SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7

Inman, G. J. , Nicolas, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J. and Hill, C. S. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 62(1), pp. 65-74. (doi: 10.1124/mol.62.1.65) (PMID:12065756)

Full text not currently available from Enlighten.

Abstract

Small molecule inhibitors have proven extremely useful for investigating signal transduction pathways and have the potential for development into therapeutics for inhibiting signal transduction pathways whose activities contribute to human diseases. Transforming growth factor beta (TGF-beta) is a member of a large family of pleiotropic cytokines that are involved in many biological processes, including growth control, differentiation, migration, cell survival, adhesion, and specification of developmental fate, in both normal and diseased states. TGF-beta superfamily members signal through a receptor complex comprising a type II and type I receptor, both serine/threonine kinases. Here, we characterize a small molecule inhibitor (SB-431542) that was identified as an inhibitor of activin receptor-like kinase (ALK)5 (the TGF-beta type I receptor). We demonstrate that it inhibits ALK5 and also the activin type I receptor ALK4 and the nodal type I receptor ALK7, which are very highly related to ALK5 in their kinase domains. It has no effect on the other, more divergent ALK family members that recognize bone morphogenetic proteins (BMPs). Consistent with this, we demonstrate that SB-431542 is a selective inhibitor of endogenous activin and TGF-beta signaling but has no effect on BMP signaling. To demonstrate the specificity of SB-431542, we tested its effect on several other signal transduction pathways whose activities depend on the concerted activation of multiple kinases. SB-431542 has no effect on components of the ERK, JNK, or p38 MAP kinase pathways or on components of the signaling pathways activated in response to serum.

Item Type:Articles
Additional Information:This work was funded by Imperial Cancer Research Fund (now Cancer Research UK after the merger of Imperial Cancer Research Fund with the Cancer Research Campaign), GlaxoSmithKline Pharmaceuticals, and a Medical Research Council training fellowship (to F.J.N.).
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Inman, Professor Gareth
Authors: Inman, G. J., Nicolas, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J., and Hill, C. S.
College/School:College of Medical Veterinary and Life Sciences > School of Cancer Sciences
Journal Name:Molecular Pharmacology
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN:0026-895X
ISSN (Online):1521-0111

University Staff: Request a correction | Enlighten Editors: Update this record