
 

 
 

 

 

 

 

 

 

Chaudhury, K., Kar, S. and Chakraborty, S. (2016) Diffusive dynamics on paper 

matrix. Applied Physics Letters, 109(22), 224101. (doi: 10.1063/1.4966992) 

 

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 
 
 
 
 
 
 

http://eprints.gla.ac.uk/235791/ 
 
      
 

 
 
 

Deposited on 14 April 2021 

 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://dx.doi.org/10.1063/1.4966992
http://eprints.gla.ac.uk/235791/
http://eprints.gla.ac.uk/


Diffusive dynamics on paper matrix 

Kaustav Chaudhury 1, Shantimoy Kar 2, and Suman Chakraborty 1, 2* 

 

1 Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 

Kharagpur – 721302, India 

2 Advancement Technology Development Centre, Indian Institute of Technology 

Kharagpur, Kharagpur – 721302, India 

 

 
* Corresponding author, email: suman@mech.iitkgp.ernet.in 



1 

ABSTRACT 

Writing with ink on paper and rapid diagnostics of diseases using paper cartridge, 

despite their remarkable diversities from application perspective, both involve the 

motion of a liquid from a source on porous hydrophilic substrate. Here, we bring out a 

generalization in the pertinent dynamics, by appealing to the concerned ensemble-

averaged transport, with reference to the underlying molecular picture. Our results 

reveal that notwithstanding the associated complexities and diversities, the resultant 

liquid transport characteristics on paper matrix, in a wide variety of applications, 

resemble universal diffusive dynamics. Agreement with experimental results from 

diversified applications is generic, and validates our unified theory. 
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MAIN TEXT 

 From the dawn of modern civilization, writing on a piece of paper with an ink has 

been one of the preferred modalities of transferring knowledge and information in 

documented form, from one generation to other 1,2. On a different note, beginning of 

this century has witnessed another emerging prospect of a paper matrix: acting as the 

essential building block of a rapid diagnostic kit for testing blood, urine, and saliva 

samples in ultra-low-cost paradigm 3–5. Such apparently diversified applications of 

spreading hydrodynamics across a paper matrix are all attributable to the remarkable 

transport characteristics through the topographically complicated fibrous networks 

constituting a paper 6–9. Despite the fact that capillary imbibition and transport on 

porous substrates have been studied for decades, any unified understanding on how 

liquid transports on a paper, remains elusive. In the literature, various models have 

been put forward to explain the underlying physical phenomena 6–12. However, most 

of these models are complex and problem-specific in nature, with conflicting 

implications at occasions. This deficit stems from the complexities in generalizing the 

underlying physics through a simplified paradigm, amidst the diversities in the 

pertinent applications. 

Here, we unveil universal diffusive characteristics of liquid transport on a paper 

matrix, notwithstanding the underlying diversities hallmarked by the requirements of 

specific applications. By mapping the single micro-capillary flow behavior onto the 

spatially distributed network through the ensemble orientation characteristics of the 

constituent fibers, we effectively draw an analogy with the diffusion due to complex 

migration characteristics of molecules or particles 13–15. This culminates in effective 

diffusive transport behavior on paper, brought about propelling of liquid through the 

spatially oriented tortuous fiber network. Resolving the apparent anomalies in various 

models describing transport phenomena on a paper matrix in case-specific scenarios, 

our conceptual paradigm appears to bring in a generalization by providing a simple 

and consistent accounting of notable reported observations ranging from liquid 

imbibitions, mixing and separation, to the hydrodynamics of writing. 

 We first depict a representative scanning electron micrograph of the distributions 

of the capillaries in a paper (Fig. 1, analyzed for Whatmann grade 1 filter paper). The 

micrograph shows random distribution of the capillaries. A quantitative depiction of 
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the orientation and distribution of the constituent capillaries in a paper matrix can be 

ascribed through the orientation angle of each capillary with respect to a fixed datum 

16. In particular, the standard deviation of the orientation angles connotes the resultant 

distribution of the capillaries. This fundamental understanding is the key essence in 

mathematical representation of the spatial d istribution of the fibers in various 

substances ranging from near-isotropic, machine direction oriented and unidirectional 

media 16. The near isotropic distribution is characterized by the high magnitude of the 

standard deviation of the orientation angles (typically greater than o40  16).  

 

Fig. 1. Random porous matrix of Whatman filter paper (grade 1). Scanning electron 
micrograph (SEM) shows the distribution of the pores. The velocity field  (in-plane) 
during a liquid flow through these pores, obtained from micro-particle image 
velocimetry (μ-PIV ), is shown in the inset. Details of the μ-PIV  analysis considered 

in the present study are provided in the supplementary document. The length estimate 

shown here is for the SEM image. A schematic of the force distribution on each pore, 

forming the basis for the present analysis, is shown for a representative sample. 

 

 The micrographic structure of Whatmann filter paper (grade 1), as shown in Fig. 1, 

has standard deviation of 
o67  for the orientation angels of the constituent capillaries. 

Thus, quantitatively, we can consider the capillary distribution as near-isotropic 17. 

Such typical capillaries find applications in microscale analytical devices and writing 

platforms. The randomness in the liquid motion is also apparent from the velocity 

distribution during liquid flow through paper matrix (cf. PIV  image in Fig. 1). 

 Amidst the ensemble network of the capillaries composing the paper, let us 

consider a single capillary with hydraulic radius R . Let   denote the displacement of 

the liquid column within this capillary. The liquid transport dynamics within the 
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sample capillary can be described by the force balance equation (see also Fig. 1): 

( )2 2 cos 8t tt
R R     = − , where   is the density,   is the viscosity,   is 

the liquid-air surface tension, and   is a dynamically evolving contact angle. The 

subscript t  represents derivative with respect to time t . Here, the right hand side is 

the resultant force, which is a combined consequence of driving interfacial tension 

and retarding viscous resistance. The liquid transport equation can be recast as 

( ) * *

t tt
u  = − , where * 2 8R  =  and ( )* 2 cosu R  = . Here *

t   

describes the viscous dissipation with *  being the characteristic time scale for 

viscous diffusion of momentum, and *u  accounts for the work (per unit mass) 

required to carry out the liquid transport. As a consequence, liquid transport dynamics 

is governed by the rate of energy change ( )t t
  in the system.  

 The average pore size of the capillaries constituting a paper usually varies from 

around 310−  to 110  microns 18,19. Over such length scales, molecular scale interactions 

are likely to offer significant impact into the underlying transport 20–26. Molecules of 

liquid, air and the capillary surface constitute the vicinity of the moving contact-line 

in a capillary. However, due to the intermittent motions of the molecules, molecular 

exchange between the species takes place which can be characterized by the 

frequency   and the length   of a displacement. From molecular viewpoint 24,27, the 

wetting process can be viewed as an activated rate process governed by the theories of 

reaction rates, resulting from the intermittent molecular jumps. The work done by the 

surface tension force, proportional to ( )0cos cos  − , with 0  being the equilibrium 

contact angle, results in the disturbance of the wetting equilibrium, leading to the 

contact-line motion 24,27 t = =
02 ( )sinh 2 Bnk T ( )0cos cos −   , where n  is 

the number (per unit area) of sites on the capillary wall at which molecules are 

adsorbed while jumping with effective jump displacement   and equilibrium jump 

frequency 0 . The other parameters include: Boltzmann constant Bk  and temperature 

T . Comprehensive details are provided in the accompanying supplementary 

document. 

 We next ensemble average the capillary transport equation. The resultant equation 

reads as ( )t t
 = *u − *

t  . In this case *u = ( ) 02 cosR   −  
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( )4 Bnk T R ( )1 0sinh 2t  − , and *

t   = * 1

t  − . Here, we consider 

avgR R= , as the average pore size of the capillaries constituting the paper matrix. 

From our micro-particle-image-velocimetry ( PIV ) based scrutiny (Fig. 1), it is 

evident from the random velocity field that the liquid has equal probability to move in 

any direction through the isotropically distributed capillaries constituting the paper 

matrix. Thus, without any loss of generality, one can consider 0t = . We further 

note ( )1 22t t
 −=  , leading to ( ) ( )1 2 1 22 2t t t

  − −= = , where  2  

describes the mean square displacement. The ensemble average operation finally 

yields 
tt = u − 1

t  −  where 2 =  describes the mean square displacement. The 

other factors read as u = ( ) 02 cosavgR   , and 
2 8avgR  = . The above differential 

equation has an analytical solution: 2 =
22u ( ) ( )1 expt t − + −   . 

 It is important to mention that the above analytical form bears a similarity with the 

equation describing the liquid front propagation dynamics within a capillary 28. While 

the reported study 28 unveils the subtleties of liquid filling dynamics through a single 

capillary, the present analysis describes the ensemble behavior of the liquid spreading 

through the randomly distributed multiple capillaries. Therefore, despite the apparent 

similarities, there is a striking difference in the physical consequences between the 

present and the reported study 28. This critical aspect can be appreciated from the 

analysis of liquid propagation dynamics at different time scales. 

  For liquid filling through a single capillary, one can obtain an inertial or inviscid 

regime and viscous or the celebrated Bell-Cameron-Lucas-Washburn (BCLW) regime 

of operation 29. The consequent demarcation is with respect to the viscous and 

capillary time scales. In particular, the BCLW regime is hallmarked by the balance of 

viscous and capillary forces in which the operating time is of the order of the viscous 

time scale, observed at the late stage of the filling event 29. At early stage, however, 

the inertial effect dominates over the viscous effect and the former is balanced by the 

capillary force. The corresponding time scale characterizing this regime is the inertial-

capillary time scale 29. 
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 For the present situation under consideration, we can identify a characteristic time 

scale 
2 8avgR  =  defining the underlying phenomenology. At long time 1t   , 

the resulting equation approximates to 2  ( )2u t . In contrast to the single 

capillary dynamics 29, here the equation describes the ensemble behavior of random 

liquid motions in different possible directions through the isotropically distributed 

random capillaries constituting the paper matrix. Thus, the present notion bears an 

analogy with the molecular diffusion process due to random motions of the molecules 

30. Accordingly, we can ascribe the liquid propagation through paper as an effective 

diffusion process at late stage, given by 2 Dt=l , with D  being the diffusivity, and l  

being the diffusion length. Here D = 2u = 2 ( )02 cos avgR    

( )2 8avgR  = 0cos 2avgR    . The other limit of early stage asymptote (at 1t   ) 

describes ( )2 22u t=l , which conforms to the ballistic dynamics of liquid 

propagation.  

 It is important to mention that the diffusion dynamics obtained in our study 

eventually results in a Fickian diffusion process within the fibers. However, non-

Fickian diffusion scenarios may also arise when the mean free path of the fluid 

molecules are of the order of the diameter of the microcapillary under consideration 

31,32. This is often seen in the microporous layer of a fuel cell electrode 31,32. The 

present study, however, considers the transport of liquids, mostly aqueous solutions 

considered in paper based microfluidic applications. Under those circumstances, 

however, the mean free path of the fluid is much smaller than the diameter of paper 

microcapillaries (for example 10μm  for Whatman grade 1 paper). Therefore, the 

liquid transport dynamics can be sufficiently represented by the above mentioned 

model consideration along with the possible overlap with the molecular dynamics, as 

shown here. 

The simple dynamical analysis portrayed as above holds the capability of explaining a 

plethora of complex fluidic operations on a paper matrix. Some such examples are 

presented subsequently. 

 Liquid imbibition: In paper microfluidics, a liquid sample traverses through paper 

matrix. We cite a few pertinent experimental observations 18,33, and put these in 
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perspectives of the imbibition dynamics following the present paradigm (Fig. 2). 

According to our model, 2 Dl  appears to be a unique function of t  , irrespective 

of the system considered. The experimental observations appear to be consistent with 

this notion (Fig. 2). From the host of data, we consider a representative sample of the 

transport of water ( 3 310 kg m = , 310 Pa-s −= ) through Whatman filter paper 

(grade 1) ( 5.4μmavgR = ). This shows 
2 8 3.65μsavgR  = =  whereas the 

experiments are observed over the time scale of 100s . Thus, the usual experimental 

observations are well within the long time ( 1t   ) asymptotic regime of diffusive 

dynamics 2 Dt=l ). 

 

Fig. 2. Temporal progression of liquid fronts through paper matrix, following the 
present theory (solid line), as compared to reported experimental observations 

(markers) 18,33. The thermophysical properties of the liquids, characteristics of the 

papers, and other physical parameters are in accordance with the Refs 18,19,33–38.  
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Mixing and separation of analytes: We next highlight the application of our model 

towards understanding the mixing and separation of analytes, while two adjacent 

liquid streams move parallel to each other through a paper matrix 39 (shown 

schematically in Fig. 3a, while looking at a paper strip from the top). Usually, 

microfluidic channels are designed on paper matrices with the boundaries marked 

with hydrophobic barriers. The barrier prevents leakage of liquid outside the domain 

under consideration. This is a paper based analogue of parallel stream lamination in 

microfluidic channel. Often Y shaped channels are considered for studying mixing. 

 

Fig. 3. Mixing and separation of analytes in a paper microfluidic channel. (a) A 
schematic representation of the situation, while looking at a paper strip from the top. 
Distributions of different fluids, introduced from the left edge, are shown in different 

shades. The diffusion bordering earmarks the region across which the concentration 
changes from one value to another due to diffusion. (b) Transverse distribution of 

concentration and comparison with Rezk et al. 40. We consider normalized transverse 

distance ( )4 0.5y= −  in our model, in order to permit origin shifting for the sake of 

having common basis for comparison with Rezk et al. 40. (c) Axial variations in the 
width of diffusion bordering. Experimental observations of Kar et al. 41 on blood 

plasma separation on paper-based devices are considered. 

 

 To comprehend the mixing characteristics, one can recall the diffusive transport 

equation for the concentration ( C ) distribution: ( )2 2C D C y =  v  , where y  
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denote the transverse direction (cf. Fig. 3a). Here v  denotes the velocity vector. It 

needs to be emphasized that the thickness of a paper is much less than its axial 

extents. Thus, liquid transport can be considered to be two-dimensional in nature. 

Diffusive transport between two parallel liquid streams in a paper matrix can be 

considered as flow along the x  direction, with mixing along the transverse y  

direction. Thus, the above equation sufficiently retains the subtleties of parallel stream 

mixing behavior in paper matrix. 

 In a microchannel, mixing occurs due to diffusion during the parallel movement of 

two fluids in contact. However, for such situation, the axial advection dynamics (here 

considered along x  direction) is also important, detailed elsewhere 42. Considering 

( ) ˆ2 xD x=v e , with ˆ
xe  being the unit vector along x  direction, the diffusion equation 

transforms to 2x yyC xC= . This has the analytical solution: ( )12 erfcC −= , where 

2y x =  is a coordinate invariant variable. This complementary error function based 

solution for concentration distribution is found to agree well with the reported 

experimental observation of Ref. 40 (Fig. 3b).  

 In Ref. 40, the diffusive transport and the consequent concentration distribution has 

been presented, considering uniform velocity and diffusivity based on the chosen 

liquid (dashed line in Fig. 3b). Thus, enhanced diffusivity consideration was needed 

to fit the experimental observation in their study. However, the present diffusive 

dynamics based notion of liquid transport through paper (solid line in Fig. 3b) agrees 

well with the experimental observations (markers in Fig. 3b), without any artificial 

fitting. 

 The definition of invariance 2y x =  provides us an important aspect of the width 

  of the diffusion bordering across the two-fluid interface (cf. schematic in Fig. 3a). 

The diffusion bordering earmarks the region across which the concentration changes 

from one value to another due to diffusion.  Our analysis shows ~ x  (see Fig. 3c), in 

sharp contrast to the notions 
1 2~ x  or 

1 3~ x  42 near the centerline or near the wall, 

respectively, observed during the transverse diffusion in pressure driven flow. 

Therefore, for a given axial movement of the fluid, the lateral spread is more 

pronounced in the paper than that in a co-flow through microchannel. Other than 

mixing, the diffusive transport across two adjacent streams of  liquids is also utilized 
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for separation of species suspended in the liquids 41 (markers in Fig. 3c). In this 

respect, use of paper channels provides rapid, portable, and low cost solution. The 

separation along the length of the channel can be realized through the present notion 

of ~ x  (solid line in Fig. 3c).  

Hydrodynamics of writing with ink: The hydrodynamics of ink flow and its 

distribution during writing by pen is an intriguing research question from fluid 

dynamics perspective 8. When a pen moves with speed 
PV  over a paper surface, it 

leaves a trail of ink that spreads through the paper network and forms a line (Fig. 4). 

For quantitative depiction, a reference frame x y z− −  which remains fixed with 

respect to the ground can be considered. Following the present arguments, 

conceptualizing the ink spreading in terms of a diffusion process, the ink 

concentration 
inkC  distribution can be modeled as ( )ink t

C = ( )ink yy
D C . Now, we shift 

the coordinate to the x y z− −  frame that moves with the pen. The reference frames 

are connected through the relations px x V t= + , y y=  and z z= . This pertains to the 

transformed diffusion equation ( )p ink x
V C = ( )ink yy

D C .  

 

Fig. 4. Ink distribution during writing. Minimal system experimental observation 
(markers) of Kim et al. 8 is considered for describing the parabolic distribution (solid 

line) of ink around the pen. A schematic (exaggerated for better understanding) of the 

process is also presented for comprehension. 
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 The above diffusion equation leads to the scaling relation 
2 ~ py Dx V  for the 

profile of the ink front around the tip of the pen. The present ensemble network based 

analysis provides us D = 0cos 2avgR    . Compiling these, we obtain 

( )
1 2

1 2 1 2

0~ cos 2 Caavg py R x − , a parabolic distribution of ink around the pen tip (cf. 

Fig. 4), where CaP pV =  is the capillary number of writing. Towards 

comprehending ink spread characteristics, experiments 8 had been performed with 

minimal system using a porous medium (having pillars of height h ), and a cylindrical 

tube as a pen. The study 8 uncovers a universal scaling relation in the form of 

parabolic ink distribution ( )
1 2 1 2 1 2~ Ca pw h L −  around the pen tip where w  and L  

correspond to y  and x  in our model, and  ( )1f f = −  with f  being the roughness 

defined as the actual surface area divided by the projected area. It is worth mentioning 

that the present notion on the diffusive transport of liquid through paper can unveil a 

similar facet, in agreement with the experimental finding (cf. Fig. 4). 

 To summarize, our study unveils that liquid transport through paper matrix, in 

elusively diverse applications, can be conceptualized through considerations of unique 

and generalized dynamical characteristics. Though the liquid flow through the single 

elementary microcapillary is governed by the capillary filling dynamics, the resultant 

behavior through all such capillaries resembles universal diffusive transport. This is 

attributable to the randomness in the distribution of the constituent fibers in a paper 

matrix. Diffusion based paradigm is found to rationalize various reported observations 

ranging from transport of liquid in paper based diagnostic devices to writing with ink 

on a paper platform. 

 

SUPPLEMENTARY MATERIAL 

See Supplemental Material, for the details regarding: 

(i) Molecular kinetic viewpoint of wetting process considered in the present work. 
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(ii) Details of the micro-particle image velocimetry (μ-PIV ) analysis considered in 

the present study. 
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