Chromosomal transformation in Bacillus subtilis is a non-polar recombination reaction

Carrasco, B., Serrano, E. , Sánchez, H., Wyman, C. and Alonso, J. C. (2016) Chromosomal transformation in Bacillus subtilis is a non-polar recombination reaction. Nucleic Acids Research, 44(6), pp. 2754-2768. (doi: 10.1093/nar/gkv1546) (PMID:26786319) (PMCID:PMC4824099)

[img] Text
236162.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial.



Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3′- or 5′-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5′ and 3′ complementary ends, but only initiation at the 5′-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3′-end of the duplex. We show that RecA-mediated recombination initiated at the 3′- or 5′-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Serrano, Dr Ester
Authors: Carrasco, B., Serrano, E., Sánchez, H., Wyman, C., and Alonso, J. C.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Nucleic Acids Research
Publisher:Oxford University Press
ISSN (Online):1362-4962
Published Online:18 January 2016
Copyright Holders:Copyright © 2016 The Authors
First Published:First published in Nucleic Acids Research 44(6): 2754-2768
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record