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Abstract
We consider the Weil–Petersson (WP) metric on the modular surface. We lift WP geodesics
to the universal cover of the modular surface, and analyse geometric properties of a lift as
a path in the hyperbolic metric on the universal cover. For any pair of distinct points in the
thick part of the universal cover, we prove that the WP and hyperbolic geodesic segments
that connect the pair, fellow-travel in the thick part and all deviations between these segments
arise during cusp excursions. Furthermore, we give a quantitative analysis of the deviation
during an excursion. We leverage the fellow traveling to derive a correspondence between
recurrent WP and hyperbolic rays from a base-point. We show that the correspondence can
be promoted to a homeomorphism on the circle of directions. By analysing cuspidal winding
of a typical WP geodesic ray, we show that the homeomorphism pushes forward a Lebesgue
measure on the circle to a singular measure. In terms of continued fraction coefficients, the
singularity boils down to a comparison that we prove, namely, the average coefficient is
bounded along a typical WP ray but unbounded along a typical hyperbolic ray.

Keywords Teichmüller theory · Moduli of Riemann surfaces
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1 Introduction

The Teichmüller andWeil–Petersson (WP) metrics are the two most studied metrics on mod-
uli spaces of Riemann surfaces. The reasons are intrinsic as well as their many non-intrinsic
applications. For example, the Teichmüller metric has applications to the dynamics of inter-
val exchange maps and rational billiards, and the WP metric has applications to the spectral
theory of random hyperbolic surfaces and the geometry of quasi-Fuchsian 3-manifolds. The
Teichmüller metric is complete but Finsler, whereas theWPmetric is Riemannian but incom-
plete. The metric completion for the WP metric is the Deligne–Mumford compactification
of moduli space.

The metrics define geodesic flows on moduli spaces. Let X be an orientable surface with
finite genus and finitely many marked points. The cotangent bundle of the moduli space
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of Riemann surfaces that are homeomorphic to X is the space of quadratic differentials on
X meromorphic with respect to the underlying complex structure and with simple poles at
marked points and only at the marked points. The Teichmüller geodesic flow is the diagonal
part of the SL(2,R) action on the moduli space of quadratic differentials. Teichmüller flow
is ergodic, in fact, exponentially mixing on any SL(2,R) orbit closure. See [1].

Being a Riemannian metric, the WP geodesic flow is locally well defined. The set of
quadratic differentials for which the associated WP geodesic hits the boundary strata of the
Deligne–Mumford compactification in finite forward or backward times has measure zero.
Thus, for a full measure set the WP flow is defined for all times. Burns–Masur–Wilkinson
proved that the WP flow is ergodic [4] but its mixing properties depend on whether non-
exceptional or exceptional moduli are being considered. By exceptional moduli, we mean
when the Riemann surface is homeomorphic to the torus or the four-punctured sphere. Since
every marked conformal structure on the torus commutes with the hyper-elliptic involution,
the moduli space for both surfaces is the same and is the modular surface S = H/SL(2,Z).
The WP flow on S is exponentially mixing [5], whereas the WP flow on non-exceptional
moduli spaces is at most polynomially mixing [6].

The comparison between Teichmüller and WP metrics has been of much interest and the
focus for the comparison has mainly been the "cusp" geometry in the two metrics, that is,
the geometry of the subset of hyperbolic surfaces with short systoles. See Wolpert’s survey
[18], particularly page 13. The WP metric on non-exceptional moduli spaces has a much
more complicated cuspidal geometry than the WP metric on the modular surface and it is the
main reason behind the discrepancy in mixing rates.

Equipped with a better knowledge of ergodic theory of the flows, it is now possible
to compare geodesics, particularly typical geodesics for the respective Liouville measures.
Both flows being exponentially mixing for the modular surface S, the comparison is more
straightforward for it and we do that here. Non-exceptional moduli spaces are much more
difficult and the difficulties are summarised in Sect. 1.9.

The Teichmüller metric on S is simply the complete hyperbolic metric on S. A cusp
neighbourhood in S in the hyperbolic metric is isometric to the metric on the surface of
revolution of the curve {y = e−x : x ≥ a} for a suitable a ≥ log(2π). In comparison, the
WPgeometry of a cusp neighbourhood of S ismodelled asymptotically (as the neighbourhood
shrinks) by the metric on the surface of revolution of the curve {y = x3 : x ≥ 0} in R

3.
In particular, the metrics are not quasi-isometric and so there is no direct reason to expect
geodesics in the WP metric to have good geometric properties in the hyperbolic metric.

Nevertheless, a large class of geodesics do have good properties and we analyse them
here. Lifting a WP geodesic segment to the universal cover of S, we consider it as a path in
the hyperbolic metric on the universal cover. Fixing a cusp neighbourhood, the thick part of
the universal cover is the complement of the lifts of the cusp neighbourhood. For any pair
of distinct points in the thick part, we prove that the WP and hyperbolic geodesic segments
connecting these points fellow travel in the thick part with all deviations between them arising
during excursions in the cusp neighbourhood. Furthermore, we give a quantitative analysis
of these deviations during an excursion.

Our results should extend to mildly constrained general WP-type metrics on orientable
surfaces of finite type. For this reason, we keep our discussions on a more general footing.
Wewill discuss generalWP-type metrics, particularly in connection to the circle map in Sect.
1.7.
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1.1 Thick fellow travelling and deviations in cusp excursions

We now provide a more precise description of our key results. For notation, we denote S with
the WP metric by X and S with the hyperbolic metric by Y . We will denote the universal
cover of S by D and the lift of the metrics by dWP and dhyp respectively.

Let δ denote the distance to the cusp in X . For some B > 0 small enough, we may
define a cusp neighbourhood by the condition δ < B. We call the boundary locus δ < B, a
WP-horocycle. When B is small enough the cusp neighbourhood N = {δ < B} is convex.

The convexity of N and the compactness of X \N have the following simple consequence:
there exists a smaller neighbourhood {δ < b} where 0 < b < B such that for any pair of
points p, q in X \ N , the shortest WP geodesic connecting them is disjoint from {δ < b}.

The consequence stated above implies that a lift of N to the universal coverD is also quasi-
convex in the hyperbolicmetric onD. So a lift of N toD is approximated by a horoball in dhyp.
In Sect. 2, we will clarify in a more precise technical sense how the hyperbolic horocycle
bounding the largest horoball contained in a lift of N approximates the WP horocycle. The
π1(S)-orbit of the horoball gives us a collection H of disjoint horoballs in D. We shall call
the region in D that is complementary to the collection of these horoballs the thick part of
D. Note that quotient of the thick part by π1(S) is thick in either metric, that is, it is disjoint
from a cusp neighbourhood in both dWP and dhyp.

Let p, q be a pair of distinct points in the thick part. Let γWP[p, q] and γhyp[p, q] be the
WP and hyperbolic geodesic segments between p and q .

A thick-thin decomposition of the WP segment γWP[p, q] is a partition of γWP[p, q] into
WP geodesic sub-segments as

γWP[p, q] = [y0, y1] ∪ [y1, y2] ∪ · · · ∪ [y2k−1, y2k] ∪ [y2k, y2k+1], (1.2)

where

• k ≥ 0,
• y0 = p, y2k+1 = q ,
• the segments [y2r , y2r+1] for r = 0, . . . , k are contained in the thick part, and
• the open segments (y2r−1, y2r ) for r = 1, . . . , k if non-empty, are contained in a horoball

in H.

In an analogous way, a thick-thin decomposition of the hyperbolic segment γhyp[p, q] is a
partition of γhyp[p, q] into hyperbolic geodesic sub-segments as

γhyp[p, q] = [z0, z1] ∪ [z1, z2] ∪ · · · ∪ [z2 j−1, z2 j ] ∪ [z2 j , z2 j+1], (1.3)

where

• j ≥ 0,
• z0 = p, z2 j+1 = q ,
• the segments [z2r , z2r+1] for r = 0, . . . , j are contained in the thick part, and
• the open segments (z2r−1, z2r ) for r = 1, . . . , j , if non-empty, are contained in a horoball

in H.

We prove the following theorem.

Theorem 1.4 There is a constant R > 0 such that for any pair of distinct points p, q in
the thick part of D, there exist thick-thin decompositions (1.2) and (1.3) of γWP[p, q] and
γhyp[p, q] such that j = k and the segments [z2r , z2r+1] R-fellow travel (in either metric)
the segments [y2r , y2r+1] for r = 0, · · · , k.

123



23 Page 4 of 15 V. Gadre

Wewill also estimate the deviation in dhyp between the geodesics during each cusp excur-
sion, that is, we will estimate the hyperbolic distance between corresponding points of the
segments (z2r−1, z2r ) and (y2r−1, y2r ) when they are both non-empty and large enough.

The viewpoint using coarse geometry offers a clarifying perspective for Theorem 1.4.
Recall that the modular surface is the moduli space of hyperbolic once-punctured tori. The
WP metric completion of D includes noded surfaces that arise by pinching the systole on
a marked once-punctured torus. It follows that the WP completion is quasi-isometric to the
Farey graph with every edge having length one. In either metric, the thick part of the universal
cover D is quasi-isometric to the tree dual to the Farey triangulation. A geodesic segment
in the tree can be written as a finite sequence of alternating rights and lefts. Any pair of
triangles that differ only by rights (or only by lefts) share a vertex in the Farey graph. When
the number of consecutive rights (or lefts) is more than two, the shortest path in the Farey
graph has length two and passes through the shared vertex. In other words, the WP metric
has a shortcut that passes through the noded surface corresponding to the shared vertex. The
actual WP geodesic follows this shortcut closely by doing a cusp excursion winding around
the noded surface. This feature is shared by the hyperbolic metric except that the cusps are
infinitely far away. The actual hyperbolic geodesic achieves its shortcut by a cusp excursion
of hyperbolic length that is logarithmic in the number of consecutive rights (or lefts).

1.5 The circle map

Let p ∈ D be a base-point. Passing to a smaller WP cusp neighbourhood if required, we
may assume that p is in the thick part. Consider a WP ray γ from p that recurs to the thick
part. By using Theorem 1.4 along recurrence times γt , we get hyperbolic geodesic segments
γhyp[p, γt ].Wewill show thatwe can pass to a limit along these hyperbolic geodesic segments
to associate a hyperbolic ray γ ′ from p which fellow travels γ in the thick part and all
deviations arise during cusp excursions. In particular, the ray γ ′ is also recurrent to the thick
part.

Wemay identify the circle S1 with the unit tangent circles T 1
p (D, dWP) and T 1

p (D, dhyp) in
the respective metrics. The limiting argument on recurrent directions sketched above defines
a map φ from a dense subset of S1 to S1. In the reverse direction, we can apply a similar
limiting argument to associate a recurrent WP ray to every recurrent hyperbolic ray. This
defines a circle map ψ from a dense subset of S1 to S1. It also follows that the compositions
ψ ◦φ and φ ◦ψ are always defined andψ ◦φ = id and φ ◦ψ = id. Thus φ is a bijection from
the dense set of recurrent WP-directions to the dense set of hyperbolic recurrent directions.
We will further show that φ and ψ are monotone. From the density of the domains and the
monotonicity, we may conclude that φ and ψ extend to homeomorphisms of S1 that are
inverses of each other.

Let � be a Lebesgue measure on S1. The Liouville measures μWP or μhyp are absolutely
continuous with respect to each other. After identifying S1 with either of the unit tangent
circles T 1

p (D, dWP) and T 1
p (D, dhyp), we may consider the measure � to be the conditional

measure on the circle of directions obtained from either of these Liouville measures. TheWP
flow is ergodic [14], and in fact, exponentiallymixing [5]. Thus, after identifying T 1

p (D, dWP)

with S1, it follows that �-almost every v ∈ S1 determines a recurrent WP ray. Thus the map
φ is well-defined on a full measure subset of S1.

We prove:
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Theorem 1.6 The push-forward measure φ∗(�) is singular with respect to �.

Theorem 1.6 boils down to a comparison of the statistics of cuspidal winding numbers
along typical WP and hyperbolic rays. In Sect. 5, we reformulate this comparison in terms of
the continued fraction coefficients along typical WP and hyperbolic rays, namely, we show
that the “average” coefficient is bounded along a typical WP ray but unbounded along a
typical hyperbolic ray.

1.7 WP-typemetrics on finite type surfaces

We now mention the constraints under which the results presented here should extend to
general WP-type metrics on surfaces of finite type. The first requirement is that the cusp
neighbourhood can be chosen to be convex and their horocycles closely approximate the
corresponding horocycles for the surfaces of revolution that model them. The precise nature
of the approximation required is discussed in Sect. 2.1 and we discuss why it holds for the
modular surface.

For a cusp modelled on the surface of revolution for y = xr : r ≥ 3, the convexity of a
small enough cusp neighbourhood translates to a constraint on the lower order terms in the
expansion of the metric near the cusp with the metric on a surface of revolution as the leading
term. See [5, Remark on page 242] for the details.

Similarly, the required properties for WP horocycles that were mentioned in Sect. 2.1
should also be derivable once there is a reasonable constraint on the lower order terms in the
expansion of the cusp metric. We leave the details of this derivation to the interested reader.

For a WP-type metric, Theorem 1.6 should be considered alongside the analogous result
when two non-isometric complete hyperbolic metrics on a finite type surface S are compared.
Two such hyperbolic metrics differ by a π1(S)-equivariant quasi-conformal map f . As a
result, they are quasi-isometric and hence geodesics in one metric are quasi-geodesics in
the other. The induced map f∞ : S1 → S1 at infinity is a quasi-symmetry that pushes the
Lebesgue measure forward to a singular measure. See [7, Proposition 2.1]. Theorem 1.6
makes the point that because a WP-type metric diverges from a hyperbolic metric only as
one heads to the cusps, there is still a map φ on the circle of directions and the behaviour of
φ is similar to the map f∞. In this sense, Theorem 1.6 is the extension of the result of the
comparison of two non-isometric hyperbolic metrics and so we pose the natural question:

Question 1.8 Is φ a quasi-symmetry?

By [12, Section 4.1 and Proposition 4.2], volumes of cusp neighbourhoods decay poly-
nomially in WP-type metrics. On this basis, we speculate that the answer is yes.

1.9 TheWPmetric on non-exceptional moduli spaces

The analogous passage between WP and Teichmüller geodesics on non-exceptional moduli
spaces is likely to be much more difficult. For example, in the exceptional case the existence
of the limiting ray relies on the curvatures being pinched, that is, negative and bounded away
from zero. For non-exceptional moduli, the curvatures are not pinched away from zero. See
[19].

Brock–Masur–Minsky associated ending laminations to WP rays. See [2, Definition 2.5].
It then turns out that there exist recurrent WP rays with non-uniquely ergodic ending lamina-
tions. See [3, Theorem 1]. This contrasts the behaviour of Teichmüller rays where Masur’s
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criterion implies that recurrent Teichmüller rays have uniquely ergodic vertical laminations.
See [13]. As such, a naive limiting argument as we have on the modular surface cannot hold
in general. It is possible, however, that typical WP rays do admit a more subtle limiting
argument and we speculate that this is indeed the case.

2 Fellow traveling in the thick part

2.1 WP and hyperbolic horocycles in model co-ordinates

To compare the two metrics near the cusp, it will be convenient to work in the upper half
space co-ordinates {z = x + iy) : y > 0} on D with the cusp at infinity. The Poincare
metric on the upper half-space descends to the hyperbolic metric on the modular surface. As
such, a hyperbolic cusp neighbourhood in these co-ordinates can be chosen to be of the form
{y > constant}.

Viewed as the Teichmüller space of hyperbolic once-punctured tori, the upper half-space
co-ordinates are closely related to the Fenchel-Nielsen co-ordinates. For a marked hyperbolic
once-punctured torus τ ∈ S, let � = �τ be the hyperbolic length of its systole. Let t = tτ be
the twist parameter about the systole. In [17, Corollary 4.10], Wolpert showed that the WP
distance δ(τ ) of τ to the cusp of S satisfies

δ = √
2π� + O(�5/2). (2.2)

To keep the model expressions for the WP metric simple, we will allow our choice of the
co-ordinates (x, y) to be flexible up to a homothety of the form z → αz for α ∈ R>0. If B
is small enough, the homothety constants we will need to choose are uniform. This means
that our estimates will change only up to multiplicative constants that depend on B, which
is small enough and fixed once and for all.

Up to such a uniform homothety, the co-ordinates (x, y) near τ written in terms of the
Fenchel–Nielsen co-ordinates (�, t) have the following form:

� = 1

y
+ h(x, y), t = x

y
+ h′(x, y), (2.3)

where h(x, y) and h′(x, y) comprise of lower order terms. In particular, wemaywrite h(x, y)
as h(x, y) = g(x, y)/y2, where we may assume that both g and its first partials are bounded.
We will use expressions in (2.3) to pass from Fenchel–Nielsen co-ordinates to the upper half
space co-ordinates (x, y).

From Eq. 2.2 above, a WP horocycle {δ = B} corresponds to y = 2π/B2 to the first
order. Up to uniform homothety, this is the same as y = 1/B2. Note that

∂δ

∂ y
=

(√
π

2�
+ O(�3/2)

)
∂�

∂ y
.

If B is small enough then so is � and in that case the above equation implies ∂�/∂ y �= 0.Hence,
by the implicit function theorem, the horocycle {δ = B} can be written as (x, fB(x)). Now
the derivative d fB/dx = −(∂δ/∂x)/(∂δ/∂ y) = −(∂�/∂x)/(∂�/∂ y). By direct computation
we get

∂�/∂x

∂�/∂ y
= (1/y2)∂g/∂x

(−1/y2)(1 − ∂g/∂ y + 2g/y)
= − ∂g/∂x

1 − ∂g/∂ y + 2g/y
.
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As B and hence y is small, it follows that the right hand side is bounded. We thus conclude
that when the horocycle {δ = B} is viewed as a graph of a function over x , the derivative at
any point of this graph is bounded. In particular, this implies that the Euclidean arc-length
element along {δ = B} is comparable to dx .

The form of the WP metric can be derived by invoking Wolpert’s estimates [17] in the
special case of the modular surface. By converting [17, Page 284] to the co-ordinates (x, y)
up to a uniform homothety, the WP metric is modelled to the first order by

dx2 + dy2

y3
. (2.4)

Let I [a, b] be the strip {(x, y) ∈ D : a ≤ x ≤ b}. Using the model metric (2.4) and
the discussion on the Euclidean arc length element it follows that if (b − a) is large enough
(depending only on B) then the WP length of {δ = B} ∩ I [a, b] equals (b − a)/B6 up to a
multiplicative constant that depends only on B. We note that (b − a)/B6 is also the length
of the segment {y = 1/B2} ∩ I [a, b] in the model metric. On the other hand, the hyperbolic
length of {y = 1/B2} ∩ I [a, b] equals (b − a)/B4. Thus, up to a multiplicative constant
that depends only on B, the WP and hyperbolic lengths of these related horocycle segments
are equal. We fix B once and for all. Our observation about the horocycle segments will be
crucial in the discussion that precedes Lemma 2.7.

2.5 Projected paths

We denote the thick part simply as Thick. Let πWP : D → Thick and πhyp : D → Thick be
the closest point projections on to the thick part in the corresponding metrics. For any pair
of points p, q in Thick let γWP[p, q] and γhyp[p, q] be the WP and hyperbolic geodesics
connecting them.We call πhyp(γhyp) the hyperbolic projected path of γhyp. Similarly, we call
πWP(γWP) the WP-projected path of γWP.

Proposition 2.6 For any pair of points p, q inThick, the two projected pathsπhyp(γhyp[p, q])
and πWP(γWP[p, q]) are quasi-geodesics in Thick with the corresponding path metrics.

For the hyperbolic metric, this proposition is given in [11, Lemma 2.1]. Here, we adapt the
argument in [11, Lemma 2.1] to theWPmetric. TheWPmetric onD is negatively curved and
pinched away from 0. Hence, it is CAT(−κ) for some κ > 0 and thus Gromov hyperbolic.
See [15, Introduction].

Let H be a horoball in the collection H and let πH : D \ H → ∂H be the WP closest
point projection. In a Hadamard manifold with pinched negative curvature, the closest point
projection to a horosphere is coarsely contracting. See [9, Section 4]. Here we give an
analogous result forπH but focus only on showing thatπH is coarsely distance non-increasing
as that is sufficient for our purposes.

Before we state the projection result in Lemma 2.7, we make use of the observation at the
end of Sect. 2.1. The quotient H/π1(S) is a quasi-convex cusp neighbourhood on the WP
surface X . Let 0 < B ′ < B be the largest constant such that N ′ = {δ < B ′} is contained in
H/π1(S). The approximations (2.4) and (2.2) imply that if B is small enough then B ′ ≥ B/2.
Let H ′ be the lift of N ′ that is contained in H . Let πH ′ : D \ H → ∂H ′ be the WP closest
point projection. By the observation at the end of Sect. 2.1, it follows that for any segment
γ in D \ H the projections πH (γ ) and πH ′(γ ) are coarsely the same, that is, there exists
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constants k ≥ 1 and c ≥ 0 such that

1

k
�∂H (πH (γ )) − c < �∂H ′πH ′(γ ) < k�∂H (πH (γ )) + c

where �∂H and �∂H ′ denote the lengths in the WP path metrics on ∂H and ∂H ′ respectively.
We now show that πH is coarsely distance non-increasing.

Lemma 2.7 The WP closest point projection πH : D \ H → ∂H is coarsely distance non-
increasing, that is, there exists constants K > 1,C > 0 such that for any pair of points
p, q ∈ D \ H

d∂H (πH (p), πH (q)) ≤ KdWP(p, q) + C .

Proof We give a quick sketch. By our preceding observation that the projections πH and πH ′
are coarsely the same, it suffices to prove this property for πH ′ .

First, suppose p, q are distinct points in D \ H such that the WP geodesic segment [p, q]
is contained in D \ H . Let z be the point that completes the cusp in H . Let [p, z] and [q, z]
be WP geodesics from p and q to z.

As B was chosen small enough for the metric near the cusp to approximate the model
metric (2.4) closely, the segments [p, z] and [q, z] intersect ∂H ′ at almost right angles. This
implies that there exists a constant c′ ≥ 0 that depends only on the metric and the constant
B such that πH ′(p) is c′-close to the point p′ = [p, z] ∩ ∂H ′. Similarly πH ′(q) is c′-close
to the point q ′ = [q, z] ∩ ∂H ′.

The triangle with vertices z, p, q can now be compared to the comparison triangle in
constant negative curvature −κ to conclude that the length of [p′q ′] along ∂H ′ is strictly
less than dWP(p, q). We deduce that the length of π ′[p, q] along ∂H ′ is coarsely less than
�WP[p, q].

Finally, any path inD\H can be closely approximated by a finite concatenation of geodesic
segments in D \ H . The lemma follows. ��
Proof of Proposition 2.6 for the WP metric: Suppose that the segment γWP[p, q] passes
through k horoballs in H. We decompose πWP(γWP) into segments [y0, y1] ∪ [y1, y2] ∪
[y2, y3] ∪ · · · ∪ [y2k−1, y2k] ∪ [y2k, y2k+1], where y0 = p, y2k+1 = q , all intervals of
the form [y2 j , y2 j+1] are WP geodesic segments in Thick and the remaining intervals are
segments along distinct horocycles.

Let β j be the WP geodesics perpendicular to γWP[y0, y2k+1] at the points y j . Each β j

separates y0 from y2k+1 so a thick geodesic from y0 to y2k+1 must intersect β j . Moreover, the
geodesics β j are all disjoint. Otherwise, for some j we would find a triangle bounded by the
geodesic segments of β j , β j+1 and γWP[y j , y j+1]. As the WP metric has pinched negative
curvature, this violates the Gauss-Bonnet Theorem as the sides are geodesic segments and
two angles of the triangle are right angles.

In conclusion, the geodesics β j divide D into regions R j such that each R j contains a
single subsegment of γWP[y0, y2k+1] that is either entirely contained in Thick or entirely
contained in a horocycle. In each R j , we now show that the subsegment of the projected path
is coarsely the shortest path in the induced path metric, that is, any thick geodesic segment
that makes it across R j between the endpoints has length coarsely larger than the subsegment
of the projected path of πWP(γWP) in R j .

First consider a region R j where [y2 j , y2 j+1] is a WP geodesic segment in Thick. As the
metric is CAT(−κ) for some κ > 0, the nearest point projection to a geodesic is coarsely
contracting. Thus the length of any path that crosses from β2 j to β2 j+1 is coarsely at least
the length of [y2 j , y2 j+1].
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Now consider a region R j where [y2 j−1, y2 j ] is a subsegment of a horocycle ∂H . By
Lemma 2.7, the closest point projection πH : Thick → ∂H is also coarsely contracting.
Thus the length of any thick path that crosses R j from β2 j−1 to β2 j is coarsely at least the
length �∂H (y2 j−1, y2 j ).

This finishes the proof of the proposition for the WP metric. ��
The fundamental group π1(S) acts co-compactly on Thick. Hence, by the Svarć-Milnor

lemma, Thick with either WP or hyperbolic induced path metric is quasi-isometric to the
fundamental group π1(S)with a word metric given by any finite generating set. In particular,
(Thick, dWP) and (Thick, dhyp) are quasi-isometric. As a corollary of this quasi-isometry
and of Proposition 2.6, we get:

Corollary 2.8 There exists a constant R > 0 such that for any pair of points p, q in Thick
the segments πWP[p, q] and πhyp[p, q] R-fellow travel in Thick.

Proof By [11, Lemma 2.1], the projected pathπhyp[p, q] is a quasi-geodesic in (Thick, dhyp),
and by Proposition 2.6, the projected path πWP[p, q] is a quasi-geodesic in (Thick, dWP).
As (Thick, dWP) and (Thick, dhyp) are quasi-isometric, both the projected paths πWP[p, q]
and πhyp[p, q], being quasi-geodesics, fellow travel. ��

Proof of Theorem 1.4

By Corollary 2.8, the paths πWP[p, q] and πhyp[p, q] R-fellow travel. This implies that there
is a constant R′ > 0 such that if πWP(γWP ) has a subsegment of length at least R′ along
a horocycle ∂H then πhyp(γhyp) must also contain a subsegment of ∂H , and vice versa.
Moreover, the respective entry and exit points in ∂H for the two projected paths must be
within distance R of each other in Thick with the path metric. It is possible that if πWP(γWP )

has a subsegment along ∂H that is less than R′ in length then γhyp does not enter H at all
and a similar thing can happen with the metrics switched. If such is the case then we choose
the sub-segment along γhyp that records the excursion in H to be empty, and vice versa.
This concludes the proof that for any pair of points p, q ∈ Thick, the respective geodesics
γWP[p, q] and γhyp[p, q] fellow travel in the thick part and all deviations between them arise
in the cusp neighbourhood.

3 Deviations during excursions

We now quantify deviations during a single excursion. Consider a cusp excursion of a WP
geodesic during which the minimum distance to the cusp satisfies δmin = 1/D for D > 1.

In upper half space co-ordinates, a WP geodesic during an excursion describes a curve
γWP(t) = (x(t), y(t))whose tangent vector v(t) has (up to a uniformmultiplicative constant)
unit size with respect to the model metric (2.4). For our convenience, we apply a homothety
(whose constant depends only on B) to assume thatwe areworkingwith {z ∈ C : Im(z) ≥ 1}
as the cusp neighbourhood. This means that all our estimates below are correct up to a
multiplicative constant that depends only on B.

An excursion in which δmin = 1/D with D > 1, corresponds to ymax = D2. By [12,
Proposition 5.5], the winding number about the cusp for such an excursion is D2 up to a
uniform multiplicative constant. In particular, this implies that during such an excursion the
point that distance along ∂H = {z : Im(z) = 1} between the entry and exit points is D2 up
a uniform multiplicative constant.
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We want to compare γWP with a hyperbolic geodesic γhyp that enters and exits {z ∈ C :
Im(z) ≥ 1} within bounded hyperbolic distance of the γWP-entry and exit points. So we may
assume that in the model co-ordinates the entry and exit points of γWP are (0, 1) and (2D2, 1)
respectively.

Wewill analyse the two trajectories γWP and γhyp over the first half of their excursions, that
is, between the entry point and the point with the largest imaginary part ymax. By symmetry,
the same analysis holds for the trajectories on their way out. For the first half, the hyperbolic

geodesic is given by the locus x →
(
x,

√
1 + 2D2x − x2

)
. To prove our deviation bounds,

we will similarly write down the locus for γWP and then compare with above locus.

Lemma 3.1 A point on the ingoing half of γWP is given in co-ordinates by

�
(
x, D6/5x2/5

)

where � means that the individual co-ordinates may differ up to a uniform multiplicative
constant.

Proof The co-ordinate x(δ) is the winding number when γWP is distance δ from the cusp. In
the calculation using dyadic intervals in the proof of [12, Proposition 5.5], let k be such that

c2k � 1

D3δ3

where c = 1/(D3δ30). Recall that J was chosen so that

c2J � 1

Then repeating line by line the calculation in [12, Proposition 5.5], we have

x(δ) � D3
k∑
j=1

(c2 j )5/3 � D2(c2k)5/3 � 1

D3δ5

On the other hand,

y(δ) � 1

δ2

By expressing y in terms of x , we get that a point on the ingoing trajectory of γWP has
co-ordinates

�
(
x, D6/5x2/5

)

finishing the proof. ��

It is interesting to compare the "shapes" of the hyperbolic and WP trajectories that we
considered above. A hyperbolic geodesic γhyp that has coarsely the same entry and exit points,
namely (0, 1) and (2D2, 1), also attains the maximal imaginary part D2, that is, it is about
the same height in the upper half space co-ordinates as γWP. However, from Lemma 3.1,
we observe that quantitatively the WP trajectory has faster initial gradient. So it goes deep
in to the cusp neighbourhood more quickly and winds thereafter. This is consistent with the
standard intuition of how geodesics wind around the cusp in the WP metric.
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4 The circle map

Wefix a base-point p inD. If required, by shrinking the cusp neighbourhood, wemay assume
that p lies in the thick part. By the results in [14], the WP geodesic flow is ergodic. This
implies that a dense set of directions v ∈ T 1

p (D, dWP) give WP rays that are recurrent to the
thick part. In fact, identifying T 1

p (D, dWP) with S1, the set of recurrent directions has full
measure in the Lebesuge measure on S1.

For a recurrent direction v, let γ v
WP(t) denote the recurrent WP ray that it defines. Let

tn be any monotonic sequence of recurrence times such that tn → ∞. We consider the
sequence of hyperbolic geodesic segments [x, γ v

WP(tn)]. By Theorem 1.4, the hyperbolic and
WP projected paths fellow travel. It follows that hyperbolic geodesic segments [x, γ v

WP(tn)]
fellow travel. So we can pass to a limit to get a unique limiting hyperbolic ray γ v

hyp that fellow
travels γ v

WP in Thick. In particular, the hyperbolic ray γ v
hyp is recurrent to Thick. Identifying

T 1
p (D, dhyp) also with S1, we get a map φ from a dense (full measure) subset of S1 to S1 by

sending v to the unit tangent vector at p to γ v
hyp.

In similar fashion, we get the reverse map ψ from a dense (full measure) subset of S1

to S1. For a recurrent hyperbolic ray ζ determined by v ∈ T 1
p (D, dhyp), we can consider a

monotonic sequence of recurrence times sn such that sn → ∞ and consider theWP geodesic
segments [x, ζ(sn)]. As (D, dWP) is CAT(−κ) for some κ > 0, the longer and longer WP
geodesic segments fellow travel. Thus, we can pass to a limiting WP ray. By setting up
identifications with S1 and sending v to the unit tangent base vector for this WP ray, we
define the map ψ on a dense subset of S1 to S1.

By Theorem 1.4, the WP ray defined by the direction ψ ◦ φ(v) fellow travels in Thick
the WP ray defined by v. As (D, dWP) is CAT(−κ) for some κ > 0, it follows that the ray
defined by ψ ◦ φ(v) has to fellow travel the ray defined by v for all times. Hence, the rays
are identical and ψ ◦ φ = id. By a similar reasoning, the composition φ ◦ ψ is also well
defined and identity. Thus, φ is a bijection from the dense set of recurrent WP-directions to
the dense set of recurrent hyperbolic directions.

4.1 Monotonicity

We now derive the monotonicity of the map φ.
First, we fix some notation. Given α, β ∈ S1, we denote by I (α, β) the (open) sector of

directions in S1 going counter-clockwise from α to β. We identify the unit tangent spaces
T 1
p (D, dWP) and T 1

p (D, dhyp) with S1 in way that preserves the orientation induced by the
surface S.

Lemma 4.2 Suppose v,w ∈ Domain(φ) and distinct. For any θ ∈ I (v,w)∩Domain(φ), we
have φ(θ) ∈ I (φ(v), φ(w)).

Proof The proof follows the same Gauss-Bonnet type arguments. Suppose that there is some
θ ∈ I (v,w) such that φ(θ) is not contained in the sector I (φ(v), φ(w)).

Let S(α, β) be the open set in (D, dhyp) swept out by hyperbolic-rays with initial vectors

in I (α, β). It is bounded by the hyperbolic rays γ α
hyp and γ

β
hyp.

Asφ(θ) is not in I (φ(v), φ(w)), the hyperbolic rayγ
φ(θ)
hyp does not intersect S(φ(v), φ(w)).

Let us fix a monotonic sequence tn of recurrence times along γ
φ(θ)
hyp such that tn → ∞. Sup-

pose that the R-ball centred at some γ
φ(θ)
hyp (tn) is disjoint from the rays γ

φ(v)
hyp and γ

φ(w)
hyp .
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As γ θ
WP intersects this ball it follows that γ θ

WP must intersect either γ v
WP or γ w

WP. Breaking
symmetry, let us assume that γ θ

WP intersects γ v
WP. In this case the WP rays γ θ

WP and γ v
WP

bound a bigon, contradicting Gauss-Bonnet.
So now suppose that for all tn , the R-balls centred at γ

φ(θ)
hyp (tn) intersect one of γ

φ(v)
hyp or

γ
φ(w)
hyp . Breaking symmetry, let us assume that it is γ

φ(v)
hyp . As this implies the ray γ

φ(θ)
hyp fellow

travels the ray γ
φ(v)
hyp for all time, it forces γ

φ(θ)
hyp = γ

φ(v)
hyp . It follows that γ θ

WP fellow travels
γ v
WP. As theWPmetric is CAT(−κ) for some κ > 0 and (D, dWP) is a geodesic metric space,

it forces γ θ
WP = γ v

WP. But this is a contradiction because θ ∈ I (v,w). ��

Lemma 4.2 implies monotonicity for the map φ. In summary, φ is a map defined on a
dense subset of S1, has dense image, and preserves the circular order. By a standard exercise,
see [8, Lemma 7.3], φ extends to a S1-homeomorphism.

5 Typical geodesics

Let � be a Lebesgue measure on S1. After identification with T 1
p (D, dWP), we can let � be the

conditional measure induced by theWP Liouville measure. Alternatively, � could also be the
conditional measure induced by the hyperbolic Liouville measure because the two densities
are absolutely continuous.

Proof of Theorem 1.6

We derive Theorem 1.6 by comparing the growth of the total winding number about the cusp
along typical WP and hyperbolic geodesics. For either metric, we define the total winding
number till a particular recurrence time to be the sum of the winding numbers (without sign)
during cusp excursions till that time.

The statistics of cuspidal winding numbers along typical WP geodesics for general WP-
type metrics were analysed in [12]. The analysis heavily leverages the precise decay of
correlations proved in [5] for the exponential mixing of the WP flow.

For the total winding number comparison to be valid, we also need the time changes
between the WP and hyperbolic times to work out. To be precise, along typical geodesics the
WP and hyperbolic times at recurrence points need to be asymptotically comparable. This is
also established in [12] for general WP-type metrics and we shall recall the relevant results
at the appropriate steps in the proof of Theorem 1.6. As the arguments below apply to mildly
constrained WP-type metrics, we keep the discussion on a a general footing as before. The
arguments in [12] that give growth rate bounds Eqs. 5.1, 5.2, 5.3 and 5.4 combine ergodic
estimates with coarse geometry and as such are not effective.

By [12, Theorem 5.9], there exists a constant K1 > 1 such that for almost every p
and �-almost every v ∈ T 1

p (D, dWP), the total winding number, denoted by Wv(T ), of the
Weil–Petersson ray defined by v around the cusp till time T , satisfies

1

K1
T < Wv(T ) < K1T . (5.1)

Also by [12, Section 5.10], the hyperbolic distance measured along the recurrence times of
a recurrent Weil–Petersson geodesic ray increases linearly in time: there exists a constant
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K2 > 1 such that

1

K2
T < dhyp(p, γ

v
WP(T )) < K2T . (5.2)

In particular, this implies that when T is a time of recurrence along γ v
WP the hyperbolic time

S along γ
φ(v)
hyp is comparable to theWeil–Petersson time T . LetWφ(v)(S) be the total winding

number around the cusp till time S of the hyperbolic ray γ
φ(v)
hyp . From Theorem 1.4 it follows

that there exists a constant K3 > 1 such that when S is the hyperbolic time that corresponds
to a time of recurrence T along γ v

WP, we have

1

K3
Wv(T ) < Wφ(v)(S) < K3Wv(T ). (5.3)

Putting inequalities 5.1–5.3 together, we can conclude that there exists a constant K4 > 1
such that

1

K4
S < Wφ(v)(S) < K4S, (5.4)

i.e., the total winding along the corresponding hyperbolic geodesic grows linearly in hyper-
bolic time.

On the other hand for the hyperbolic metric, by [10, Theorem 1.6], for �-almost every
v ∈ (T 1

pD, dhyp), there is S log S lower bound for the growth of total winding number till
time S along the hyperbolic geodesic ray γ v

hyp. Thus, the hyperbolic geodesic rays that are the
images of typical WP rays under φ are atypical in the hyperbolic metric and this concludes
the proof of Theorem 1.6.

We remark on how explicit the constants K j above can be. Linear growth in Eq. 5.1 of
the total winding number is given by the ergodic theorem applied to a suitable L1 function.
However, it is difficult to compute the L1 norm exactly simply because even for the modular
surface, the WP metric is not understood with precision. For example, edges in the Farey
graph are WP geodesics. The image of a Farey edge is a WP geodesic that goes from the
cusp of the modular surface to the orbifold point of order two and back. Even with so much
information one does not know their WP length exactly.

WP segments that are contained in the thick part make definite progress in the hyperbolic
metric. This implies by the ergodic theorem that hyperbolic distance grows at least linearly
in WP time. The linear upper bound is derived from winding number statistics related to Eq.
5.1. Equation 5.3 is derived by combining Eq. 5.2 with Theorem 1.4 whose proof has coarse
geometric arguments. Equation 5.4 is directly concluding from the preceding bounds.

In summary, it is hard to know any of the constants K j explicitly, though in future a
computation of K1 might become possible as one knows more about the WP metric.

5.5 Continued fractions

We can now give a concrete description in terms of continued fractions for Theorem 1.6 for
the modular surface.

Series showed that hyperbolic geodesic rays on the modular surface are coded by the
continued fraction expansion of their endpoint at infinity. See [16]. The continued fraction
coefficients track the combinatorics of how the ray crosses the triangles in the Farey tes-
sellation. Namely, for each triangle that the geodesic cuts through one records right or left
depending on which of the resulting components is again a triangle. In this way, one gets an
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infinite sequence of Rs and Ls. Breaking symmetry, if the sequence has the form Ra1La2 · · ·
then the number a j is exactly the j th coefficient of the endpoint at infinity. Suppose that T is
a recurrence time, N (T ) is the number of excursions till T , and Hj : 1 ≤ j ≤ N (T ) is the
horoball for the j th-excursion. We may choose upper half-space co-ordinates (x, y) so that
Hj is of the form {y > c} for some constant c ≥ 1 and the fundamental domain intersected
with Hj is the strip 0 ≤ x < 1. Then it readily follows that up to a multiplicative constant
that depends only on c, the distance between the entry and exits points on ∂Hj equals the
continued fraction coefficient a j . See [10] for the details.

Using the fellow travelling result, namely Theorem 1.4, we can also record continued
fraction coefficients along a recurrent WP ray γ v

WP by tracking the coefficients along the

corresponding hyperbolic ray γ
φ(v)
WP . We could also define coefficients using the number of

cuspidal fundamental domains crossed during each excursion of γ v
WP. Again by Theorem

1.4, the two definitions produce the same coefficients that differ up to a bounded additive
error. So from now on, we will use the second definition.

Consider a recurrence time T for γ v
WP. Then [γ v

WP(0), γ
v
WP(T )] has completed finitely

many excursions thus giving us a finite list of coefficients [a1, a2, . . . , aN (T )]. Note that
there is a constant K5 > 1 such that for any recurrence time T ,

1

K5
Wv(T ) < a1 + a2 + · · · + aN (T ) < K5Wv(T )

whereWv(T ) is the total cuspidal winding number till time T . By the ergodicity of theWeil–
Petersson flow and an argument similar to [10, Lemma 3.8], there exists a constant K6 > 1
such that

1

K6
T < N (T ) < K6T ,

that is, the number of excursions till time T along a typical WP ray grow linearly in T .
In particular, combining the above facts about winding number growth and the number of
excursions with (5.1), we get that there exists a constant K7 > 1 such that along a typical
WP ray γ v

WP, we have

1

K7
<

a1 + a2 + · · · + aN (T )

N (T )
< K7

for all recurrence times T that are large enough (how large depends on v). In other words, the
average coefficient along a typical WP ray (and hence along the corresponding hyperbolic
ray) is bounded.

On the other hand, the average coefficient along a typical hyperbolic ray is unbounded
and exhibits an interesting "trim-sum" property. See the introduction in [10].
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