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Abstract. We prove the existence of a limiting distribution for the appropriately rescaled
diameters of random undirected Cayley graphs of finite nilpotent groups of bounded rank
and nilpotency class, thus extending a result of Shapira and Zuck which dealt with the case
of abelian groups. The limiting distribution is defined on a space of unimodular lattices,
as in the case of random Cayley graphs of abelian groups. Our result, when specialised to
a certain family of unitriangular groups, establishes a very recent conjecture of Hermon
and Thomas. We derive this as a consequence of a general inequality, showing that the
diameter of a Cayley graph of a nilpotent group is governed by the diameter of its abelian-
isation.

1 Introduction

Metric properties of graphs are important in the study of networks. A key example
is given by the diameter of a graph, which is defined to be the longest distance
among the pairs of vertices of the graph.

A natural family of graphs is provided by Cayley graphs of groups. For cer-
tain finite simple groups and generating sets, upper bounds on the diameter show
logarithmic growth. That is sharp since one always has a logarithmic lower bound,
which essentially comes from the fact that finitely generated groups always have at
most exponential growth. The motivation for proving such upper bounds is Babai’s
conjecture [2, Conjecture 1.7], which postulates the existence of a constant a > 0
such that, for every finite simple group G and every generating set S , one has
diam.�.G; S// � .log jGj/a.

In contrast, Amir and Gurel-Gurevich [1] started investigating the diameter of
cyclic groups Z=qZ with respect to a random set S of generators of fixed size,
say k � 2. The fact that finitely generated abelian groups of rank k have growth of
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order a polynomial of degree k in the radius is reflected in a simple lower bound
of the order of q1=k; furthermore, they obtain that, for any function f going to
infinity with q, the probability that the diameter of the random Cayley graph is
bigger than f .q/q1=k goes to 0 as q !1. That led them to conjecture that, as
q !1, the random variables given by the diameter of the corresponding random
Cayley graph, when rescaled by q1=k , converge in distribution.

Marklof and Strömbergsson [6] introduced a strategy relating that problem to an
equidistribution theorem in homogeneous dynamics and were able to prove a ver-
sion of that conjecture in which the cyclic group itself was also taken at random
(with q 2 Z \ Œ1;Q�). Inspired by that approach, Shapira and Zuck [7] settled that
conjecture and further extended it from finite cyclic groups to arbitrary finite abel-
ian groups of bounded rank. In the present article, we obtain the analogous result
for finite nilpotent groups with bounded rank and nilpotency class.

Recall that, for a groupG, one can inductively define the filtration of subgroups
Z�1 3 i 7! G.i/ – called the lower central series – given by G.1/ D G and for
i � 1, G.iC1/ D ŒG;G.i/�. A group is said to be nilpotent if there exists i � 1
such that G.i/ D ¹idº. In that case, the nilpotency class of G is defined to be the
smallest positive integer c such that G.cC1/ D ¹idº. For a group G and a sym-
metric generating set S � G, we denote by �.G; S/ the Cayley graph of G with
respect to S .

Theorem 1.1. Let k > r � 1 and c � 1 be integers. Let ¹Gnºn2Z�1
be a sequence

of finite nilpotent groups of rank at most r , nilpotency class at most c and with
limn!1jGnj D 1. Choosing a subset S uniformly at random among all symmet-
ric generating subsets of Gn of size k, then as n!1, the random variables

diam.�.Gn; S//

jGab
n j

1
k

converge in distribution.

A version of this theorem which also contains a fairly explicit description of the
limiting distribution is given as Theorem 3.1.

In recent work, Hermon and Thomas [5] investigated random walks on cer-
tain finite unitriangular groups, defined for q; d 2 Z�2, to be the group of d � d
matrices over Z=qZ which are upper triangular and whose diagonal entries are
all 1; that group is denoted byHq;d . Those are special examples of finite nilpotent
groups.

Hermon and Thomas establish a concentration result for the typical distance –
a function of a parameter ˇ 2 .0; 1/ defined as the smallest radius of a ball centred
at the identity which is enough to cover a proportion ˇ of the group – of the random
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Cayley graphs of those unitriangular groups, which they show concentrates around
the value it takes for the abelianisation of Hq;d when the number of generators
diverges (or is at least large enough as a function of d ); combined with the simple
lower bound on the diameter coming from the growth of the group, which is of the
same order, that led them to conjecture the existence of a limiting distribution for
the diameters of those graphs with that particular rescaling.

As a consequence of Theorem 1.1, we establish their conjecture.1

Theorem 1.2. Let q � 2; d � 2 and k � d . Let ¹Z1.q/; : : : ; Zk.q/º be chosen
uniformly and independently among all symmetric generating k-subsets of Hq;d ,
and write �Z.q/.k/ for the diameter of the random Cayley graph with those gen-
erators. As q !1, the random variables

�Z.q/.k/

q
d�1

k

converge in distribution.

We state a more precise version of the above as Theorem 3.2 which also in-
cludes an explicit description of the limiting distribution in terms of the space of k-
dimensional unimodular lattices. The latter is the same as the limiting distribution
for the random undirected Cayley graph of the finite abelian group .Z=qZ/d�1

with k generators chosen uniformly at random, which was obtained by Shapira
and Zuck. Note that the distribution is also the same as that from the paper by
Marklof and Strömbergsson (for random undirected circulant graphs with respect
to k generators), in which they make use of the description in terms of random uni-
modular lattices in Rk to derive quantitative properties of the limiting distribution
such as tail estimates.

Indeed, our strategy for proving those theorems consists in establishing a gen-
eral inequality for the diameter of a Cayley graph on a finite nilpotent group, which
essentially shows that this diameter is governed by the diameter of the abelianisa-
tion. This is done in Section 2. The crucial step is Proposition 2.1. In that proposi-
tion, we take advantage of the well-known phenomenon of distortion in nilpotent
groups, that is the possibility of rewritingN times a nested commutator of length i
in time O.N

1
i / modulo nested commutators of length at least i C 1, for a positive

integer N . The upper bound in Proposition 2.1 is reminiscent of the formula of
Bass and Guivarc’h for the growth in finitely generated nilpotent group [4, Ap-
pendix], which indeed relies on the same phenomenon of distortion. We remark

1 Their paper only deals with q prime and directed graphs; ours treats arbitrary q � 2 but undi-
rected graphs.
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that a very similar argument can be found in the proof of [3, Lemma 4.11].2 This
upper bound leads us to wonder whether q

d�1
ik is the correct scale for the diam-

eters (with respect to the ambient metric on the group) of the i -th term of the
lower central series of undirected Cayley graphs ofHq;d with respect to a random
generating set. In the concluding section, we ask this and a few related questions.

2 Diameters of finite nilpotent groups

2.1 Diameters of a group and its quotients

For a finite group G with symmetric generating set S , a normal subgroup H of G
and a normal subgroup N of H , we view H and N as metric subspaces of the
Cayley graphs �.G; S/, which allows us to define the diameters of N and H with
respect to S , which we denote respectively by diam.H; S/ and diam.N; S/.

This metric also induces one on the quotient H
N

and allows us to define the
diameter of that group with respect to the projections of the elements of S onto H

N
,

which we denote by diam
�

H
N
; S
�
.

When H D G, that last quotient coincides as a metric space with the Cayley
graph of G

N
with respect to the projections of the elements of S in G

N
.

The following lemma relates those three quantities.

Lemma 2.1. For every finite group G with symmetric generating set S , every nor-
mal subgroup H of G and every normal subgroup N of H , we have

diam
�H
N
;S
�
� diam.H; S/ � diam

�H
N
;S
�
C diam.N; S/:

Proof. The lower bound on diam.H; S/ follows from the definition.
We now prove the upper bound. Fix two elements h1 and h2 in H . Define

d1 D diam
�H
N
;S
�

and d2 D diam.N; S/:

By definition of d1, we find x1; : : : ; xs1
2 S with s1 � d1 such that there exists

n 2 N such that
x1 � � � xs1

h1 D nh2: (2.1)

For that n 2 N and by definition of d2, we find y1; : : : ; ys2
2 S with s2 � d2

connecting id to n, that is
y1 � � �ys2

D n: (2.2)

2 We thank Matthew Tointon for pointing out this reference to us after receiving a first draft of
this paper.
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Combining (2.1) and (2.2), we get

y�1
s2
� � �y�1

1 x1 � � � xs1
h1 D h2;

which means that the distance between h1 and h2 via elements of S is at most
s1 C s2 which is itself at most d1 C d2, hence the claim.

2.2 Multilinear maps attached to groups

In this section, we briefly recall (part of) the multilinear structure present on a
group G.

For x; y in G, we denote Œx; y� D xyx�1y�1. Observe that Œx; y��1 D Œy; x�.
Furthermore, if z is also in G, then we have Œx; zy� D Œx; z�Œx; y�Œz; Œy; x���1.
Observe that if z; y are taken to be inG.i/ for some i 2 Z�1, this last identity tells
us that the commutator pairing

G �
G.i/

G.iC1/
!

G.iC1/

G.iC2/

is bilinear in the second entry (observe that, by definition, G.j /

G.jC1/ is an abelian
group for any positive integer j ). A similar computation shows that this pairing
factors through G.2/ in the first coordinate and is bilinear in both entries for the
map

G.1/

G.2/
�

G.i/

G.iC1/
!

G.iC1/

G.iC2/
:

Hence, in total, we get a homomorphism .Gab/˝i � G.i/

G.iC1/ , defined by the
multilinear map from .Gab/i ! G.i/

G.iC1/ sending the vector .g1; : : : ; gi / to the class
of Œg1; Œg2; : : : ; Œgi�1; gi �; : : :�moduloG.iC1/. In particular, notice that if S gener-
atesG, then nested commutators among elements of S of length i generate G.i/

G.iC1/ .

2.3 Comparing diameters

We shall need the following elementary lemma.

Lemma 2.2. Let i be a positive integer. Then there exist positive integers Ci ; ni

such that, for any � 2 Z�1, one can find a1; : : : ; ani
; r in Z�0 such that

� D ai
1 C � � � C a

i
ni
C r;

with r � Ci�
1=i .
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Proof. Observe that one can find a constant Di such that, for each positive in-
teger �, one has a representation � D ai

1 C r1, with r1 � Di�
i�1

i : to this end,
take a1 ´ b�

1=ic, and apply the binomial expansion to the worst-case scenario
� D .b�1=ic C 1/i � 1. Hence, iterating this, we obtain that, for each j in Z�1,
there are non-negative integers a1; : : : ; aj ; rj such that � D ai

1 C � � � C a
i
j C rj ,

with

rj � D

Pj�1

hD0
. i�1

i
/h

i �. i�1
i

/j

:

Choosing j such that
�

i�1
i

�j
< 1

i
yields the desired conclusion.

Proposition 2.1. For every finite group G, every symmetric generating set S � G
of size s 2 Z�2 and every i � 1, we have

diam
� G.i/

G.iC1/
; S
�
D Oi;s

�
diam.�.Gab; S//1=i

�
:

Proof. We show that, for each h 2 G.i/

G.iC1/ , there exist y1; : : : ; yd in S such that
h � y1 � � �yd mod G.iC1/, with d D Oi;s.diam.�ab; S/1=i /. By Section 2.2, we
can find .�f /f WŒi�!S 2 ZŒi�!S such that

h D
X

f WŒi�!S

�f Œf .1/; Œ: : : ; Œ: : : ; f .i/���:

By multilinearity, we can collect the last entries of the nested commutators for
each choice of the first i � 1 entries and obtain for each gW Œi � 1�! S an element
yg in Gab such that

h D
X

gWŒi�1�!S

Œg.1/; Œ: : : ; Œg.i � 1/; yg ���: (2.3)

Now, for each gW Œi � 1�! S , rewrite

yg D

X
x2S

�.x; g/Œx�Gab

with X
x2S

j�.x; g/j � diam.�.Gab; S//: (2.4)

Using multilinearity once again, we have

Œg.1/; Œ: : : ; Œg.i � 1/; yg ��� D
X
x2S

Œg.1/; Œ: : : ; Œg.i � 1/; �.x; g/Œx�Gab ���:
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Rewrite, for each x 2 S , using Lemma 2.2,

sgn.�.x; g//j�.x; g/jŒg.1/; Œ: : : ; Œg.i � 1/; Œx�Gab ���

D sgn.�.x; g//
� niX

hD1

ai
h C r

�
� Œg.1/; Œ: : : ; Œg.i � 1/; Œx�Gab ���

D sgn.�.x; g//
�� niX

hD1

Œahg.1/; Œ: : : ; Œahg.i � 1/; ahŒx�Gab ���

�
C r � Œg.1/; Œ: : : ; Œg.i � 1/; Œx�Gab ���

�
:

In the last equality, each of the ni C 1 summands are Oi .j�.x; g/j
1=i /; hence

the g-th term of the sum (2.3) has length at most Oi .
P

x2S j�.x; g/j
1=i //, which

is Oi .diam.�.Gab; S//1=i / by Jensen’s inequality and recalling (2.4). Summing
over all g, we thus get an upper bound of si�1Oi .diam.�.Gab; S//1=i /, which is
Os;i .diam.�.Gab; S/1=i / as claimed.

Corollary 2.1. Let G be a finite nilpotent group of class c 2 Z�1. Let S � G be
a symmetric generating set of size s 2 Z�2. We have

diam.�.Gab; S// � diam.�.G; S//

� diam.�.Gab; S//COc;s

�q
diam.�.Gab; S//

�
:

Proof. By the left-hand side of the inequality in Lemma 2.1, the left-hand side
follows immediately.

Using the right-hand side of the inequality in Lemma 2.1 inductively for the
terms of the lower central series, we obtain

diam.�.G; S// �
X
i�1

diam
� G.i/

G.iC1/
; S
�
:

Appealing to Proposition 2.1 now yields the desired conclusion.

3 The case of unitriangular groups and more general sequences
of nilpotent groups

In this section, we apply Corollary 2.1 to determine the limiting distribution of
the appropriately rescaled diameters of random Cayley graphs of finite nilpotent
groups of bounded rank and class.

The resulting theorem below is a generalisation of [7, Theorem 1.2], which
corresponds to the case c D 1 of our result. As the reader shall soon see, however,
our proof consists of a reduction to that case by means of Corollary 2.1.
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Theorem 3.1. Let k > r � 1 and c � 1 be integers. Let ¹Gnºn2Z�1
be a sequence

of finite nilpotent groups of rank at most r , nilpotency class at most c and with jGnj

approaching infinity as n goes to infinity.
Choosing a subset S uniformly at random among all symmetric generating sub-

sets S of Gn of size k, then as n!1, we have that the random variables

diam.�.Gn; S//

jGab
n j

1
k

converge in distribution. Moreover,

diam.�.Gn; S//

jGab
n j

1
k

d
����!
n!1

diam.Rk=L/;

where the random variable on the right-hand side is defined by choosing L at
random in the space SLk.R/=SLk.Z/ of unimodular lattices in Rk with respect
to the Haar probability measure and the diameter on the right-hand side is with
respect to the `1 metric.

Proof. For n � 1, r � 1 and k > r , denote the random variable

diam.�.Gn; S//

jGab
n j

1
k

by Xn and the random variable

diam.�.Gab
n ; S//

jGab
n j

1
k

by X ab
n .

Applying Corollary 2.1 to the finite nilpotent group Gn (of class at most c) thus
yields the inequalities

X ab
n � Xn � X

ab
n COk;c

� p
X ab

n

jGab
n j

1
2k

�
: (3.1)

We next remark that we must have that jGab
n j approaches infinity as n goes to in-

finity. Indeed, from Section 2.2, it follows immediately that there are finitely many
nilpotent groups of bounded nilpotency class and bounded size of the abeliani-
sation, and this would contradict the fact that jGnj tends to infinity as n goes to
infinity. This is also explained in [3, Lemma 4.13]. Moreover, observe that the
groups Gab

n trivially have rank bounded by r . We are therefore in a position to use
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[7, Theorem 1.2] to deduce that X ab
n converges in distribution to the random vari-

able defined on the space of k-dimensional unimodular lattices as in the statement
of our theorem, say X .

Note also that � p
X ab

n

jGab
n j

1
2k

�
n

converges in probability to 0.
The right-hand side of (3.1) is therefore of the form X ab

n C "n with X ab
n

d
�! X

and "n
P
�! 0. It follows from Slutsky’s lemma that X ab

n C "n
d
�! X .

This finishes the proof.

We now use Theorem 3.1 with the sequence of finite nilpotent groups Hq;d

of upper triangular d � d matrices over Z=qZ with 1 on the diagonal: they are
of nilpotency class d � 1 and H ab

q;d
' .Z=qZ/d�1. We thus obtain the follow-

ing theorem and, in doing so, a proof of [5, Conjecture 7] along with an explicit
description of the limiting distribution.

Theorem 3.2. Let q � 2; d � 2 and k � d . Choosing a subset S uniformly at
random among all symmetric generating subsets S of Hq;d of size k, then as
q !1, we have that the random variables

diam.�.Hq;d ; S//

q.d�1/=k

converge in distribution. Moreover,

diam.�.Hq;d ; S//

q.d�1/=k

d
����!
q!1

diam.Rk=L/;

where the random variable on the right-hand side is defined by choosing L at
random in the space SLk.R/=SLk.Z/ of unimodular lattices in Rk with respect
to the Haar probability measure and the diameter on the right-hand side is with
respect to the `1 metric.

4 Concluding remarks

Let i be in Z�2. One can then ask the following related questions.

Questions. What is the correct order of magnitude of diam.H .i/

q;d
; S/? Is the power

q
d�1

ik suggested by the upper bound of Proposition 2.1 sharp (to hold in probabil-
ity)?
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We only remark that, using the same type of argument based on growth that
one uses to show the logarithmic behaviour as a general lower bound, one can
establish as a pointwise lower bound a much smaller power of q, depending on i .
Such a trivial estimate can be slightly improved using the equidistribution theorem
in [7] and basic facts about the shortest vector statistics on spaces of unimodular
lattices. However, the resulting gain on the power of q is still not enough to reach
q

d�1
ik
�" as a pointwise lower bound.

One can also ask about the difference diam.�.Hq;d ; S// � diam.�.H ab
q;d
; S//.

Corollary 2.1 gives an upper bound for this quantity. We ask the following.

Question. Can one give a sharp lower bound for the quantity

diam.�.Hq;d ; S// � diam.�.H ab
q;d ; S//

(to hold in probability)?

Finally, what about those questions for more general sequences ¹Gnºn2Z�1
of

finite nilpotent groups as in Theorem 3.1?
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