues within Tom40 itself. Combined, this highlights
a divergent translocation mechanism for Mia40 substrates com-
pared to matrix and inner membrane targeted proteins that are
imported through the TOM complex in a different manner. Fur-
thermore, substrates of Mia40 are thought to engage for import
via a small population of dimeric TOM complexes [40-43]. This
differs from all the other import pathways which engage via the
more abundant trimeric TOM complex. The dynamic dimer—
trimer transition of the TOM complex is regulated by the
Tomé6 receptor which stabilizes the Tom22 receptor within the
trimeric TOM complex while the metabolite transporter porin
interacts with Tom22 to allow the formation of a dimeric
TOM complex [43]. The trimeric complex that contains Tom22
is more suited to the import of matrix presequence and inner
membrane carrier proteins. The dimeric TOM complex has
only been shown to be important for the import of Mia40
substrates so far (figure 1b). A possible reason why Mia40
substrates favour the dimeric TOM complex over the trimer is
because of the bulky IMS domain of Tom?22 that interacts
with the translocase of the inner membrane subunit, Tim50,
this transmembrane tether could sterically hinder the import
of Mia40 substrates [43,44]. The dimeric TOM complex reposi-
tions Tom22 in such a way that it favours the Mia40 interaction
with the N-terminal o-helical extension of Tom40 and Tom5
[38]. Further research is required to understand what cytosolic
components are involved in the import of Mia40 substrates,
something that has already been uncovered for outer and
inner membrane proteins [45].

The recognition of Mia40 substrates by Mia40 is governed
by internal targeting sequences called IMS targeting signals
(ITS) or mitochondrial intermembrane space sorting signals
(MISS) [16,46]. These sequences have a propensity to form
an amphipathic o-helix with a hydrophobic face that is
recognized by the hydrophobic binding cleft of Mia40
(figure 2) [5,18]. The ITS is 9 amino acids in length and can
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be located upstream or downstream of the docking cysteine.
The consensus sequence of ITS is CXX [Hydrophobic]
[Hydrophobic]XX [Aromatic]X motif [16]. A combination of
mutagenesis, pull-down experiment, and biophysical and
structural analysis has shown that the binding of substrate
proteins to Mia40 follows a sliding-docking model [13]
whereby the precursor is first aligned to the cleft of Mia40
by hydrophobic packing of the ITS in a non-covalent binding
reaction (‘sliding’ step). This results in juxtaposition of the
docking cysteine of the substrate to the second cysteine of
the CPC motif of Mia40, allowing thus these two cysteines to
link to an intermolecular disulfide bond (‘docking’ step). It
has been shown that the oxidoreductase function of Mia40
(involving the electron transfer reaction) is not essential for
the import of Mia40 substrates [17]. Instead the hydrophobic
binding cleft of Mia40 acts as a holdase (according to the
first non-covalent binding step of the sliding-docking model)
that is capable of recognizing ITS signals lacking the docking
cysteine residue [17]. This grip on the substrate allows for
import (i.e. translocation across the outer membrane), but
not folding suggesting that Mia40 acts as a trans-site receptor
when importing Mia40 substrates. However, the catalytic CPC
motif is essential for creation of the disulfide bond in the
substrate, which is a prerequisite for its folding.

4. Unconventional Mia40 substrates

Although the vast majority of Mia40 substrates are imported
via well conserved specific CX3C and CX9C muotifs, there is
a growing number of Mia40 substrates that do not have
specific such motifs and have been shown to be imported
in an unconventional manner. The inner membrane translo-
case Tim22 contains an unconventional CX98C cysteine
motif that is directly oxidized by Mia40 which subsequently
results in integration of Tim22 into the IM [48]. The matrix
localized mitochondrial ribosomal protein Mrpl0 has also
been shown to be oxidized by Mia40 on its translocation
into the matrix [49]. The N-terminus of Mrp10 has a unchar-
acteristic proline-rich matrix targeting signal that is thought
to aid in the access of Mia40 to the conserved cysteine resi-
dues of Mrpl0 by avoiding the tethered TOM-TIM23 super
complex that conventional matrix proteins use for their
import. How the proline-rich region achieves this has yet to
be elucidated. The copper chaperone Ccsl is another atypical
Mia40 substrate that forms only a single disulfide bond invol-
ving a non-conventional CX36C cysteine motif [50-52]. The
import and retention of Ccs1 in the IMS via the MIA pathway
in turn affects the levels of the critical superoxide scavenger
Cu—Zn superoxide dismutase Sod1 within the IMS [50-52].
The metalloprotease Atp23 is one of the largest known
Mia40 substrates at 27 kDa and has 10 cysteine residues. All
five cysteine pairs appear to be oxidized by Mia40 raising
the potential for isomerase activity of Mia40, since the intro-
duction of non-native disulfide bonds is likely in a protein
with five disulfide bonds [53]. Future studies will hopefully
shed light on whether Mia40 has, at least for some substrate
proteins, such protein disulfide isomerase activity. Finally,
post-translational modification plays a role in the import
of the Mia40 substrate Mic19, a component of the mitochon-
drial contact site and cristae organizing system (MICOS)
responsible for the maintenance of inner membrane-outer
membrane contacts and crista junctions [54]. This protein

contains a single CX10C motif and a large domain of [ 4 |

unknown function (DUF). The DUF domain is thought to
affect accessibility of the CX10C motif during import.
This hinderance is circumvented by the post-translational
addition of a myristoyl group at the N-terminus of the
polypeptide. This myristoyl group is recognized by the
Tom?20 import receptor and is thought to aid in the import
of the bulky DUF domain of Micl9 allowing suitable
exposure of the CX10C motif to Mia40 [54]. Further studies
will hopefully shed light on other IMS proteins that undergo
post-translational modification to aid their import.

5. Alternative IMS import pathways
5.1. The stop-transfer pathway

The IMS is the destination for many nuclear-encoded proteins
beyond simply substrates of the Mia import pathway. As such,
further mechanisms are present for the import of proteins into
the IMS. One of the first such mechanisms to be discovered
and characterized was the stop-transfer pathway (for a
recent review, see [55]). Nuclear-encoded proteins following
this import route are synthesized with a bipartite presequence.
The N-terminal part of the bipartite signal is a typical cleava-
ble presequence similar to those found in proteins destined for
the matrix. This positively charged, amphipathic helical struc-
ture is responsible for the initial targeting of the protein to the
TOM complex through interactions with the cytosolic portions
of receptors Tom20 and Tom?22. Receptor binding facilitates
outer membrane translocation through the Tom40 pore, a
B-barrel protein related to the major outer membrane porin
VDAC [39]. Subsequently, the presequence interacts with the
large IMS region of the inner mitochondrial membrane recep-
tor Tim50 and is fed through the Tim23 channel driven by the
inner mitochondrial membrane potential (A¥) [56]. At this
stage, proteins destined for the matrix are translocated across
the inner membrane by the presequence translocase-associ-
ated motor (PAM) complex driven by ATP hydrolysis, while
proteins making use of the stop-transfer pathway remain in
the IMS because of the second part (the ‘stop-transfer’ part)
of the bipartite presequence that halts translocation at the
level of the inner membrane. The ‘stop-transfer’ section of
the bipartite presequence is a hydrophobic transmembrane
segment immediately downstream of the presequence. This
region is responsible for translocational arrest and retention
of the protein in the IMS (figure 3a). The precise mechanism
by which such a stop-transfer transmembrane segment can
partition into the lipid bilayer has yet to be fully elucidated.
However, the Tim23 channel seems to contain a lateral gate,
much like other translocase channels such as the bacterial
SecY and eukaryotic Sec61 translocases (for reviews, see
[57,58]), that allows the direct partitioning of transmembrane
regions from the channel into the hydrophobic core of the
membrane [59]. In order to maintain fine control over the des-
tination of presequence containing proteins, the TIM23
machinery adopts distinct conformations that aid either lateral
diffusion into the inner membrane lipid bilayer or translocation
into the matrix. Schendzielorz et al. [60] identified distinct con-
formations of TIM23 that underpin these two functions. These
distinct conformations of the TIM23 complex involve inter-
actions with Pam18 and Mgr2 and display differing lateral
release phenotypes. Using a chimaeric version of Tim17-
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Figure 3. Alternative protein import pathways to the mitochondrial IMS. Nuclear-encoded, Mia40-independent proteins destined for the IMS are imported and
retained in a number of different ways. (a) Proteins using the stop-transfer pathway (e.g. cytochrome b,) contain a bipartite signal composed of a positively charged
mitochondrial targeting signal (MTS) at the proteins N-terminus followed by a hydrophobic segment. The MTS s targeted through the translocon of the outer
membrane (TOM) and the translocon of the inner membrane (TIM23) into the matrix via the presequence translocase-associated motor (PAM). Further translocation
to the matrix is blocked when the stop-transfer hydrophobic signal enters TIM23 and causes translocational arrest followed by lateral diffusion of this segment into
the inner membrane. The MTS s cleaved by the mitochondrial processing peptidase (MPP) and a mature IMS protein is released via a second cleavage event
mediated by IMS proteases such as IMP1/2. (b) Under stress conditions glutathione peroxidase 3 (Gpx3/Hyr1) is alternatively translated from a non-AUG start
codon producing an extended protein containing a signal resembling an MTS. This extension enhances the mitochondrial localization of Gpx3 most likely by target-
ing Gpx3 via TOM, however whether this MTS interacts with TIM23 of some other inner membrane component is currently unknown. () Some slowly folding
proteins in the cytosol can be transported into the IMS in an unfolded state, probably through the TOM, where increased folding kinetics leads to their retention
in the IMS (e.g. Adk1 and Ccs1). Little is known however about the actual import pathway of this subset of IMS proteins.

Pam18, they could show that Pam18 association the TIM23
complex (TIM23MOTOR) inhibited the lateral release of hydro-
phobic protein sequences, suggesting that Pam18 blocks the
lateral gate of Tim23 [60]. A second conformation of the
TIM23 complex containing Tim21 (TIM23SORT) is instead
used for the partitioning of hydrophobic sequences into the
inner membrane [61] aided by the gatekeeping protein Mgr2
[59,62]. Following lateral release, the matrix targeting prese-
quence is cleaved by the matrix processing peptidase (MPP),
while a second cleavage by the Imp1 or Imp2 proteases in the
IMS releases the final mature protein domain in the IMS [56].
This prototypical stop-transfer pathway relates mainly to
early work on cytochrome b2 and cytochrome c1, the most
well-characterized stop-transfer substrates [63-65]. Further
substrates with slightly altered characteristics have been ident-
ified in both human and yeast cells. Pro-apoptotic factors such
as Aif [66], endonuclease G [67] and Smac/DIABLO [68] have
all been identified in human cells as stop-transfer IMS proteins,
although their import requirements have not been examined in
detail [69]. The inner membrane protease PARL was however
shown to process a Smac intermediate within the transmem-
brane stop-transfer sequence to yield the mature protein [70].
In yeast, the GTPase Mgm1 and the cytochrome c peroxidase
Ccpl1 contain a unique stop-transfer-like mechanism. Both pro-
teins contain two transmembrane domains downstream of
matrix-like targeting signals and require multiple protease
cleavage events to mature correctly [71,72]. Mgm1 actually
exists in two forms, a long and a short isoform, both essential
for mitochondrial morphology and fusion. The stoichiometry
of these two essential protein isoforms seems to be controlled
by the levels of ATP within the matrix, with low levels leading
to accumulation of the long isoform and aberrant mitochon-
drial morphology due to incomplete transport of the
N-terminal presequence domain into the matrix [71]. The

S. cerevisite NADH dehydrogenase 1 (Ndel) was recently
shown by Saladi et al. [73] to be targeted to the IMS via a trans-
membrane stop-transfer sequence, although no processing
within the IMS seemed to occur with the protein remaining
attached to the inner membrane. Ndel is dually localized in
both the IMS and the cytosolic face of the outer membrane.
Interestingly, a reduction in the mitochondrial inner mem-
brane potential increases the cytosolic localization of the
protein and enhances proteasomal degradation of the soluble
domain of Ndel leading to apoptotic cell death. Interestingly,
the transmembrane stop-transfer domain seemed to be
embedded in the inner membrane even when the membrane
potential was completely dissipated prior to import [73]. The
S. cerevisiae type 2C protein phosphatase Ptc5 was identified
in a recent proteomic study as a component of the IMS and
contains a hydrophobic stop-transfer domain that is pro-
cessed by Imp1 [2]. Stehlik et al. [74] recently showed that
Ptc5 is dually localized to both the IMS and the peroxisome
and that peroxisomal localization was dependent on initial
mitochondrial targeting and IMS retention by the stop-
transfer sequence, as well as processing by Imp1. The exact
mechanism of how Ptc5 can exit the IMS or is stalled prior
to complete entry remains to be elucidated but likely involves
an interaction between the C-terminal peroxisome targeting
motif of Ptc5 and the peroxisomal cytosolic receptor Pex5 [74].

5.2. A myriad of IMS proteins with atypical or unknown
import pathways
5.2.1. Cytochrome c/cytochrome ¢ haem lyase

Many IMS proteins are not substrates of the Mia import path-
way and do not contain a stop-transfer sequence. This means
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that they must be imported into the IMS via other, unconven-
tional pathways. The most well characterized of these is the
route taken by apo-cytochrome ¢ and CCHL. Cytochrome c
is localized on the IMS side of the inner mitochondrial mem-
brane and acts as an electron carrier, transferring electrons
from complex III to complex IV of the respiratory electron
transport chain [75]. Apo-cytochrome c is translocated across
the outer membrane via the Tom40 pore. Once in the IMS it
accepts a haem cofactor from the IMS-localized CCHL result-
ing in the functional form of the holoenzyme cytochrome c
[76]. The incorporation of the haem cofactor results in stably
folded cytochrome ¢ which, unlike the unfolded apo-protein,
is prevented from retro-translocation through the Tom40
pore into the cytosol [77]. CCHL import is facilitated by the
outer mitochondrial membrane receptor Tom20, which recog-
nizes an internal hydrophobic targeting signals within CCHL
[78,79]. The import of apo-cytochrome c on the other hand is
independent from either the Tom20 or Tom70 receptors but
dependent on Tom22, possibly due to the IMS-localized seg-
ment of Tom22 [80,81]. Apo-cytochrome ¢ has also been
shown to directly interact with lipids which perhaps make
up for a requirement for the cytoplasmic Tom20 and Tom?70
receptors [80]. The energetic driving force for outer membrane
translocation of both apo-cytochrome c and CCHL remains to
be resolved but their import does not involve ATP hydrolysis
or AY¥ across the inner membrane.

5.2.2. Adk1

In S. cerevisine, adenylate kinase Adk1 is dually localized in
both the cytosol and the mitochondrial IMS. This protein is
a phosphotransferase which plays a crucial role in oxidative
metabolism by converting ADP to ATP in the IMS [82]. A
difference in the folding kinetics of the protein in the cytosol
and the IMS has been implicated as a critical factor in the
retention within the IMS [83]. However, the N-terminus
may also act as a weak mitochondrial targeting signal that
interacts with outer membrane receptors, such as Tom20 or
Tom?70 [84]. Internal targeting signals are likely to also play
a role as some import of Adkl into the IMS can still be
observed even when the weak N-terminal targeting signal
is removed [85].

5.2.3. Gpx3

The yeast glutathione peroxidase Gpx3 (also known as
Orpl and Hyrl [86]) is another protein which displays a
non-conventional import pathway. S. cerevisize encodes three
glutathione peroxidases (Gpx1l, Gpx2 and Gpx3) while
humans encode eight (Gpx1-8). These proteins are essential
for scavenging H,O, and therefore reducing potentially harm-
ful effects of ROS, especially in the generation of lipid
peroxides which affect membrane stability and permeability.
Using the term Gpx to describe these enzymes is not strictly
true given that they do not depend on glutathione for their
function, in reality they are thiol peroxidases which use
internal thiols to detoxify H,O, [87]. Yeast Gpx1 is loosely
associated with the cytosolic leaflet of the outer mitochondrial
membrane where it acts as a lipid peroxidase to detoxify outer
membrane lipid peroxides [88]. Yeast Gpx2, on the other hand,
is associated with the matrix leaflet of the inner mitochondrial
membrane where it also functions as a lipid peroxide scaven-
ger [89]. Yeast Gpx3 is the major cytosolic peroxide sensor

which acts as a stress response transducer interacting with [ 6 |

and activating the translation factor Yap1 [87]. A recent pro-
teomic analysis identified Gpx3 as a component of the IMS
suggesting a novel mitochondrial import mechanism [2].
Under hydrogen peroxide stress, the translation of Gpx3 is
initiated at an upstream non-AUG start codon generating an
N-terminally extended peptide exhibiting increased import
into the mitochondrial IMS (figure 3b) [30]. The role of Gpx3
in the IMS is yet to be elucidated although mutants do display
abnormal morphology and reduced membrane potential pheno-
types. It seems logical to think that Gpx3 acts, at least partially, as
a lipid peroxidase at the IMS leaflet of the inner membrane in a
similar fashion to Gpx2 on the matrix side of the membrane. It is
noteworthy that non-extended Gpx3 is also IMS-localized
regardless of increased hydrogen peroxide stress, however its
import pathway remains to be elucidated [30].

5.2.4. Prx1

Yeast peroxiredoxin (Prx1) is a thioredoxin peroxidase first
identified in the mitochondrial matrix and acts as a H,O, sca-
venger [90]. Prxl contains an N-terminal mitochondrial
targeting sequence which is cleaved by MPP in the matrix.
The mature protein is formed following a subsequent pepti-
dase cleavage event in the matrix facilitated by Octl [91].
An IMS-localized version of Prx1 was recently identified
which was released into the IMS by cleavage of the
N-terminal signal sequence by the IMS protease Imp2. This
localization seems to be dependent on a mildly hydrophobic
stretch of amino acids at the end of the presequence, resulting
in partitioning into the inner membrane following arrest in
the Tim23 channel as opposed to full translocation into the
matrix, a mechanism similar to the stop-transfer process [92].

5.2.5. Sod1/Ccs1

The Cu/Zn superoxide dismutase (Sod1) catalyses the con-
version of highly destructive superoxide radicals (O7) into
hydrogen peroxide. The majority of cellular Sod1 resides in
the cytosol, but a small fraction is also found in the IMS
alongside the dedicated Sod1 chaperone Ccs1 which provides
a copper ion and introduces a disulfide bond in Sod1, both of
which are required for the Sodl enzyme maturation [93].
While the levels of Sodl and Ccsl in the IMS are small in
comparison to steady-state levels in the cytosol, the small
volume of the IMS probably means the local concentration
in this sub-compartment is actually very high as might be
expected due to the large quantities of O™ released into the
IMS by the respiratory electron transport chain. The import
pathway of Sod1 remains unknown but likely follows a simi-
lar pathway to that proposed for Trx/Trr (see below). The
IMS levels of Ccsl are the limiting factor for Sod1 activity
and the import pathway for Ccsl has been relatively well
characterized in both yeast and humans. In yeast, unfolded
Ccsl is a substrate for the Mia40 import pathway. Slow fold-
ing kinetics in the cytosol allow the unfolded form to be
imported and retained in the IMS (figure 3c) [50,94]. In
human cells, Ces1 is not imported via the Mia40 (CHCHD4
in humans) pathway but instead requires a cytosolic version
of itself for mitochondrial import. Once in the IMS, ROS
levels determine the oxidative folding rate of Ccsl, and
therefore its retention in this compartment [95].



5.2.6. Trx1/Trr

The yeast thioredoxin Trx1 is an important enzyme involved
in the reduction of protein disulfide bonds for the mainten-
ance of cellular redox homeostasis. Trx1 contains catalytic
cysteine residues that transfer electrons to oxidized substrates
breaking intramolecular disulfides. Reduction of oxidized
Trx1 is then facilitated by thioredoxin reductase Trrl which
shuttles electrons from NADPH [86,96]. Both Trx1 and Trrl
have been identified in both the cytosol and the mitochon-
drial IMS although their mitochondrial import pathway
remains unknown. Neither protein contains a mitochondrial
presequence, although the presence of multiple cysteines,
combined with their small size may implicate an oxidative
folding mechanism (for example, via Mia40) as being
responsible for their retention in the IMS [33].

5.2.7. Ynk1

Yeast nucleoside diphosphate kinase Ynk1 exhibits dual local-
ization between the cytosol and the mitochondrial IMS and
exhibits a unique import mechanism. Ynk1 needs to be both
unfolded and unphosphorylated in order to be imported
through direct interactions with the Tom40 channel at the
outer membrane, although a specific targeting signal is yet
to be elucidated [97]. It is possible that the inclusion of a nega-
tively charged phosphate within a targeting region alters the
charge balance and thus interactions with the acidic patches
on the surface of the Tom40 pore [39]. The function of Ynkl
in the IMS remains enigmatic although it has been hypoth-
esized that it supplies GTP for mitochondrial biogenesis [98].

While many of the described import pathways have been
relatively well characterized, the energy source(s) driving
the import of many of these IMS proteins remains largely
ambiguous. Several proteins containing a stop-transfer signal
rely on the inner mitochondrial membrane potential for their
maturation as might be expected due to the translocation of
an N-terminal targeting sequence into the matrix, for example
cytochrome b2 and Ptc5. However, other stop-transfer signal
containing proteins like Ndel do not require the inner
membrane potential. Even less is known on the energetic
mechanisms that facilitate transport into the IMS for unconven-
tionally imported proteins that do not have a stop-transfer
signal. It is possible that many dually localized proteins enter
the IMS due to slow folding kinetics in the cytosol and are sub-
sequently folded in the constricted environment of the IMS
allowing their retention. Another intriguing possibility is that
some proteins may be able to traverse the outer membrane in
a partially folded state through interactions with currently
unknown translocase complexes in the outer membrane, in
a similar manner to the recently discovered AAA-ATPase
Bes1-Rieske protein translocation mechanism at the inner
mitochondrial membrane [99] (figure 3).

Numerous diseases are caused by dysfunctional proteins
within the IMS. Although a relatively constrained compart-
ment with a small volume, the IMS contains a number of
proteins critical for proper mitochondria and cell function.
The variation in disease phenotypes from IMS protein dys-
function mirrors the functional diversity within the IMS
proteome and consolidates the importance of this sub-

compartment in both mitochondrial and cellular function.

This section will highlight some of the most well-studied
examples of IMS proteins that are implicated in disease.

Several Mia40 (CHCHD4 in humans) substrate proteins have
been implicated in a variety of human diseases [100-103]. The
human homologue of Ervl, called ALR, is linked to multiple
diseases. Three accounts of a familial R194H mutation in ALR
have shown that this results in a mitochondrial myopathy that
causes respiratory chain deficiency, dystonia, deafness and
lactic acidosis [104-106]. At a cellular level the reason for these
effects is likely the failure of R194H ALR to import into the
IMS which accumulates instead in the cytosol. Although there
is a cytosolic form of ALR in addition to the mitochondrial
form, this over-accumulation in the cytosol results in toxic
effects, while the absence of ALR from the IMS causes a drastic
dysfunction to the CHCHD4 pathway as reoxidation of
CHCHD#4 is impaired. Furthermore, ALR is thought to acceler-
ate the progression of hepatocellular carcinomas although the
molecular mechanism is yet to be elucidated [107].

Many of the small twin CX3C and CX9C containing pro-
teins are attributed to diseases [101,108-110]. The IMS
chaperone component Timm8A (DDP1) is responsible for
the import of the Tim23 protein implicated in the assembly
of the respiratory complex IV in neuronal cells [110,111].
Mutations in DDP1 result in the Mohr-Tranebjaerg syndrome
which causes neurodegeneration, dystonia and deafness
[112-116]. The cause of this condition is a mutation in one
of the structural CX3C motif cysteines to a tryptophan
(C66W) [117,118]. As this cysteine docks to Mia40 to form
an intermolecular disulfide bond, lack of this cysteine residue
results in abolished import of DDP1. The knock- on effect of
this is dysfunction of the Tim23 import translocase which in
turn determines the import of a plethora of inner membrane
and matrix localized proteins. The neurodegenerative pheno-
type seen in patients with mutations in DDP1 could also be
caused by assembly issues with complex IV as DPP1 knock-
out cells show depleted assembled complex IV levels [110]. In
neuronal cells, DDP1 interacts with the complex IV assembly
factors Cox17, Cox6B1, Coa7 and Coa4 and aids in the assem-
bly of complex IV [110]. DDP1 (C66W) mutant cells have
decreased complex IV, increased oxidative stress levels and elev-
ated pro-apoptotic factors. This effect could be partially rescued
with vitamin E supplementation which can detoxify lipid per-
oxides probably produced by dysfunctional complex IV.
Mutations in a second CHCHD4 substrate and Complex IV
assembly factor, COA6, are responsible for a neonatal hyper-
trophic cardiomyopathy that causes a severe complex IV
deficiency [119,120]. The mutation of a tryptophan to arginine
at position 66 (W66R) is likely to cause import and /or structural
defects to the protein. Although there are a relatively small
number of known CHCHD4 substrates that are involved in res-
piratory chain biogenesis it is intriguing that mutations in some
of them cause several pathologies, in many cases linked to
assembly defects of the cytochrome oxidase (COX) complex.
The COX assembly factor COA? is such an example. A patient
with heterozygous mutations in COA? resulted in no detectable
COA7, a complex 1V deficiency and neurological impairment
[121]. Interestingly, a second study showed that the reason
that no COA? could be detected was due to a lack of protein
import and subsequent proteasomal degradation in the cytosol



Table 1. IMS proteins in disease.

Mia40
protein substrate
name function (Y/N) mutation related disease references
ALR disulfide relay Y R194H mitochondrial myopathy and [104-106]
respiratory chain deficiency
Timm8a IMS chaperone (66W Mohr- Tranebjaerg syndrome [110,112,113,115,116,118]
o complek v e cérdioehcéphéldmyopéthy T H[138]‘ ..... o B
assembly
‘C‘oa6‘ ‘ omplex V. » FY‘ ‘ W59C¥ W66Rb rieohafai bhyp‘er‘trbobh‘it >[119,1‘2‘O] bbbbb
assembly cardiomyopathy
Coa? complexes | and IV Y YI37¢ mitochondrial I‘ehkoénceph;‘alopat‘hy ‘ >[121,1‘22‘]‘ ‘
assembly and cytochrome ¢ oxidase
deficiency
(ox6B1 complex IV Y RT9H severe infantile encephalomyopathy [139]
assembly and mitochondrial complex IV
deficiency
NDUFBTO complék >Ibabsbsér>nbbly Y aess lactic acidosis and carbdiom)‘/opéthyb H[140]‘ bbbbb
CHCHD2 cristae junction Y T61l PD, AS, ALS and FTD [101,108,109,125,126]
maintenance
CHCHD10 cristae junction Y P34S, V57E, G58R, S59L, PD, AS, ALS and FTD [109,124,127,141,142]
maintenance G665, G66V, C122R,
E127K
Micu mitochondrial Y homozygous deletion rhyopathy, néufdlogical syn‘lptoms‘ >[128,1‘29,131]
calcum and mitochondrial disorders
homeostasis
AIF respiratory chain N T260A, L344F, G360R, neonatal mitochondriopathy and [103,133,134]
biogenesis R422W, R422Q, late-onset axonal polyneuropathy
R430C, R451Q,
A4T2V, P4T75L,
V498M, 159TM
Opal  mitochondrial N | GAOTD, R445H, GASBR, optic atrophy, deafness, ataxia, me
membrane inner A495 'V, S545R myopathy, neuropathy and
membrane progressive external
fusion ophthalmoplegia

[122]. Mohanraj et al. showed that in isolated patient fibroblasts
the complex IV deficiency could be reversed upon treatment
with the proteasomal inhibitor MG132, this suggests that
the mutant form of COA? is capable of assembling complex
IV when imported but the kinetics of import are too slow result-
ing in proteasomal degradation [122].

Two proteins with typical CX9C cysteine motifs called
coiled-coil-helix-coiled-coil-helix domain containing protein 2
(CHCHD2) and 10 are linked to several neurodegenerative
diseases such as Parkinson’s disease (PD), AS, ALS and fronto-
temporal lobe dementia (FTD) [108,109,123,124]. Although
both proteins are Mia40 substrates several studies have shown
that many of the mutations linked to neurodegeneration are
not located near the CHCH domain that is responsible for
their import into the IMS [109,125]. Instead CHCHD?2 appears
to aggregate inside mitochondria resulting in increased

oxidative stress and apoptosis [126]. CHCHD? even has prion-
like properties whereby the mutant form of the protein can
cause the wild-type to precipitate. The function of CHCHD? is
not well understood. CHCHD10 on the other hand is thought
to play a role in maintaining mitochondrial cristae junctions
and has links with the diseases ALS and FTD [124,127].

One critical function of mitochondria is regulating calcium
homeostasis within the cell. Two regulatory subunits of the
calcium uniporter MCU (mitochondrial calcium uniporter)
in the mitochondrial inner membrane are involved in this
regulation, MICU1 and MICU2. Although MICU1 possesses
a mitochondrial targeting sequence, CHCHD4 is responsible
for the formation of an intermolecular disulfide bond between
MICU1 and MICU2 which is important for both proteins func-
tion and stability. Numerous mutations have been identified
within MICU1 and MICU2 which cause myopathy,
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neurological symptoms and mitochondrial disorders
[128,129]. Interestingly, both MICU1 and MICU?2 are thought
to bind the abundant inner membrane phospholipid cardioli-
pin [130]. The fact that MCU requires cardiolipin for stability
suggests that MCU may play a role in the pathogenesis of
Barth syndrome, a condition that causes a reduction in cardi-
olipin [131]. Future studies will help address the specific role
of cardiolipin on MICU1 and MICU?2 function and assembly.

6.2. Other IMS proteins in disease

The IMS-facing protein apoptosis inducing factor (AIF) is one
such example of an IMS protein implicated in disease that
does not require Mia40 for its import. AIF is imported via the
stop-transfer pathway (see §5.1) although its function is not
completely understood [103,132]. AIF interacts with
CHCHD#4 and is thought to regulate the import and tethering
of CHCHD4 to the inner membrane [13]. Several studies have
found mutations within AIF which have resulted in various
diseases such as neonatal mitochondriopathy and late-onset
axonal polyneuropathy [133-135]. Many of these mutations
result in mitochondrial DNA loss and respiratory complex
deficiencies, particularly complexes III and IV. Mutations that
destabilize AIF could in turn affect the function of CHCHD4
in import of several assembly factors for complexes I and IV.
This could provide a plausible mechanism explaining the res-
piratory complex deficiencies associated with AIF mutations.
The protein OPAL is one of the most common causes of
autosomal dominant optic atrophy. OPA1 is a dynamin-
related GTPase that is responsible for the stabilization of
the mitochondrial network due to its promotion of mem-
brane fusion [136,137]. A plethora of different mutations
have been identified in the gene which results in several
different disease manifestations often comprising of two
or more of the following clinical features: optic atrophy,
deafness, ataxia, myopathy, neuropathy and progressive
external ophthalmoplegia [136]. Many of these features are
attributed to several mitochondrial diseases highlighting the
importance of OPA1 in mitochondrial homeostasis. A full
summary of IMS proteins in disease can be found in table 1.

7. Discussion

The mitochondrial proteome is encoded up to 99% by nuclear
genes, and only 13 mitochondrial proteins are encoded by the
mtDNA. The most recent analysis of the human mitochondrial
proteome annotated a total of 1136 proteins in human mito-
chondria [4]. From these, only 53 proteins (5%) are localized
in the IMS, whereas the other mitochondrial aqueous compart-
ment, the matrix, houses almost 10 times as many proteins i.e.
525 polypeptides (46% of the total proteome). It is therefore
very striking that although all matrix-targeted proteins are
imported via one common pathway, targeting to the IMS is
far more variable employing, as outlined in this review, an
array of several different pathways. These IMS import path-
ways rely on (i) a variety of targeting peptides not sharing
common features with each other and (ii) employ different
sources of energy, which are neither the ATP hydrolysis in
the matrix nor the inner membrane electrochemical potential
(figure 4). For the majority of IMS-resident proteins retention
in this compartment therefore depends on protein—protein,
protein-ligand and, potentially, protein-lipid interactions.
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Figure 4. Energy inputs during mitochondrial protein import. The transloca-
tion of proteins across multiple lipid bilayer membranes, as is the case during
mitochondrial import, requires energy inputs at various stages. (1) In order to
pass across the outer mitochondrial membrane proteins often need to be
maintained in an unfolded conformation by cytosolic chaperones such as
Hsp70 and Hsp90. The first energy input often comes when these chaperones
are released from the unfolded precursor via ATP hydrolysis at the outer sur-
face of TOM. (2) A second energy input is required for initial translocation
across the inner mitochondrial membrane. An intact membrane potential
generated by proton pumping respiratory complexes is required for the trans-
location of positively charged MTS signals. (3) Further ATP hydrolysis steps are
required for the further translocation of downstream protein segments into
the matrix via the PAM motor. A number of IMS proteins show no depen-
dence on membrane potential or ATP hydrolysis which leads to intriguing
questions about the energy requirements for the outer membrane
translocation of these proteins.

The IMS is also very constricted in volume and highly
segregated between the intra-cristae lumen which is separ-
ated by the rest of the IMS by the cristae junctions, and the
bulk IMS which is delineated by the boundary IM and the
OM. The small volume of the IMS combined with the internal
compartmentalization of the IMS suggest that local protein
concentrations may be very high. Consequently, the balance
between productive folding and concentration-dependent
aggregation is particularly critical for the biogenesis, function
and homeostasis of proteins residing in this mitochondrial
compartment. This concept is all the more important (and
often not taken into consideration) given the increasing
number of proteins that are found dually localized between
the IMS and the cytosol. Two main classes of dedicated
ATP-independent chaperones exist in the IMS to overcome
potential problems of aggregation: (i) the small Tim chaper-
ones that assist the passage across the IMS of membrane
proteins en route to be inserted in the outer and inner mem-
brane and (ii) the Mia40 protein that ensures the folding of
many of the IMS-resident proteins. It would be interesting
to investigate whether these chaperone systems have an
additional role in the import and/or retention of dually loca-
lized proteins in the IMS. Furthermore, it will be exciting to
explore the still elusive links between the internal mitochon-
drial structure (ensured by proteins like the MICOS complex
that are not directly involved in protein import) and the IMS
protein import pathways (figure 4).
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