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Nearest-neighbor analysis (NNA)—a method for assessing the degree to which a spatial 
point pattern departs from randomness in the direction of being either clustered or 
regular—was imported into academic geography from an article published in 1954 by 
ecologists Clark and Evans. In its simplest form, concerned with distances to the first 
nearest neighbor, NNA hinged on the behavior of the “nearest-neighbour statistic,” Rn, 
supposed to vary between 0 (complete clustering) and 2.15 (complete regularity). NNA and 
the wider body of work on point pattern analysis quickly gained in sophistication, meaning 
that this simple test statistic only featured briefly in the frontline research literature of 
geographical analysis. Nonetheless, given its easy-to-grasp logic, it became and remains 
a staple of quantitative geography textbooks for undergraduate students and statistical 
methods training in school-level geography curricula. The purpose of this paper is to chart 
the history of NNA and its test statistic in academic geography, and to provide an analytical 
demonstration that the value of 2.15 has been mistakenly identified as an upper limit for the 
latter. Broader speculations are then offered about what may be learned from the history of 
how the discipline has handled this statistic.

Introduction: revisiting nearest-neighbor analysis (NNA) and its statistic

NNA occupies a minor if not insignificant place in the history of academic geography’s encoun-
ter with what has variously been badged as “the quantitative revolution,” “locational analysis,” 
or “spatial science.” In its simplest formulation NNA calculated a nearest-neighbor statistic or 
index, typically denoted Rn, supposedly lying between 0 and 2.1491, often rounded to 2.15. The 
purpose of this article will be to chart the history of NNA, and more particularly the treatment 
of its characteristic statistic, from initial engagement by “scholarly users” (circa 1950s–1960s) 
through to its deployment as a teaching tool by “educational users” (1970s onwards).1 The dis-
tinction between these different cohorts of “users” is easy to detect in the literature and is central 
to the history that we are telling. Indeed, we emphasize how interest in NNA, and particularly its 
statistic, quickly waned for scholarly users but was rekindled by their pedagogic counterparts, 
for whom the figure of 2.15, the assumed maximum value of the statistic, acquired what might 
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be described as unquestioned, even “mythic,” status. Arising from empirical work by the lead 
author (Philo 2004, Chap. 5, pp. 374–7), combined with expertise of the second author (e.g., 
Philo 1969), this article also adds a brief analysis to demonstrate that claims about 2.15 as a 
maximum value are mistaken. Taken together, our twin-track historical-analytical inquiry allows 
speculations to be advanced about what might be learned from how academic geography has 
tackled NNA and its statistic.

A prefatory clarification is that two fundamentally different approaches for analyzing spatial 
distributions have arisen in academic geography and cognate disciplines, with both searching 
for either clustering of individual elements, their apparent pulling together, or dispersion, their 
apparent pushing apart (e.g., Moore 1954). One approach—called “quadrat analysis,” evoking 
botanists laying quadrats (square grids) over patches of vegetation, counting plants of different 
species within each quadrat—concentrates on the numbers of individuals occupying given por-
tions or “sub-areas” of a study area. The observed density of individuals per sub-area can be com-
pared with expected densities on the assumption of randomness, that individuals are scattered 
randomly across the area, or against other theoretically derived density distributions (reflecting 
different statistical families of distribution-generating models). A second approach relies on the 
spacing or distances between individuals within a study area. The observed distances, measured 
and then aggregated in some manner, can be compared, in the same vein as above, with expected 
distances on the assumption of randomness or against other theoretically derived distance pa-
rameters. The geographer Dacey (1965, p. 144) distinguished between “quadrat measures” and 
“spacing measures,” the latter “us[ing] distances between points,” while Dacey and Tung (1962, 
p. 84) stated that “[a]cceptable methods of identification of pattern types are the quadrat method 
and … variations of the nearest neighbour method.”

NNA in academic geography: an outline history

Clark and Evans (1954)
A history of NNA in academic geography begins with the mid-1950s article by Clark and Evans 
(1954), published in the journal Ecology, specifying an innovative method for quantifying the 
spatial distribution of a given community of plants (or possibly animals) within a given area. 
As they argued, it is helpful for researchers to be able to measure—to quantify—whether such 
a distribution displays either clustering, wherein individual members appear to clump together 
into one or more clusters, or regularity, wherein individuals appear to be regularly or evenly 
spaced apart from one another. Put another way, the objective is to decide the extent to which a 
distribution departs from randomness—or no discernable pattern—in the direction of either clus-
tering or regularity, since such departures suggest the operation of “underlying forces active in 
the formation of particular patterns” (Clark and Evans 1954, p. 446). Randomness was here de-
fined as occurring when every individual or “point” in a distribution “has … the same chance of 
occurring on any sub-area as any other point,” every sub-area (however exactly defined) within 
the overall area possesses an equal chance of “receiving a point,” and when “the placement of 
each point has not been influenced by that of any other point” (Clark and Evans 1954, p. 446). In 
situations where “equal chances” are not the case and where points are influencing the position 
of each other, then “underlying forces” will likely be at work inflecting the distribution toward 
either clustering or regularity.

Building on prior work by ecologists and others,2 these ecologists proposed an investiga-
tion where “[t]he distance from an individual to its nearest neighbour, irrespective of direction, 
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provides the basis for this measure of spacing” (Clark and Evans 1954, p. 447). Their approach 
was simple: for a particular real-world distribution comprising a known number of individu-
als occupying a specified area of a known size, it entailed comparing an observed measure of 
“nearest-neighbourliness,” here the mean distance of all individuals from their respective nearest 
neighbors in that distribution, with an expected measure of that mean based on the assumption of 
randomness in the placement of the same numbers of individuals across the same area. “The ratio 
of the observed mean distance to the expected mean distance serves as a measure of departure 
from randomness,” explained Clark and Evans (1954, p. 447). They identified a range of values 
for this ratio, running from a lower limit of 0 (zero), the hypothetical case where all individuals 
occupy exactly the same location and the expected mean is 0,3 through to a claimed upper limit 
of 2.1491, where all individuals are evenly spaced as far apart as possible and where the observed 
mean reaches the maximum it can do so. A value of 1 obviously arises when the observed and 
expected means are identical. These three values were taken to signal total clustering (0), full 
randomness (1), and complete regularity (or uniformity) (2.1491). Any real-world distribution 
could be readily located on this spectrum, informed deductions made about whether it lent to-
ward being clustered, random or regular, and objective comparisons made between it and other 
real-world distributions. In their own words, Clark and Evans (1954, p. 447) stated that Rn, their 
ratio, “has a limited range, with values indicative of perfectly uniform, random and completely 
aggregated patterns of distribution.”

There is more to be said about the Clark and Evans article, such as noting the application 
of their approach to “actual data,” pertaining to both an artificially contrived distribution and 
real-world distributions of grassland plants and forest trees. They also acknowledged various 
“problems of procedure”: many nearest neighbors in real-world distributions are “reflexive” or 
“pairwise,” leading the same nearest-neighbor distance to be measured twice, although including 
such “double distances” is statistically justified; the existence of boundary effects, arising from 
the arbitrary specification of study areas, means that what might otherwise be nearest-neighbor 
distances are missed because they include individuals lying out with the study area, a compli-
cation difficult to avoid; and the fact that in the method “individual components … have been 
treated as dimensionless points” (Clark and Evans 1954, p. 450), usually justifiable because 
individuals are relatively so much smaller than the overall area. It might be added that the visual-
ization here was “in terms of two-dimensional space, i.e. with reference to populations on plane 
surfaces” (Clark and Evans 1954, p. 446), and deployed square or rectangular “plots,” although 
in principle study areas could be any shape.

More relevant to what follows is the article’s appendix, where the authors derived a formula 
for the expected measure of the mean nearest-neighbor distance, deploying a Poisson exponen-
tial function, a visualization based on sectors of a circle, attention to probability distributions and 
calculus steps. Here the authors also derived what is supposedly the upper limit of Rn, 2.1491, 
occurring when individuals are maximally spaced, remarking that “[t]he mean distance between 
nearest neighbours is maximised in a hexagonal distribution, where each point has 6 equidistant 
nearest neighbours” (Clark and Evans 1954, p. 452 [also p. 447]). Graphical illustrations of 
such a distribution will be shown below, although the distribution here might more logically be 
described as triangular rather than hexagonal, a slip that has since led some geographers and 
others astray.4 Tellingly, Clark and Evans (1954, p. 447) also proposed that use of Rn should 
be complemented by a “test of significance” based on the difference between observed and ex-
pected nearest-neighbor distance means, divided by the standard deviation of the expected mean 
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distance, set against “the normal curve” (thus enabling a Z-test). This procedure arguably came 
to take precedence—for frontline geographical analysis, if not for geographical education—over 
any stand-alone interpretation of Rn itself.

NNA and geographical research
Following their 1954 article, the authors and others (Clark and Evans 1955, 1979; Clark 1956; 
also Thompson 1956) continued to investigate the potential for NNA in ecology, including atten-
tion to “higher-order” nearest neighbors (beyond immediate or 1st-order to 2nd-, 3rd or nth-order 
nearest neighbors). Geographers deploying NNA at the research frontier started to appear in 
the late-1950s, with the most high-profile contribution straightforwardly following Clark and 
Evans (1954) being Getis (1964), studying the shifting locations of grocery stores in Lansing, 
Michigan. He calculated and compared Rn for these retail distributions across seven different 
years—by decade, from 1900 to 1960—disclosing “a consistent U-shaped trend” (Getis 1964, 
p. 395) whereby Rn was just above 1.0 in 1900, indicating an initially random pattern, before 
dipping down closer to 0.5 in 1920, suggesting clustering, and then gradually returning back 
toward 1.0 by 1960 (Fig. 1). He explicitly stated the possible range for Rn to lie between 0 and 
2.1491 (Getis 1964, p. 395). Intriguingly, he began his article by lamenting that NNA “has been 
successfully used by plant ecologists, but with less success by geographers,” claiming that the 
early (unpublished) efforts to use NNA by the likes of Dacey and Berry led them to “criticise it 
for a number of reasons, the most prominent being insufficient rationale for objectively defining 
the study area” (Getis 1964, p. 391). As Getis realized, the same distribution of points viewed 
through different-sized “sampling windows,” including more or less of the points, may result in 
differing values of Rn. A particular difficulty then arises when a distribution under study is solely 
contained within a given area, such that progressively increasing the size of the sampling win-
dow beyond that area results in the distribution appearing increasingly clustered (with Rn values 
decreasing accordingly).5 Getis’s response was a guarded restatement of NNA’s usefulness in 
situations where the researcher could sensibly justify the prior specification of a study area, and 
when undertaking temporal comparisons of Rn’s behavior over time in the same study area, as in 
his Lansing inquiry. Sherwood (1970) emulated Getis in this regard, studying premises occupied 
by grocers and solicitors-accountants in Shrewsbury, United Kingdom, for various dates, but 
allowing and justifying a progressive enlargement of the study area in tandem with the town’s 
own urban expansion.

Figure 1. Summary of nearest-neighbor measures in Getis study; note behavior of R (Rn), the 
nearest-neighbor statistic (Getis 1964, p. 395).
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Continuing his commentary on previous geographical studies, Getis (1964, p. 395) stated 
that “[t]here are a few unpublished papers in the geographical literature which demonstrate the 
empirical use of the technique,” adding that, “to the author’s knowledge, only Dacey has at-
tempted an empirical analysis that has been published, and this work is applied to a special case 
and is, therefore, of limited value.” The latter reference was to Dacey (1960a; also Porter 1960) 
on “the spacing of river towns,” tackling reflexive and higher-order nearest-neighbor distances, 
measured by river and by air, between pairs of towns along the banks of the Mississippi. Such 
an attempt to apply NNA to a “linear” case was amplified subsequently by Pinder and Witherick 
(1973, 1975) and Selkirk and Neave (1984), the latter speaking of NNA for “one-dimensional 
distributions” that could include lines, curves, and circles. Oddly, Getis appeared ignorant of a 
second empirical study by Dacey (1962), wherein he adopted a Clark and Evans (1954) version 
of NNA to assess whether settlement distributions in South West Wisconsin, United States, 
conform to “Central Place Theory,” finding limited evidence for regularity of spacing for upper 
tiers (larger centers) in the settlement hierarchy. Jensen-Butler (1972) paralleled Dacey (1962) 
when studying a “central place system” in County Durham, United Kingdom, using Rn—and 
its hypothetical range “between 0 … and 2.149” (Jensen-Butler 1972, p. 357)—in the search 
for tendencies toward regularity at different “hierarchical levels.” Nor did Getis register a study 
by King (1962) which offered a comparative analysis of urban settlement patterns across 20 
U.S. regions. Using straight-lines distances between all urban places and their nearest neighbors 
within each region when calculating regional Rns, ranging from weakly clustered (0.70, Utah) to 
weakly regular (1.38, Missouri), King (1962) concluded that the overall picture tended toward 
randomness rather than patterning. Birch (1967), meanwhile, conducted a simple NNA of farm-
stead distributions in the U.S. Corn Belt, taking the method to remoter rural settings than the 
urban focus of these other inquiries.

Elsewhere, Dacey (1960b) wrote more theoretically, deploying a sophisticated grasp of 
probability theory and mathematical reasoning, elaborating on concepts of randomness (Dacey 
1965) and disclosing perhaps surprising ways in which randomness and regularity are inter-
related (Dacey 1964a). Dacey and Tung (1962, pp. 86–7) claimed that regularity, “when the 
mean area assigned to each point is at a maximum,” arises “[i]n an unbounded space … when 
each point is at the vertex of at least six equilateral triangles; this produces a hexagonal arrange-
ment of points” (Dacey and Tung 1962, pp. 86–7). They thereby extended the Clark and Evans 
(1954) statement about hexagonality, but also, by implication, suggested that assumptions about 
complete regularity (including the interpretation of 2.1491) only apply to the hypothetical situ-
ation of “unbounded space” (irrelevant to actual situations studied by geographers: see below). 
Elsewhere again, Dacey (1964b, p. 559) worried that geographers were too concerned with clus-
tering, showing “little or no interest in more regular than random point patterns,” despite the 
supposedly regular spacing of settlements and services predicted by “Central Place Theory” 
(also Dacey 1962, 1963). A follow-on might have been greater focus on the behavior of Rn when 
regularity is seemingly present, as in our article, but Dacey shifted back from NNA to quadrat 
approaches comparing observed point density variations across a plane with predictions of such 
variability using probability laws generative of regularity. He explicitly contrasted the latter 
with “the negative binomial, Neyman Type A, and similar contagious probability distributions” 
(Dacey 1964, p. 559) then gaining purchase within the hallways of geographical analysis.

In his wide-ranging Locational Analysis in Human Geography, Haggett (1965, pp. 90–1, 
pp. 231–2) referenced the Dacey and King studies—noting the supposed maximum of Rn of 
2.15 arising for “a uniform triangular lattice”—and then offered a fuller account of NNA—here 
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depicting the supposed upper-limit as arriving “where the points are as far as possible from each 
other and therefore a regular hexagonal distribution.” The confusion of the triangular and the 
hexagonal recurs here, but what also becomes clear is the extent to which NNA, and more spe-
cifically Rn, were subsumed into a much larger portfolio of approaches to the “description of rel-
ative location” (the title of Haggett 1965, Chap. 8). This relatively minor place of NNA/Rn at the 
research frontier was reinforced by the encyclopedic second edition of the same volume, wherein 
“distance-based methods,” including NNA and variants, comprised only seven pages (Section 
13.6) near the end of a 35-page chapter on “Point Pattern Analysis” (Chap. 13) dominated by 
different forms of “quadrat counts” (Haggett, Cliff, and Ord 1977, esp. pp. 439–45). Rn was only 
cited once, “defined on the interval [0, 1, 2.15],” with 2.15 said to characterize “a maximally 
spaced, perfectly regular pattern when the points will be located at the vertices of a hexagonal 
grid” (Haggett, Cliff, and Ord 1977, p. 439). Similarly, Getis and Boots (1978; also Boots and 
Getis 1988), in their survey of the geographical “study of points, lines and area patterns,” only 
devoted a few pages to “distance measures” (Section 2.2.2) in a larger chapter on “Point Pattern: 
Poisson Process” (Chap. 2), outlining NNA but emphasizing here the calculation of Z-scores 
(see above). No mention was made of Rn or 2.15. In their statistical package for point pattern 
analysis, Chen and Getis (1998) followed an initial step (“basic descriptive statistics”) with a 
second step facilitating NNA—calculating mean observed and expected distances to first nearest 
neighbor, the variance and Z-scores—and then a third step dealing with frequencies of observed 
and expected distances (to first, second and larger-order neighbors), taking into account possible 
boundary effects and using Monte Carlo testing (also Ingram 1978). Again, no place for Rn.

Bringing the history forward, noting contributions to the current journal, Geographical 
Analysis, the trajectory is clear. Where the derivation is still recognizably from “original” NNA, 
referencing Clark and Evans (1954), the main impetus becomes recasting the procedures in-
volved, with scanty or no reference to Rn. Two examples are: Jones (1971, p. 367), who explored 
the behavior of Rn across different orders of neighbors for different sorts of random and regular 
lattice, one finding being that the statistic appears to “converge asymptotically to the value of 
2.1491 quoted by Clark and Evans … for the hexagonal case”; and Thomas (1977, p. 415), who 
proposed a different nearest-neighbor statistic, based not on Poisson but rather the geometric 
distribution and its principle of “equal likelihood,” although he still took 2.1491 as the maximum 
when comparing the Clark and Evans statistic with his alternative for analyzing regular distribu-
tions based on the “equilateral triangle.” Where authors notably depart from NNA, the situation 
is quite different. A few, uncoincidentally from engineering backgrounds, have deployed sub-
stantially reframed species of nearest-neighbor measures to probe an expansive “geometry” of 
features—“point-like, line-like, surface-like”; maybe networked and amenable to representation 
and analysis as “graphs” or “sub-graphs” (Pace and Zou 2000)—before addressing the implica-
tions for calculating test statistics, estimating distances to different orders of nearest-neighbor 
“facilities” under differing conditions, and then practically planning for facility opening or clo-
sure (e.g., Okabe and Yoshikawa 1989; Okabe and Yamada 2001; Miyagawa 2009, 2014).

Many other contributions to Geographical Analysis have tackled the wider universe of point-
pattern analyses identified by Haggett, Cliff, and Ord (1977), deploying, inspecting, and refining 
the family of spatial statistics specified by Chen and Getis (1978), while others have adopting 
exploratory and computational methods—perhaps allied to Monte Carlo simulations—rather 
than “the step-by-step mathematical rigour” (Haining and Hudson 2009, p. 346) preferred by 
the likes of Dacey when advancing beyond basic NNA. More generally, a word-search through 
potentially relevant papers in Geographical Analysis—ones reviewing the history or presenting 
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the state-of-the-art with respect to point pattern analysis and (in certain respects the major shift 
on from such analysis) “spatial autocorrelation”6—returns a complete absence of references to 
NNA, Rn and 2.15. To be clear, then, what we are charting here is a waning of interest by schol-
arly users if not entirely in NNA per se, since it retains a limited presence as one ingredient 
of point pattern analysis, but certainly in Rn and 2.15. “My view,” remarks a reviewer of this 
paper, “is that research moved beyond NNA when studying point patterns because it is an in-
complete measure; relying on nearest-neighbour differences instead of all inter-event distances,” 
thereby only capturing some elements of a point pattern and arguably not its most important 
ones. Methods for characterizing and probing point patterns “simply became more advanced and 
moved on,” in which context “NNA did not provide a suitable framework and was left behind 
(the same way in which quadrat analysis was left behind).”7

We suspect that researchers such as Getis, Dacey, and others themselves quickly realized 
that 2.15 was not the maximum value possible for the statistic,8 but, despite our searching, we 
have not found any readily accessible published statements to this effect. Indeed, that absence is 
one justification for our present paper, and especially its analytical component as offered below. 
Moreover, if such research-based statements had become available from the 1960s or more re-
cently, we presume that the pedagogical users, addressed in our next section, would not have 
been so certain in their own pronouncements about NNA, Rn and the maximal status of 2.15. A 
plausible inference is that, for mathematically proficient geographers operating at the frontiers 
of spatial science, NNA indeed came to seem too simplistic—especially in its Clark and Evans 
(1954) first nearest-neighbor guise—but also unworthy of sustained reassessment or commen-
tary, even about potential misunderstandings of 2.15. The research frontier swept forward, but 
without leaving behind a published trace of what the scholars involved may already have divined 
about limitations of the nearest-neighbor statistic.

NNA and geographical education
Given the relatively easy-to-grasp quality of basic NNA, it is perhaps unsurprising that it 
emerged as—and then, remained—a staple of work in geographical education for both under-
graduate and school-level students. A much-cited article in this regard was Pinder and Witherick 
(1972), published in the journal Geography, an organ of the Geographical Association (GA), 
the United Kingdom’s prime body promoting geographical education (particularly in schools). 
These authors gave a clear recounting of NNA in its Clark and Evans (1954) guise, arguing that 
prior limited uptake reflected its obfuscation by front-line researchers:

This relatively slow progress may … be attributed to the fact that successive authors have 
not expressed the nearest-neighbour formula in its simplest form. When written out in full, 
the formula can seem daunting to those with relatively little skill in mathematics, a circum-
stance that may well have deterred many potential users of the technique. This is unfortunate 
because, once the formula is written in elemental terms, it can be applied by any student 
capable of using square root tables. … [F]amiliarity with the approach should provide pupils 
intending to read geography at university with a logical, even elegant, view of location pat-
tern assessment. (Pinder and Witherick 1972, p. 277)

Carefully explaining the “nearest-neighbour formulae” in its simplest formulation, with dif-
ferent notation but consistent with how we present it below (3), Pinder and Witherick (1972, 
p. 280) discussed “the interpretation of Rn” by relating how “all values lie along a continuous 
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scale extending from 0 (completely clustered) through 1.0 (random) to 2.15 (perfectly regular).” 
Referencing their “nearest-neighbour (Rn) value scale” (Fig. 5), they identified “the ultimate sit-
uation … in which the points are spaced with perfect regularity. When this occurs, the points are 
arranged according to a lattice of equilateral triangles with each point equidistant from six other 
points. With this arrangement, Rn reaches its maximum value of 2.15” (Pinder and Witherick 
1972, p. 280).

They also demonstrated how Rn behaves when the same distribution (here, 10 regularly 
spaced points) is set within progressively smaller study areas (all square and hence proportion-
ally equivalent). Fig. 2 shows their graphing of this behavior, with Rn rising toward 2.15. At this 
point the authors added, but with no justification, that “it would be inadvisable to employ [NNA] 
on strongly elongated areas, or indeed on any essentially linear patterns” (Pinder and Witherick 
1972, p. 285). Such a claim does chime with aspects of our own analysis below, while the authors 
were prompted in their own subsequent active research to investigate further NNA and “linear 
patterns” (Pinder and Witherick 1973, 1975). Moreover, they also reasoned that a zone of Rn 
values could be identified, decreasing its range with increasing numbers of points, that all plau-
sibly characterize randomness in a given distribution. Fig. 3 shows their graphing of such a zone, 
together with results (the Rns) from the authors’ own empirical NNAs of tors on Bodmin Moor, 
schools in Southampton and hatters in Luton (at different dates). Crucially, it is this diagram 
that has been frequently reproduced in subsequent educational treatments of NNA, presumably 
because it neatly captures the apparent “essentials” for mobilizing NNA and interpreting Rn.

An article broadly similar in tenor and message appeared a year later, concluding that “in 
general the method of Clark and Evans is better than methods using distance to higher near-
est neighbours, both in distinguishing clearly non-random patterns from random ones and in 
providing the opportunity of interpreting the rejection of the hypothesis [of no pattern]” (De 
Vos 1973, p. 316). Oddly, given the appendix to Clark and Evans (1954), De Vos (1973, p. 307) 
remarked that “[i]t can be shown (although I have not found the proof anywhere …) that R[n] 
is maximal [here given as 2.14914] if the objects form a hexagonal pattern.” Arguably, these 
two articles signposted the way for an uptake of NNA, with its iconic Rn range from 0 to 2.15, 

Figure 2. The behavior of Rn for the same distribution as affected by decreasing study area 
(Pinder and Witherick 1972, p. 284).



Chris Philo and Peter Philo 2.15 or not 2.15?

341

in literature and resources for teaching quantification in geography to university and school-
level students. Dawson (1975, p. 42) cited “[s]everal new publications on quantitative methods 
in geography [that] have appeared in the last year or two for senior-school pupils and under-
graduates. They have all included [NNA] as a method for describing areal patterns.” Vincent 
(1976, p. 161) agreed that NNA and quadrat “techniques, purporting to measure pattern,” are 
now “firmly established in the undergraduate and school literature.” Selkirk and Neave (1984, p. 
356) later confirmed that “[t]he technique is now sufficiently well-known for it to be included in 
a number of standard basic statistical textbooks for geographers and others.” Waugh’s popular 
textbook for A-level (or equivalent) students in the United Kingdom, Geography: An Integrated 
Approach, across numerous editions, started to reference NNA together with the statement “that 
a regular or perfectly uniform pattern of points would have a nearest neighbour statistic Rn = 2.15 
which would mean that each point was equidistant from its neighbours” (Waugh 2009, p. 402). 
Additionally, it is easy to locate NNA instruction materials on current online platforms offering 
a basic introduction to NNA and positioning Rn and its alleged range as a simple tool for geo-
graphical analysis (in some cases obviously derivative from the Waugh textbook). In Table 1 we 
gather together examples of such claims from textbooks and online sources.

The early stirrings of NNA in a geographical-educational context prompted a flurry of con-
tributions to the journal Area during the mid-1970s, commencing with the piece from Dawson 
(1975) quoted above which prompted four “comments” published together in a mini-theme sec-
tion subtitled “caution towards nearest neighest neighbours” (in order, Charlon 1976; Ebdon 
1976; Sibley 1976; Vincent 1976) and then, a more analytical article by Haworth and Vincent 
(1976). The horizon for this “exchange” was indeed the parachuting down of NNA into the 
classroom, with contributors displaying skepticism about the extent to which the method can 
really disclose or interpret distributional “patterns,” as well as about the problematic inferential 
leaps required (of the novice geographer) from pattern back to (generating) process. Rn being 
maximized at 2.15 was universally accepted, and Haworth and Vincent (1976, p. 300) sought, 
using a graphical proof based on Thieson polygons, to “present a method to demonstrate that 
R[n] takes on its maximum value (2.14914) if the objects to be measured are placed in a regular 

Figure 3. A graphical representation of how to interpret Rn as affected by increasing number of 
points (Pinder and Witherick 1972, p. 287).
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Table 1. Table of textbooks/online sources introducing NNA to students, together with example 
statements about Rn and 2.15

Textbooks/online sources Statements about Rn and 2.15

Theakstone, W.H. and Harrison, C. 

(1970), The Analysis of Geographical 
Data

“… values of Rn range from zero, when all points are 

clustered at the same location, to 2.15, when the points have 

their maximum spacing, in which case they are distributed 

regularly in a hexagonal pattern” (p. 61)
Ebdon, D. (1977), Statistics in 
Geography: A Practical Approach

“… the nearest-neighbour index can have a value between 0.0, 

indicating a completely clustered pattern, and 2.15, indicating a 

completely dispersed pattern” (p. 125)
Hammond, R. and McCullagh, P. 

(1978), Quantitative Techniques in 
Geography

“… the Nearest Neighbour Index ranges from zero (indicating 

that all points are closely clustered) to 2.15 (indicating that all 

points are uniformly distributed throughout the area)” (p. 270)
McGrew Jr., J.C. and Monroe, C.B. 

(1993), An Introduction to Statistical 
Problem-Solving in Geography

“… the Nearest Neighbour Index R[n] has its maximum value 

of 2.149 for a perfectly dispersed arrangement” (p. 217)

Rogerson, P.A. (2004), Statistical 
Methods for Geographers

“ … the Nearest Neighbour Statistic R[n] varies from zero 

(a value obtained when all points are in one location) to a 

theoretical maximum of about 2.14 (for a perfectly uniform or 

systematic pattern of points spread out on an infinitely large 

two-dimensional plane.”
Barcelona Field Studies Centre, Nearest 

Neighbour Analysis, last accessed 

18/08/2020 at: http://geogr​aphyf​ieldw​

ork.com/neare​st_neigh​bour_analy​sis.

htm

“The nearest neighbour formula will produce a result between 

0 and 2.15, where the following distribution patterns form a 

continuum:”

Teachitgeography Resources You 

Can Trust, The 2014 World Cup—A 

Nearest Neighbour Analysis, last 

accessed 18/08/2020 at: https://www.

teach​itgeo​graphy.co.uk/resou​rces/

ks5/stati​stica​l-techn​iques/​stati​stics/​

the-2014-world​-cup-a-neare​st-neigh​

bour-analy​sis/23078

“The Nearest Neighbour Analysis will always generate a 

result between 0 and 2.15. Values of 2.15 indicate a regular 

pattern of the distribution ….”

IB Geography, last accessed 

18/08/2020 at: https://www.geoib.com/

neare​st-neigh​bor-index.html

“The NNI measures the spatial distribution from 0 (clustered 

pattern) to 1 (randomly dispersed pattern) to 2.15 (regularly 

dispersed /uniform pattern).”
Royal Geographical Society with 

the Institute of British Geographers, 

4i—A Guide to Nearest Neighbour 

Analysis, last accessed 18/08/2020 

at: https://www.rgs.org/CMSPa​

ges/GetFi​le.aspx?nodeg​uid=153c1​

1d5-2420-4e25-a972-03c91​a7742​

92&lang=en-GB

http://geographyfieldwork.com/nearest_neighbour_analysis.htm
http://geographyfieldwork.com/nearest_neighbour_analysis.htm
http://geographyfieldwork.com/nearest_neighbour_analysis.htm
https://www.teachitgeography.co.uk/resources/ks5/statistical-techniques/statistics/the-2014-world-cup-a-nearest-neighbour-analysis/23078
https://www.teachitgeography.co.uk/resources/ks5/statistical-techniques/statistics/the-2014-world-cup-a-nearest-neighbour-analysis/23078
https://www.teachitgeography.co.uk/resources/ks5/statistical-techniques/statistics/the-2014-world-cup-a-nearest-neighbour-analysis/23078
https://www.teachitgeography.co.uk/resources/ks5/statistical-techniques/statistics/the-2014-world-cup-a-nearest-neighbour-analysis/23078
https://www.teachitgeography.co.uk/resources/ks5/statistical-techniques/statistics/the-2014-world-cup-a-nearest-neighbour-analysis/23078
https://www.geoib.com/nearest-neighbor-index.html
https://www.geoib.com/nearest-neighbor-index.html
https://www.rgs.org/CMSPages/GetFile.aspx?nodeguid=153c11d5-2420-4e25-a972-03c91a774292&lang=en-GB
https://www.rgs.org/CMSPages/GetFile.aspx?nodeguid=153c11d5-2420-4e25-a972-03c91a774292&lang=en-GB
https://www.rgs.org/CMSPages/GetFile.aspx?nodeguid=153c11d5-2420-4e25-a972-03c91a774292&lang=en-GB
https://www.rgs.org/CMSPages/GetFile.aspx?nodeguid=153c11d5-2420-4e25-a972-03c91a774292&lang=en-GB
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close-packed hexagonal pattern,” which, they elaborate, “is really a lattice of equilateral triangles 
and must not be confused with a hexagonal lattice where no points exist within each hexagon.”

As a bridge to the analytical part of our article, attention can be drawn to the piece by Ebdon 
(1976, esp. p. 165), arguably the first geographer to worry in print about Rn exceeding 2.15, at the 
same time as reflecting on what happens when formulae specified on the basis of infinite points 
areas are applied “to relatively small numbers of points within finite areas.” He conducted three 
mini-experiments with variants of a regular pattern (Fig. 4). The square figure gave Rn = 4.0, 
well above 2.15, leading him to exclaim that “this pattern is considerably more dispersed than it 
theoretically can be!” (Ebdon 1976, p. 166). The hexagonal figure gave Rn = 3.2829, also well 
above 2.15 (concurring with Philo 1997, p. 13).9 The “polyhedron” figure is intriguing, applying 
NNA to a three-dimensional surface—12 points located at the vertices of 20 equilateral triangles 
forming a polyhedron—in an attempt to avoid “the problem of dealing with a bounded area” 
(Ebdon 1976, p. 166). Here Rn = 2.3534, leading Ebdon (1976, p. 166) to conclude that “[e]ven 
with a larger number of points in an unbounded, though still finite area, the nearest-neighbour 
index exceeds its theoretical maximum value.” The impression is that he regarded these find-
ings as at yet unexplained curiosities, since in the remainder of his paper—running simulations 
of NNA on sets of four points randomly situated within a given area—he kept working with 
2.15 as the “theoretical maximum” (and nothing of this complication appeared in his textbook 
a year later or in second edition: Ebdon 1977, pp. 124–6; Ebdon 1985, pp. 143–9). Intriguingly, 
explicitly citing Ebdon’s curiosities, Pinder (1978, p. 383)10 admitted that “[s]mall point pop-
ulations can give freak Rmax [maximum Rn] values,” but then retreated to the orthodoxy: “it is 
accepted that a large population, fully dispersed with prefect regularity, will have Rmax equal to 
2.14914.” Nonetheless, there was still the hint here of gently challenging the hegemony of 2.15 
and acknowledging the dangers of extrapolating from “theory” predicated on infinite spaces to 
the more finite world ultimately of most interest to geographers.

Analyzing NNA and querying 2.15

Let us now specify our preferred notation and forms for the relevant equations, differing a little 
from that found elsewhere in the literature. If n points are randomly distributed over an area 
A, then the random variable Di represents the distance from point i to its nearest neighbor and 

Figure 4. Ebdon’s three figures for his mini-experiments with Rn (Ebdon 1976, p. 166).
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Di, also a random variable, represents the mean of all distances from each point to its nearest 
neighbor. Thus, di and di are observed values of these random variables. Di and Di can be shown 
to have probability distributions, and in an unpublished working paper (Philo 2006) the second 
author here—offering a fuller proof than that contained in Clark and Evans (1954, Appendix)—
has proved that:

(1)E
[

Di

]

= 0.5

√

A

n

Figure 5. Example point patterns (we are most interested in ‘perfectly regular’) and diagram 
showing the supposed value range for R (Rn) (source: Pinder and Witherick 1972, p. 281).
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As indicated, the nearest-neighbor statistic, Rn, entails a ratio between the observed and expected 
mean distances, which can be expressed as:

Substituting E
[

Di

]

 from (1) and simplifying gives the general formula for Rn:
11

Behavior of Rn: small experiments
One path we followed was to interrogate the regular pattern pictured in the Pinder and Witherick 
(1972) article, thereby in effect using the 1972 paper “against” its core claim about 2.15 as an 
unbreachable upper limit for Rn. The relevant diagram is reproduced in Fig. 5, our specific focus 
being the pattern described as “perfectly regular,” which, crucially for our later analysis, entails 
an equilateral-triangular distribution with each point (other than those at the margins) equidis-
tant to six nearest neighbors and with the distribution filling the space available. We printed out 
hard-copy of this diagram and measured it carefully, although the numerical values given below 
derive from our print copy and not the reproduction here.

The original is imprecisely drawn and not all of the triangle sides are exactly the same 
length, but we measured the majority at 0.55 cm and so took di to be 0.55 (every di here should 
of course be 0.55 cm). For our print copy, therefore, n = 60 (15 rows × 4 points), A = 19.36 cm2 
(4.4 × 4.4 cm), and di = 0.55 cm. If the diagram had been accurately drawn, the columns with 
eight points would have stretched from the top to the bottom (“horizontal”) edges of the con-
taining area, since 8 × 0.55 cm = 4.4 cm, with the top and bottom points laying on these edges 
rather than just below or above them (as in Fig. 5). Slotting the stated values for n, A and di into 
the standard NNA calculation generated Rn = 1.94, not reaching 2.15 but on the Clark and Evans 
(1954) logic still indicative of regularity. We then experimented with bringing in the “vertical” 
edges of the area so that the left and right columns of points also now laid on these edges, and we 
calculating using simple geometry that the width of the area would have to be 3.29 cm, rendering 
A = (3.29 × 4.4 cm =) 14.48 cm2.12 Using this new area value, we found Rn = 2.23, higher than 
2.15. Thus, if the area surrounding this point distribution is reduced to the smallest possible, with 
points on the edges and none excluded, then 2.15 is exceeded. The implication is that Rn will be 
maximized where the edges of the enclosing area coincide with the peripheral points of the “per-
fectly regular” distribution in question, and also with the (usually invisible) outer gridlines of the 
equilateral-triangular lattice on which the points sit.13 Indeed, in our proof below, predicated on 
areas delimited by lattice gridlines, we show that in such cases Rn will necessarily exceed 2.15.

Moreover, in this instance we held the height of the area constant and only reduced the 
width, which also suggests that Rn may be sensitive to the ratio between width and length or 
“height.” To explore this possibility, we created a narrower study area, isolating a vertical strip of 
width 1.2 cm flush with the right edge of the area that partitioned off the two right-hand columns 
of points, leaving room on either side. Obviously, di remained the same. Now, with n = 15 (1 
column of 7 points + 1 column of 8 points) and A = 5.28 cm2 (1.2 × 4.4 cm), Rn = 1.86. Next, the 
vertical strip was reduced to width 0.8 cm, still including the same two columns of points, but 

(2)Rn =
di

E
[

Di

]

(3)Rn = 2di

√

n

A
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leaving a gap between the strip and the right edge of the area (not of any analytical consequence). 
Now, with A = 3.52 cm2 (0.8 × 4.4 cm), Rn = 2.27, breaking the 2.15 barrier. Finally, the strip was 
reduced to width 0.47 cm, the narrowest possible for this distribution, with points now occupying 
the edges of the area. Here, with A = 2.07 cm2 (0.47 × 4.4 cm), Rn = 2.97, soundly exceeding 
2.15. The implication, echoing our first experiment, is that Rn increases as the area around the 
same set of n points is narrowed (reducing width) but not shortened (maintaining height). In 
other words, Rn increases as the proportions of the rectangular study area around these n points 
change or, more accurately, as the ratio between the sides of the study area—specifically, its 
width to its “height”—decreases from unity. More plainly still, the suggestion is that Rn increases 
as the area becomes “elongated,” to use the term from Pinder and Witherick (1972, p. 285; also 
Pinder 1978, p. 384), a realization that chimes with what drops from our proof below.

Behavior of Rn: a worked proof (across infinite and finite space)
Consider n points of a distribution forming a regular triangular lattice, with each equilateral 
triangle having side s, of course equivalent to di, and with area (given by standard formula) 
√

3

4
s2. As shown in Fig. 6, each point occupies a diamond-shaped area, darkly or lightly shaded, 

which combines two triangles with area 
√

3

2
s2. If the shaded pattern in Fig. 6 is extended to infinity,  

then the point density—n/A—becomes 
2

√

3.s2
. Recalling (3) but adding an asterisk (R∗

n
) to specify 

that it relates here to a regular triangular lattice, and replacing di with s:

Substituting the point density term into (4) gives:

(4)R∗

n
= 2s

√

n

A

Figure 6. Regular triangular lattice with equilateral triangles and diamond-shaped areas (and 
note that hexagons are also easy to discern).

ss

s

3 s2
4Area = each diamond above has an area of 3 s2

2
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It is arguably for this reason that 2.15 is often quoted as the maximum value for Rn, but it does as-
sume an infinite number of points distributed in a regular triangular lattice spread over an infinite 
area. Perhaps intuitively, researchers have assumed that under all conditions Rn necessarily must 
approach 2.15 “from below,” rendering 2.15 this assumed maximum, but the further question, 
as also explicitly asked by Ebdon (1976) and Pinder (1978), is whether this statement holds true 
for situations of finite n and A.

Consider n points of a distribution forming a regular triangular lattice, but now arranged in 
an approximately rectangular area of width w and height h, such as shown in Fig. 7, with triangu-
lar sides s, and with r being the ratio between w and h (and hence w = rh). There are b short lines 
(here b = 3) and b + 1 long lines (b + 1 = 4), k point in each long row (k = 5), and k – 1 points in 
each short row (k – 1 = 4), and therefore:

The height of each triangle and the area of each triangle are, respectively, 
√

3

2
s2 and 

√

3

4
s2. The 

number of triangles is (2k – 3) ×2b, and hence area A is:

(5)R∗

∞
= 2s

�

2
√

3. s2
= 2

�

2
√

3
= 2.1491

(6)n = b (k − 1) + k (b + 1) = 2bk + k − b (here 32)

(7)A = (2k − 3)

√

3

2
bs2

Figure 7. Example of the hypothetical distribution used in the following analysis. [Colour figure 
can be viewed at wileyonlinelibrary.com]

s

h

w

www.wileyonlinelibrary.com
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From Fig. 7, w = (k – 1)s and h = 
√

3bs, and, as w = rh, it can be shown that:

Substituting k from (8) in (6) gives:

Therefore, letting Q = 3r2 + 2
√

3r (4n − 3) + 1 in (10):

Substituting k from (8) in (7) gives:

which becomes:

See Appendix for steps from (11) to (12) and definition of the function f(r, n). Thus, from 
(4):

Crucially, this result shows that the value of R∗

n
 is independent of A, depending solely on r and 

n. Since r is the ratio of width and height, this finding establishes why R∗

n
 was affected in our ex-

periment above when reducing the width while retaining the height of the area around the same 
set of points (with n remaining constant). It also implies grounds for the Pinder and Witherick 
(1972) caution about the possible influence of “elongation” on the performance of Rn.
Furthermore, replacing f(r, n) in (13) with its definition from our Appendix:

(8)k =
√

3br + 1

(9)n = 2
√

3rb2 +
�
√

3r + 1
�

b + 1 or 2
√

3rb2 +
�
√

3r + 1
�

b + (1 − n) = 0

(10)

b=

−

�
√

3r+1
�

�

�
√

3r+1
�2

−8
√

3r (1−n)

4
√

3r

b=

�

3r2+2
√

3r (4n−3)+1−
�
√

3r+1
�

4
√

3r

b=

√

Q−

�
√

3r+1
�

4
√

3r

(11)
A =

�

2
√

3b2r − b
�
√

3s2

2

(12)A = f(r, n ) × s2

(13)R∗

n
= 2s

√

n

A
= 2s

√

n

f (r, n)
= 2

√

n

f (r, n)
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Thus, for any value of r:

While Clark and Evans (1954) arrived at this value, 2.149, by considering an infinite number 
of points over an infinite area, result (15) confirms that this value can be approached in a finite 
area. Table 2 shows how the value of R∗

n
—remember that this is only Rn for the specific but 

crucial case of a regular hexagonal pattern (equilateral-triangular lattice), not Rn for any possible 
distribution—varies with respect to r and n, demonstrating two things: first, perhaps counter-
intuitively, that R∗

n
 approaches 2.15 “from above,” not from below, descending toward 2.15 as r 

and n increase; and second, that R∗

n
 for a constant n increases as r decreases (as the ratio of width 

to height decreases), as can be seen by tracking values of R∗

n
 from right to left across any row in 

the table.14

Conclusion

This paper is a contribution to work reconstructing, contextualizing, and sympathetically cri-
tiquing the history of academic geography under the press of “the quantitative revolution,” “lo-
cational analysis,” or “spatial science,” notably as pursued in the compelling writings of Barnes 
(e.g., 2001a, 2001b, 2003, 2004, 2013). Perhaps surprisingly, there are few engagements with 
the histories of specific methods, quantitative or qualitative, although indications are contained 
in textbooks such as Cloke et al. (2004, esp. Chap. 1 and opening pages of most chapters). Our 
inquiry here offers such an engagement, examining the history of NNA in academic geography, 

(14)

R∗

n
=2

�

�

�

�

�

8rn

3r2+2+
√

3r (4n−1)−
�
√

3r+2
�

�

3r2+2
√

3r (4n−3)+1

R∗

n
=2

�

�

�

�

�

�

8r

3r2

n
+

2

n
+
√

3r
�

4n−
1

n

�

−

�
√

3+2
�

�

3r2

n
+2

√

3r
�

4n

n
−

3

n2

�

+
1

n2

(15)
Limit of R∗

n

n→∞
= 2

�

8r
√

3. r. 4
= 2

�

2
√

3
= 2.149 = R∗

∞

Table 2. Table showing how R∗

n
 varies with r (ratio of width to height) and n (number of points): 

note that a lot of points are required before R∗

n
 begins to approach 2.15

R∗

n

r

0.2 0.5 0.8 1.0

n 50 2.712 2.562 2.529 2.521
150 2.437 2.365 2.350 2.346
300 2.344 2.297 2.286 2.284
500 2.296 2.262 2.254 2.252

1,000 2.251 2.227 2.222 2.221
4,000 2.199 2.188 2.185 2.185
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noting a bifurcation in the research-frontier and more educational uses of NNA whereby the lat-
ter have remained much more energized by the simple, singular nearest-neighbor statistic Rn and 
its supposed range from 0 to 2.15. Such an obsession by geographers with a particular measure 
and number, perhaps one acquiring almost a “magical” status in certain fields, has been noticed 
before, as when Whatmore and Landström (2012) explored the background to Manning’s N, a 
“roughness coefficient,” beloved by fluvial geomorphologists.

Our inquiry has also added to the historical survey by undertaking its own analytical work, 
including a small empirical experiment and a mathematical proof where the behavior of Rn was 
investigated for points on a regular, equilateral-triangular lattice in situations of both infinite 
(bounded) and finite (bounded) space. The chief purpose was to demonstrate conclusively—not 
as anomaly or “freak” result contradicting the “theory” (cf. Ebdon 1976; Pinder 1978)—that in 
these situations Rn can, and indeed necessarily will, exceed the envisaged maximum of 2.15. 
Countless statements ever since Clark and Evans (1954) about Rn having an upper threshold of 
2.15 are hence shown to be mistaken, a provocative finding to hold up to the history that we have 
narrated. Additionally, our analysis confirms the Pinder and Witherick (1972) suspicion about 
“elongated” study areas affecting the performance of Rn.

Finally, we speculate that our conjoint historical-analytical inquiry potentially raises big-
ger questions about how “the quantitative revolution” has diffused into academic geography. 
Amazing energy and enthusiasm accompanied the initial stirrings of this new departure for the 
discipline, almost inevitably leading to an extremely steep “learning curve” as the scholars in-
volved familiarized themselves with quantitative techniques imported from elsewhere, such as 
NNA deriving from ecology, and then developed their own distinctive takes on these techniques. 
Given a rapid deepening of engagement with the mathematical intricacies of an explicitly spatial 
science, it is perhaps unsurprising that scholars—notably someone like Dacey—quickly shifted 
far beyond the likes of basic NNA, maybe being aware of their limitations but not necessarily 
seeing any need for (or having any interest in) spelling out these limitations chapter-and-verse. 
Conversely, those simpler techniques deemed as student-friendly—amenable to students doing 
calculations and interpreting statistical outputs—arguably began appealing to geographical ed-
ucators, thereby sliding into the heart of quantitative geography pedagogy at school and under-
graduate levels. That NNA persisted for so long in the textbooks, as one reviewer comments, 
“is itself perhaps a sign of this disconnection” between geographical educators and the research 
frontier, the mathematical difficulty of more sophisticated spatial point pattern analyses, as elab-
orated by specialist statisticians, being judged far beyond what could be handled in the geog-
raphy classroom. Another reviewer wonders if the “simple truths” of such techniques, such as 
the basic NNA statistical specification of 2.15, might acquire a peculiarly protected, uncritically 
appraised, status. Thus, “in order for students to learn mathematical precepts in a discipline like 
geography, quick and dirty nostrums need be served up,” even if educators themselves become 
aware of underlying limitations, maybe errors, accompanying these precepts. Our surmise in this 
case is merely that a disjuncture arose between scholarly and pedagogic users of NNA and its 
statistic, partly due to the very different needs and ambitions that each constituency held (and 
still holds) with respect to spatial-analytical methods.15 We can offer no obvious solution to 
this bifurcated situation, except to hope that our contribution can serve to engage, enlighten and 
possibly also entertain those who are still actively deploying NNA, Rn, and 2.15, in whatever 
capacity.
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Notes
	 1	� The helpful terms “scholarly users” and “pedagogic users” are suggested by a reviewer.
	 2	� A curiosity is that Clark and Evans (1954, p. 451) note an article by Hertz (1909), “virtually unknown 

to biologists” and suffering from “inaccessibility,” presumably due to being written in German but 
maybe also the recency of WWII. This article considers the distribution of particles in a gas, hence 
conducting a three-dimensional analysis: it never speaks of a nearest-neighbor statistic or indeed of 
2.15. Hertz was a philosopher and mathematician, specializing in optics and electromagnetic theory, 
working at the Mathematical Institute in Göttingen, Germany. His dissertation adviser was Hilbert, 
a leading mathematician of the early-1900s noted for his “axiomatising” of physics. Einstein visited 
Göttingen, and the intellectual rigor and “oral culture” of the Institute supposedly influenced the early 
development of his general theory of relativity. Hertz, with his interest in applying the calculus of 
probabilities to the motions of molecules through space, may have been part of that influence, and the 
pair corresponded. Hertz, with a Jewish background, was badly affected by the rise of Nazism, being 
dismissed from his post in 1933 but escaping to Prague, Paris, and then London with the assistance 
of the Social Democratic Party of Germany (SPD). For reasons not entirely clear, in one letter (1915) 
Einstein accused Hertz of “political cowardice” and a lack of “civil courage.” Here, then, NNA holds 
tenuous connections to arguably the most significant scientific and geopolitical events of the last 
century. Our sources here include: Howard and Norton (1993), MacLane (1995), Rowe (2004), also 
Einstein (1998, Letters #108, 111, 125–8).

	 3	� One reviewer helpfully remarks that “the lower limit (0) is an uninteresting case both theoretically 
and practically. In point process theories points are not allowed to occupy the exact same location; in 
practice, why would anyone deploy a statistic to confirm the non-variation?”

	 4	� Different regular lattices, made up of equilateral triangles, squares, hexagons, and more, all generate 
different possible values and ranges for Rn. As is clear from Fig. 6, a triangular lattice can easily have a 
hexagonal pattern detected in or superimposed upon it. Some geographers have nonetheless confused 
themselves by thinking in terms of a genuinely “hexagonal lattice … as, for example, in the erroneous 
diagram presented by Theakstone and Harrison (1970, p. 61)” (Haworth and Vincent 1976, p. 300). 
Indeed, “Theakstone and Harrison present ‘a hexagonal pattern’ … in which each point is equidis-
tant from only three other points” (Pinder and Witherick 1972, p. 288). It is tempting to suggest that 
some geographers, seduced by Central Place Theory, have ended up seeing hexagons everywhere, 
whereas in NNA the key distribution, the one maximizing mean nearest-neighbor distances, is actu-
ally equilateral-triangular.

	 5	� One reviewer distinguishes between “window sampling” and “the small world model.” In the for-
mer, the researcher samples Rn values for different parts of a point distribution encased by different 
“sample windows,” potentially of different sizes, adding that “as the window size increases, the area 
increases, but also reveals more points in the process.” There would hence be no necessary increase 
or decrease in Rn. In the latter, the “small world” comprises a given set of points beyond which there 
are no more points, and here increasing the study area inevitably correlates with decreases in Rn.

	 6	� Cliff and Ord (2009, p. 354), reflecting on their turn to “spatial autocorrelation,” cited the claim from 
Ripley (1990, pp. 55–6) that “point processes per se are becoming less important.” They clarified 
that, whereas “research about spatial processes before 1969 had dealt almost exclusively with either 
spatial point processes or with spatial processes … recorded at point locations,” Dacey’s innovation 
had been to recenter “the focus squarely on data aggregated over a region.” One reviewer caveats 
that “K-functions are still being actively used when the focus is on whether the underlying process is 
clustered or dispersed.”
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	 7	� This reviewer adds that “[t]he methodological development applicable to spatial point pattern analy-
sis has largely moved outside of geography (and geographical analysis) and back to statistics” (e.g., 
Møller and Waggepetersen 2004).

	 8	� An initial reviewer claimed that “[t]he fact that 2.15 is not the true upper limit for the statistic is well 
known,” but provided no supporting references.

	 9	� If connecting lines are drawn from the boundary points to the one at the center of Ebdon’s “hexagon,” 
it is clear that the case here could also be described as six equilateral triangles, reflecting that con-
flation of hexagons and triangles discussed in Note 4. Ebdon’s Rn value (3.28) for this case is in the 
same ballpark as the Rn value (3.30) stated for six equilateral triangles in Note 14, the minor difference 
being due to rounding “errors” in the differing calculations undertaken by us and by Ebdon.

 10	� The papers by Ebdon (1976) and Pinder (1978) prompted follow-ups (in order, Boots 1979; Pinder 
1979; Ebdon 1980). Ebdon (1980, p. 154) dubbed them “the slow-moving saga of nearest-neighbour 
analysis in the pages of Area.” Perhaps with more prescience than intended, the last paper here was 
followed by an italicized statement: “This discussion is now closed – editor.”

 11	� It would obviously be easy to plug conjectured combinations of values for n, A and di into equation (3) 
that would produce Rns above 2.15, but there is no guarantee that these combinations can ever arise in 
“real” distributions.

 12	� Inspecting the Pinder and Witherick (1972) diagram, it is clear that the width as pictured is equivalent 
to the “heights” of seven equilateral triangles (on the invisible lattice underlying the points) plus a 
little extra on either side. The height of a single triangle of base 0.55 cm can readily be calculated as 
0.47 cm, and hence the minimum width of the area inclusive of all points and removing the surplus on 
either side = (7 × 0.47 =) 3.29 cm.

 13	� Actually, there can never be complete overlap of a straight-line enclosing area and the lattice gridlines 
for a regular, equilateral-triangular lattice, since one pair of peripheral gridlines must always “zig-
zag,” as is obvious from Fig. 7. This complication requires careful handling in our proof.

 14	� It might be noticed that the Rn value, 2.23, generated for the minimum-sized area enclosing all the 
60 points in the Pinder and Witherick (1972) diagram, is only approached in Table 2 when n starts to 
exceed 1000. This difference likely arises because the rectangular area in our experiment is inevitably 
slightly larger than the area enclosed by an equilateral-triangular lattice based on 60 points, since the 
former will include the sub-areas in the “zigzags” (equivalent to the unenclosed half-diamonds on 
either side of Fig. ) which are excluded from the latter. By the logic of how Rn is calculated, a larger 
A will lead to a smaller multiplier under the square root sign, and hence a smaller value for Rn. For 
the record, for the “toy” example of a single equilateral triangle with sides 1 unit long (n = 3; A = 0.43 
cm2; di = 1.0 cm), Rn = 5.28; for that of 2 such triangles (n = 4; A = 0.86), Rn = 4.32; for 3 (n = 5, 
A = 1.29), Rn = 3.94; for 4 (n = 6; A = 1.72), Rn = 3.74; for 6 (n = 7; A = 2.88), Rn = 3.30; for 9 (n = 10; 
A = 3.87), Rn = 3.22; for 16 (n = 15; A = 6.88), Rn = 2.96. Once over 16, Rn slips under 3.0, but, as is 
apparent from Table 2, will then only very gradually dip down toward 2.15 as n increases.

 15	� There has arguably been a closely related “theoretical”/“practical” divide in play here, suggested by 
how Pinder (1979, p. 210) responded to Boots (1979): “He relies on the complex theoretical argument 
advanced by Dacey with supporting evidence provided by reference to very inaccessible work under-
taken by Matern and Persson. My inclination is to take the results of Ebdon’s practical investigation 
….”
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Substituting b from (10) in (11) gives:

Therefore:

Which defines the function f(r, n) as:
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