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A note on spherical functors

Ciaran Meachan

Abstract

We provide a new and very short proof of the fact that a spherical functor between certain
triangulated categories induces an auto-equivalence.

Introduction

Let D(X) denote the bounded derived category of coherent sheaves on a smooth projective
variety X. If Y is another smooth projective variety, then any object P ∈ D(X × Y ) gives rise to
a Fourier–Mukai functor F = ΦP : D(X) → D(Y ), and we refer to the object P as the Fourier–
Mukai kernel of F . Similarly, if Z is a third smooth projective variety and Q ∈ D(Y × Z) is
any object, then the composition ΦQ ◦ ΦP is induced by the convolution Q ∗ P := π13∗(π∗

12P ⊗
π∗

23Q) ∈ D(X × Z).
Now, since such an F = ΦP : D(X) → D(Y ) has a left adjoint L = ΦPL

and a right adjoint
R = ΦPR

, we can use the unit and counit of adjunction to define new kernels via the following
triangles:

C → Δ∗OX
η−→ PR ∗ P and P ∗ PR

ε−→ Δ∗OY → T .

The induced functors C = ΦC : D(X) → D(X) and T = ΦT : D(Y ) → D(Y ) are called the
cotwist and twist of F , respectively.

In this brief note, we give a short and simple proof, relying solely on the structure of
adjunctions, and a classical result found in [5], of the following theorem.

Theorem [2.3 and 3.2]. Let F = ΦP : D(X) → D(Y ) be a Fourier–Mukai functor between
the bounded derived categories of two smooth projective varieties X and Y , with left
adjoint L = ΦPL

and right adjoint R = ΦPR
. Suppose that the cotwist C = ΦC is an auto-

equivalence of D(X) and PR � C ∗ PL[1] is any isomorphism. Then the canonical map PR →
PR ∗ P ∗ PL → C ∗ PL[1] is an isomorphism and the twist T = ΦT is an auto-equivalence of
D(Y ).

The observation that spherical functors give rise to interesting auto-equivalences is well
documented. It is hard to underestimate the importance of the paper [10]. Their ideas were
further developed in [2, 8] and the foundations were finally completed in [3]. Other notable
works include [1, 6, 9]. Our proof is different from all of these and so we feel it is worthy
of mention.

Received 14 December 2019; revised 3 December 2020; published online 1 March 2021.

2020 Mathematics Subject Classification 18G80, 18E30 (primary).

This research is supported by the EPSRC Doctoral Prize Research Fellowship Grant no. EP/K503034/1.

C�2021 The Authors. Bulletin of the London Mathematical Society is copyright C�London Mathematical
Society. This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.12476&domain=pdf&date_stamp=2021-03-01


A NOTE ON SPHERICAL FUNCTORS 957

1. Preliminaries

Definition 1.1. If F = ΦP : D(X) → D(Y ) is a Fourier–Mukai functor with left adjoint
L = ΦPL

and right adjoint R = ΦPR
, then we distinguish the units and counits with subscripts

as follows:

Δ∗OX
ηR−−→ PR ∗ P P ∗ PR

εR−−→ Δ∗OY Δ∗OY
ηL−−→ P ∗ PL PL ∗ P εL−→ Δ∗OX .

If an argument only deals with one adjoint pair, then we shall drop the subscripts.

Lemma 1.2. Units and counits are exchanged under the adjunction isomorphisms:

Hom(Δ∗OX ,PR ∗ P) � Hom(PL ∗ P,Δ∗OX) ; ηR �→ εL

Hom(P ∗ PR,Δ∗OY ) � Hom(Δ∗OY ,P ∗ PL) ; εR �→ ηL.

Proof. For the first one, recall from [7, Chapter IV] that an adjunction is a bijection which
assigns arrows according to a specific recipe. In particular, we have:

where ε is the counit associated to the adjoint pair (PL ∗ P,PR ∗ P). Using naturality of
counits, we can rewrite this universal arrow as ε � εL ◦ (PL ∗ εR ∗ P). Finally, the composition
of the arrows being εL follows from convolving the triangular identity (εR ∗ P) ◦ (P ∗ ηR) � idP
on the left with PL; see [7, Theorem IV.1.1.(ii)]. The second statement follows from a similar
argument. �

Definition 1.3. Let F = ΦP : D(X) → D(Y ) be a Fourier–Mukai functor between the
derived categories of two smooth projective varieties X and Y with left adjoint L = ΦPL

and
right adjoint R = ΦPR

. Using the units and counits above, we can define the twist T = ΦT and
cotwist C = ΦC of F by the following exact triangles:

P ∗ PR
εR−−→ Δ∗OY

αR−−→ T βR−−→ P ∗ PR[1] and C δR−−→ Δ∗OX
ηR−−→ PR ∗ P γR−−→ C[1].

Similarly, we define the dual twist T ′ = ΦT ′ and dual cotwist C ′ = ΦC′ of F by

T ′ δL−→ Δ∗OY
ηL−−→ P ∗ PL

γL−−→ T ′[1] and PL ∗ P εL−→ Δ∗OX
αL−−→ C′ βL−−→ PL ∗ P[1].

Lemma 1.4. C ′ = ΦC′ and T ′ = ΦT ′ are left adjoint to C = ΦC and T = ΦT , respectively.

Proof. This can be found in [6, Remark 2.10]. For a direct argument, first take left adjoints
of the triangle C → Δ∗OX

ηR−−→ PR ∗ P defining the kernel of the cotwist C = ΦC to get an exact
triangle PL ∗ P → Δ∗OX → C′ and then use Lemma 1.2 to see that the Hom(Δ∗OX ,PR ∗ P) �
Hom(PL ∗ P,Δ∗OX) maps the unit ηR to the counit εL. This shows that C ′ 	 C. Similarly,
we can show T ′ 	 T . �

Lemma 1.5. Let F = ΦP : D(X) → D(Y ) be a Fourier–Mukai functor with right adjoint
R = ΦPR

. Then we have the following natural isomorphisms:

T ∗ P[−1]
βR∗P[−1]−−−−−−→ P∗PR ∗ P P∗γR−−−→ P ∗ C[1], and

PR ∗ T [−1]
PR∗βR[−1]−−−−−−−→ PR∗P ∗ PR

γR∗PR−−−−→ C ∗ PR[1].
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Similarly, if F = ΦP : D(X) → D(Y ) is a Fourier–Mukai functor with left adjoint L = ΦPL
,

then we have the following natural isomorphisms:

P ∗ C′[−1]
P∗βL[−1]−−−−−−→ P∗PL ∗ P γL∗P−−−→ T ′ ∗ P[1] and

C′ ∗ PL[−1]
βL∗PL[−1]−−−−−−−→ PL∗P ∗ PL

PL∗γL−−−−→ PL ∗ T ′[1].

Proof. These identities are standard, and all stem from the triangular identities associated
to the adjoint pairs. For example, [7, Theorem IV.1.1(ii)] tells us that the composition
PR

ηR∗PR−−−−→ PR ∗ P ∗ PR
PR∗εR−−−−→ PR is the identity on PR. This provides a splitting of PR ∗

P ∗ PR and allows us to complete the following diagram:

using the octahedral axiom to get a functorial isomorphism:

PR ∗ T [−1]
PR∗βR[−1]−−−−−−−→ PR ∗ P ∗ PR

γR∗PR−−−−→ C ∗ PR[1]. �

The following result is the key technical lemma which will allow us to easily deduce that the
twist associated to a spherical functor is an auto-equivalence.

Lemma 1.6. Let F = ΦP : D(X) → D(Y ) be a Fourier–Mukai functor with a right adjoint
R = ΦPR

. If there is any natural isomorphism (not necessarily the unit of adjunction) between
PR ∗ P and Δ∗OX , then the unit η : Δ∗OX

∼−→ PR ∗ P of adjunction is an isomorphism. That
is, F = ΦP is fully faithful.

Proof. This statement is the dual of [5, Lemma 1.1.1] translated into the setting of Fourier–
Mukai functors. �

2. Spherical functors

Definition 2.1. We say that a Fourier–Mukai functor F = ΦP : D(X) → D(Y ) with left
adjoint L = ΦPL

and right adjoint R = ΦPR
is spherical if the cotwist C = ΦC is an auto-

equivalence of D(X) and the canonical map:

(γR ∗ PL) ◦ (PR ∗ ηL) : PR → PR ∗ P ∗ PL → C ∗ PL[1],

is a functorial isomorphism.

Remark 2.2. Proposition 3.2 shows that if C = ΦC is an auto-equivalence, then any
isomorphism PR � C ∗ PL[1] ensures that (γR ∗ PL) ◦ (PR ∗ ηL) is an isomorphism.

Theorem 2.3. Let F = ΦP : D(X) → D(Y ) be a Fourier–Mukai functor between the
bounded derived categories of two smooth projective varieties X and Y , with left adjoint
L = ΦPL

and right adjoint R = ΦPR
.
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(i) If the canonical map (γR ∗ PL) ◦ (PR ∗ ηL) : PR → PR ∗ P ∗ PL → C ∗ PL[1] is an iso-
morphism, then the unit ηT : Δ∗OY

∼−→ T ∗ T ′ of adjunction is an isomorphism.
(ii) If the canonical map (γR ∗ PL) ◦ (PR ∗ ηL) : PR → PR ∗ P ∗ PL → C ∗ PL[1] is an iso-

morphism and C = ΦC is an auto-equivalence of D(X), then T = ΦT is an auto-equivalence of
D(Y ).

Proof. (i) We use the triangles P ∗ PR → Δ∗OY → T and T ′ → Δ∗OY → P ∗ PL to
construct a commutative diagram:

If we consider the top right square of the previous diagram together with the commutative
square:

consisting of four copies of P ∗ PL and all maps being the identity, then we can use the natural
map P ∗ ηR ∗ PL : P ∗ PL → P ∗ PR ∗ P ∗ PL to form a commutative diagram:

Indeed, the left face is just the triangular identity convolved with PL on the right; the top
and bottom faces are clearly commutative and the commutativity of the right face follows from
the commutativity of the other faces of the cube.

Applying the octahedral axiom to the top and right faces of this commutative diagram
produces the following commutative diagram of triangles (figure 1).

The canonical map (γR ∗ PL) ◦ (PR ∗ ηL) : PR → PR ∗ P ∗ PL → C ∗ PL[1] is an isomor-
phism by assumption. Therefore, convolving the canonical map with P on the left, to get
(P ∗ γR ∗ PL) ◦ (P ∗ PR ∗ ηL), must also be an isomorphism. This implies P ∗ Q[1] � 0 which
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Figure 1. Diagram of functors associated to T ∗ T ′[1].

in turn provides a natural isomorphism Δ∗OY [1] ∼−→ T ∗ T ′[1]. By Lemma 1.6, this implies that
the unit ηT : Δ∗OY

∼−→ T ∗ T ′ of adjunction is an isomorphism.
(ii) Part (i) proves that T ′ = ΦT ′ : D(Y ) → D(Y ) is fully faithful and so it remains to show

that T ′ = ΦT ′ is an equivalence. By [4, Lemma 1.50], it is enough to show that ker ΦT = 0. To
see this, suppose that ΦT (E) = 0 for some E ∈ D(Y ). Then, by Lemma 1.5, we have ΦC∗PR

(E) �
ΦPR∗T (E)[−2] = (ΦPR

(ΦT (E))[−2] = 0 which implies ΦPR
(E) = 0 since the cotwist C = ΦC

is an auto-equivalence by assumption. Now, the defining triangle ΦP(ΦPR
(E)) → E → ΦT (E)

shows that E = 0 and so ker ΦT = 0 as required. Finally, we know that T = ΦT is right adjoint
to T ′ = ΦT ′ by Lemma 1.4 and so T = ΦT must be an equivalence as well. �

Corollary 2.4. The left (or right) adjoint of a spherical functor F = ΦP with twist T =
ΦT and cotwist C = ΦC is a spherical functor with twist C−1 and cotwist T−1.

Proof. This follows from the fact that the units and counits are exchanged under adjunction;
see Lemma 1.2. �

3. Identifying adjoints by an auto-equivalence

We work with the same notation that was introduced in Section 1. For details on adjunctions,
we refer to [7, § IV.1–4].

Lemma 3.1. If C = ΦC is an auto-equivalence of D(X), then the canonical map:

PR ∗ P PR∗ηL∗P−−−−−−→ PR ∗ P ∗ PL ∗ P γR∗PL∗P−−−−−−→ C ∗ PL ∗ P[1],

is an isomorphism.
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Proof. First, let us observe that we have a commutative diagram:

Indeed, the left-hand side is just the triangular identity convolved with PR on the left, and the
square commutes since the arrows act on separate variables. That is,

γR � (C ∗ εL[1]) ◦ (γR ∗ PL ∗ P) ◦ (PR ∗ ηL ∗ P). (3.1)

Now, by Lemma 1.2 we know that εL is the left adjunct of ηR. Moreover, in the proof of
Lemma 1.4, we observed that the dual cotwist triangle is the left adjoint of the cotwist triangle.
Thus, by comparing triangles, we see that αL must be the left adjunct of δR, or equivalently,
δR is the right adjunct of αL. That is, we have:

(3.2)

Combining the right-hand side of (3.2) with (3.1), we can observe that we have a commutative
diagram of triangles:

where εC : C ∗ C′ → Δ∗OX is an isomorphism since C = ΦC is an auto-equivalence by assump-
tion. Since the second and third vertical arrows are isomorphisms, it follows that the first
vertical arrow is also an isomorphism. �

Proposition 3.2. Suppose the cotwist C = ΦC is an auto-equivalence of D(X). Then any
isomorphism ϕ : PR

∼−→ C ∗ PL[1] implies the canonical map:

χ : PR
PR∗ηL−−−−→ PR ∗ P ∗ PL

γR∗PL−−−−→ C ∗ PL[1],

is an isomorphism.

Proof. If we consider the triangle PR
χ−→ C ∗ PL[1] → Q, then χ is an isomorphism if and only

if Q � 0. To show that Q � 0 it is sufficient to prove that the induced Fourier–Mukai functor
ΦQ : D(Y ) → D(Y ) is zero on a spanning class of D(Y ). To this end, we use the spanning
class Ω = im ΦP ∪ ker ΦPR

from [1, § 2.4]. Indeed, convolving the triangle defined by χ with
P gives:

PR ∗ P χ∗P−−−→ C ∗ PL ∗ P[1] → Q ∗ P,

and Lemma 3.1 tells us that χ ∗ P is an isomorphism. That is, Q ∗ P � 0 and so we see that
ΦQ is zero on im ΦP . Next, we take an object E ∈ ker ΦPR

and evaluate the induced triangle
of Fourier–Mukai functors on it to get:

ΦPR
(E) = 0 → ΦC ◦ ΦPL

(E)[1] → ΦQ(E).
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By assumption, we have some isomorphism ϕ : PR
∼−→ C ∗ PL[1] allowing us to conclude that

ΦC ◦ ΦPL
(E) = 0 and hence ΦQ(E) = 0. This shows that ΦQ is also zero on ker ΦPR

and thus
Q � 0, which completes the proof. �

Remarks 3.3. The hypotheses of the results in this section are stronger than necessary.
Indeed, Lemma 3.1 and Proposition 3.2 only use the weaker statements that ΦC′ is fully faithful
and ker ΦPR

= ker ΦPL
, respectively.
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