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Abstract

We present a growth model for special Cosserat rods that allows for induced rotation of cross-sections. The growth

law considers two controls, one for lengthwise growth and another for rotations. This is explored in greater detail for

straight rods with helical and hemitropic material symmetries by introduction of symmetry-preserving growth to account

for the microstructure. The example of a guided-guided rod possessing a chiral microstructure is considered to study

its deformation due to growth. We show the occurrence of growth-induced out-of-plane buckling in such rods.
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1. Introduction

Several theoretical models for elastic rods have been proposed. From Euler’s elastica to Kirchhoff rods, a very
rich literature is available, including the general model developed by Green, Naghdi and their collaborators. The
general rod theory proposed by Green and Naghdi subsumes classical theories like the Cosserat rod theory as
special cases under appropriate constraints. A comprehensive description of different rod theories is provided
by Antman [1] and O’Reilly [2].

Rod theories have been employed in many interesting applications in the last few decades, such as in DNA
biophysics [3], marine cables [4], tendril perversion in plants [5, 6], surgical filaments [7], slender viscous jets
[8], hair curls [9] and carbon nanotubes [10, 11].

Growing filamentary structures are ubiquitous in nature. Plant organs such as tendrils, roots and stem tend
to twist while growing axially [12]. There are studies with helical growth models in which straight axial growth
is accompanied by rotation of cross-sections [13, 14]. In this paper, we focus on this type of twisting growth,
which can lead to non-planar configurations if the material of the rod exhibits some sort of twist–extension
coupling.

The standard multiplicative decomposition [15] used to model biological growth has been specialized for
one-dimensional growth by Moulton et al. [16]. A recent study by Moulton et al. [17] gives the reduction of
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three-dimensional energy for a tubular structure to a one-dimensional equivalent via minimization in cross-
sections and subsequent averaging; it further demonstrates the generation of intrinsic twists and curvatures due
to differential growth. A diverse account on biological growth is available from Goriely [18], containing both
mathematical and biomechanical aspects.

Euler buckling of filaments evolving their shape under time-varying loads has been considered by Goldstein
and Goriely [19]. Works like that of McMillen et al. [6] consider plant tendrils as Kirchhoff rods, straight in
their initial states, which subsequently develop intrinsic curvatures in the grown equilibrium states. Another
evolution law for intrinsic curvatures has been proposed by O’Reilly and Tresierras [20] with a focus on tip
growth. Guillon et al. [21] modelled tree growth by considering the branch to be a special Cosserat rod growing
in both length and diameter. They modelled the reference, relaxed and current configuration of the growing rod
with separate base curves and director fields.

Several growing filaments in nature are known to have non-planar configurations [12, 13, 22]. Most existing
works that study one-dimensional growth in filaments model them as isotropic rods. Such models usually rely
on differential growth [17] or the presence of an external elastomeric matrix [23], multi-rod composites [24]
or phototropism [25] to model the generation of curvature and torsion in non-planar configurations. Growth
in chiral rods can be another way to obtain such non-planar deformations; this has not been explored in the
literature. In this work, we show that growing chiral rods can buckle out of plane, simply with a boundary
condition that arrests relative axial rotation at the ends.

There have been several attempts to understand material symmetries in rods. Different types of chiral mate-
rial symmetries – such as hemitropy and helical symmetry – in initially straight rods with uniform circular
cross-section have been investigated in great detail by Healey [26]. Other treatments of material symmetry in
the context of rods include the works of Luo and O’Reilly [27] and Lauderdale and O’Reilly [28]. The latter
authors [29] draw a few parallel comparisons with some results by Healey [26]. In this paper, we follow the
definitions and ideas of material symmetries introduced by Healey [26, 30].

Energy representations for helical symmetry and hemitropy have been derived by Healey [26]. Multi-fold
helical symmetry is useful in modelling rods whose micro-structure mimics the symmetries of a rope made up
of entwined helices. Hemitropic rods possess the centre-line rotational symmetry of an isotropic rod but lack the
reflection symmetries with respect to the longitudinal planes. Energy functions for rods with such chiral symme-
tries are typically characterized by coupled stretch, twist, shear and curvature terms. These couplings physically
manifest as different types of non-traditional Poisson effects [31]. Moreover, the conventional quadratic energy
densities associated with linear elasticity are incapable of distinguishing between different orders of helical
symmetries and hemitropy.

Out-of-plane deformations are yet another feature of rods with such symmetries. Unshearable hemitropic
rods can give rise to out-of-plane buckling when subjected to end displacements with fixed–fixed boundary
conditions, but on the other hand an axial load applied to a fixed–free rod always results in a planar solution [32].
Similar bifurcation analysis has also been replicated for chiral rings with circular cross-sections under central
loading [33]. Both in-plane and out-of-plane buckling of isotropic rods embedded in elastomeric matrix have
been examined [23], revealing that non-planar configurations are obtained whenever the matrix is stiff enough,
compared to the bending stiffness of the rod. Primary root growth of certain plants has been investigated [22],
drawing analogies from mechanical buckling of a metal filament embedded in a matrix comprising two different
gels whose interface is transverse to the filament.

The main focus of this work is to study growth-induced deformation in rods possessing chiral material sym-
metries – transverse hemitropy and dihedral helical symmetry. The growth law is also assumed to be chiral.
Straight growth, where cross-sections do not rotate as they translate lengthwise, is not appropriate for mod-
elling growth in rods with helical symmetry. If the chirality in material symmetry stems from some helical
substructure associated with the rod’s microstructure or from some sort of helical fibre-reinforcement, then
simple translational growth can alter the pitch of the helix. This, in turn, may modify the chiral constitutive
quantities associated with the material law. Moreover, straight translational growth without any rotation can
lead to unwinding or over-winding, thus inducing additional stresses; stress-free growth in such cases requires
the consideration of a coupled axial and rotational growth. Modelling the virtual configuration obtained from
stress-free growth as a special Cosserat rod allows us to consider growth-induced rotation of cross-sections.
The exact relationship between the growth law and rod’s microstructure is not well established. In this work,
we assume growth and constitutive laws to be independent in general. Additionally, for rods with helical sym-
metry we postulate the growth law to be symmetry preserving, so that any imaginary helix associated with the
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Figure 1. Kinematics of a special Cosserat rod depicting the deformed centre-curve and the triad of orthonormal directors.

microstructure remains unaltered as the rod grows. Such a growth problem depends only on the microstructural
pitch and the constitutive laws, keeping aside the boundary conditions and other external factors.

A rod constrained to grow (or decay) in a guided–guided environment is considered, with a chiral constitutive
law that is applicable to both helical symmetry and transverse hemitropy. Out-of-plane buckling is observed to
occur at certain growth (or atrophy) stages, corresponding to the bifurcation modes. We demonstrate that an
exact reversal in chirality of these non-planar solutions requires us to mirror the chiral parameters in both
growth and constitutive laws simultaneously. Comparisons are made for the end-to-end distance in the buckled
configuration with that in the virtual state to see if the ends have come closer or moved apart, than what they
would have been in the absence of the guides. We also show that total growth-induced extension in a rod does
not depend monotonically on the degree of chirality – that is, total extension in an isotropic rod need not lie
between the total extension of rods with opposite material chirality.

This paper is organized as follows. We begin with a theoretical background of material symmetries in the
context of special Cosserat rods in Section 2. A twisting growth law with two control parameters is system-
atically derived using certain kinematic assumptions such as homogeneity in lengthwise growth and relative
rotation of cross-sections in Section 3. In Section 4, we solve the problem of growth-induced out-of-plane
bifurcation in a chiral rod with guided–guided boundary conditions to study the interplay between chiralities in
growth and material laws. We present our conclusions in Section 5.

1.1. Notation

Throughout this text, the indices i, j, k ∈ {1, 2, 3} and α,β ∈ {1, 2}, unless mentioned otherwise. We let
{e1, e2, e3} be a right-handed, fixed, orthonormal basis for the Euclidean space E

3. Boldface symbols are used
to denote tensors, lowercase letters for first-order tensors (e.g. v) and uppercase letters for second-order tensors
(e.g. T). Underlined symbols such as v and T denote matrix representation of tensors with respect to a basis.

2. Special Cosserat rod formulation

Consider a straight rod of unit length in its stress-free reference configuration as shown in Figure 1. Assumption
of the special Cosserat rod requires the transverse cross-sections to stay rigid during the deformation. Let s ∈[
− 1

2
, 1

2

]
denote a signed arc-length parameter of the centre-line in the reference configuration. Let r(s) define the

centre-line of the deformed rod. Let R(s) ∈ SO(3) be the rotation of transverse cross-sections in the reference
configuration of the rod, mapping the fixed basis {e1, e2, e3} to a triad of orthonormal directors given by

di(s) = R(s)ei. (1)
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The vector fields

ν := r′, κ := axial(R′RT ) (2)

define the convected coordinates ν = νidi and κ = κidi with respect to the director frame field, along with
the ordered triples v := (ν1, ν2, ν3) and k := (κ1, κ2, κ3). The strains να correspond to shear, ν3 corresponds to
stretch, κα correspond to curvatures, and κ3 corresponds to twist.

We further assume the rod to be hyperelastic with a differentiable energy density (per unit length) function
8(r′, R, R′, s). Material objectivity allows for a simpler version of energy function in terms of strains [26], given
by

8 = W (v, k, s), (3)

where W is another differentiable scalar valued function.
The internal force and moment on the transverse cross-section are denoted by n(s) = nidi and m(s) = midi,

respectively, along with the corresponding triples n := (n1, n2, n3) and m := (m1, m2, m3). The components nα
are essentially the shear forces, n3 is axial force, mα are bending moments and m3 is the torsional moment.
These are related to the strain components as

n =
∂W

∂v
, m =

∂W

∂k
. (4)

To prevent self-penetration, we require

ν3 = r′ · d3 > 0, (5)

and the unshearability constraint is expressed as

να = r′ · dα = 0. (6)

2.1. Material symmetry in rods

In this section, we present a brief overview of certain classes of material symmetry for special Cosserat rods, as
described by Healey [26, 30].

2.1.1. Helical symmetry. Consider a straight rod possessing helical material symmetry [26]. A unique flip axis (or
symmetry axis) is associated with every transverse cross-section that rotates as the section plane moves along
the length of the rod (Figure 2(a)).

A 180-degree rotation (flip) about this axis renders the rod the same as before. We denote by M 6= 0 its
signed pitch, so defined that M > 0 for right-handed helices and |M| is the least axial translation of the
cross-section needed for the flip axis to complete a full rotation in the e1–e2 plane (Figure 2(b)).

Unlike flips, reflections about a transverse plane do not result in a coincident helix, nor do the reflections
through longitudinal planes. In fact, these reflections change the sign of M, keeping its magnitude, the same.

We introduce a rotating basis field
{

e∗
1

( s

M

)
, e∗

2

( s

M

)
, e∗

3

( s

M

)
= e3

}
(7)

and a corresponding triad of director fields given by

e∗
i (φ) = 2φei , 0 ≤ φ < 2π (8)

d∗
α(s) = R(s)e∗

α

( s

M

)
, (9)

where 2φ is a proper orthogonal tensor with matrix representation

2φ =

[
cosφ −sinφ 0
sinφ cosφ 0

0 0 1

]
, (10)
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Figure 2. A depiction of symmetry and associated kinematic parameters in chiral rods [26].

in the fixed basis.
Assuming e∗

1(φ) to be the rotating flip axis, we denote by Hπ
φ the flip about e∗

1(φ), so that

Hπ
φe∗

1(φ) = e∗
1(φ) , Hπ

φe∗
2(φ) = −e∗

2(φ) , Hπ
φe∗

3(φ) = −e3. (11)

Material properties with respect to the symmetry axis e∗
1

(
s
M

)
are assumed not to change as the cross-section

s moves along the rod. This motivates the definition of a symmetry-adapted energy function [26] independent
of s, given by

W (v, k, s) = 8 = W ∗(v∗, k∗), (12)

where v∗ = (ν∗
1 , ν∗

2 , ν3) and k∗ = (κ∗
1 , κ∗

2 , κ3) are a result of the change of coordinates

κ = κ∗
αd∗

α + κ3d3 , ν = ν∗
αd∗

α + ν3d3. (13)

Helical symmetry is characterized by

W ∗(ν∗
1 , ν∗

2 , ν3, κ∗
1 , κ∗

2 , κ3) = W ∗(−ν∗
1 , ν∗

2 , ν3, −κ∗
1 , κ∗

2 , κ3), (14)

in terms of the new energy function without s as an argument.

2.1.2. n-fold helical symmetry. Consider a rod with a symmetry analogous to n ≥ 2 helices entwined together, such
that each cross-section at s has n equally spaced flip axes. A 180-degree rotation about each of these gives a
symmetry (Figure 2(b)). Such a rod is said to have n-fold dihedral helical symmetry, which is characterized by
the condition

W ∗
(
−Hπ∗

2π
n

v∗, −Hπ∗
2π
n

k∗
)

= W ∗(v∗, k∗), (15)
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in addition to equation (14), where Hπ∗
2π
n

is the matrix of Hπ
2π
n

with respect to the rotating basis (equation (7)):

Hπ∗
2π
n

=




cos
(

2π
n

)
sin

(
2π
n

)
0

sin
(

2π
n

)
−cos

(
2π
n

)
0

0 0 −1


 . (16)

2.1.3. Continuous helical symmetry. For n � 1, a straight rod with n-fold dihedral helical symmetry approaches so-
called continuous helical symmetry. In this type of symmetry all vectors of the cross-section act as symmetry
axes, or equivalently any fixed flip axis, say e1, acts as a symmetry axis for all cross-sections. Continuous helical
symmetry can be characterized by

W (−Hπ
φv, −Hπ

φk) = W (v, k), ∀φ ∈ [ 0,π). (17)

2.1.4. Transverse hemitropy and isotropy. Let E denote the reflection tensor with matrix

E =

[
1 0 0
0 −1 0
0 0 1

]
, (18)

written in the fixed basis. A homogeneous hyperelastic straight rod with energy function W (v, k) is transversely
hemitropic if

W (2φv,2φk) = W (v, k) ∀ φ ∈ [ 0, 2π), (19)

and flip-symmetric if

W (Ev, Ek) = W (v, k). (20)

Note that flip-symmetry does not belong to the class of transverse symmetry, defined by Healey [26]. A straight
rod is transversely isotropic if in addition to equation (19), it also satisfies

W (v, k) = W (Ev, −Ek). (21)

Flip-symmetric hemitropy is equivalent to continuous helical symmetry [26]. Another way to obtain flip-
symmetric hemitropy is to consider a rod with helical symmetry and take the limit M → 0 [30].

2.2. Energy function

The energy density per unit length of unshearable hemitropic rods can be expressed as [1, 26]

W = ϒ(κακα, ν3, κ3), (22)

where ϒ is a scalar valued function. This representation is also valid for flip-symmetry. For calculations in this
paper, we adopt a model considered by Papadopoulos and Healey [31, 32], defined as

ϒ =
1

2

[
9(ν3) + 2A[ν3 − 1]κ3 + Bκ2

3 + Cκακα

]
, (23)

where 9 : (0, ∞) → R is a function such that g := 1
2
9 ′ obeys g(ν3) → −∞ as ν3 → 0. The function

g(·) allows us to modify the axial force response of the model, and it must satisfy g(1) = 0. The constant C

corresponds to bending stiffness, B −
A2

g′(1)
is equivalent to torsional rigidity and g′(1) −

A2

B
to axial stiffness,

where A is the degree of hemitropy. We assume B > 0, C > 0 and Bg′(ν3) > A2 for all ν3 to ensure convexity.
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This in turn implies that g(·) should be monotonic and hence invertible. For example, a response function
satisfying all our criteria can be chosen as [31]

g(ν3) = F ln(ν3) +
A2

B
[ν3 − 1], (24)

where F > 0 is a constant. This energy allows for infinite compressive axial force n3 → −∞ whenever an
unrealistically extreme strain ν3 → 0 is present.

As demonstrated by Healey [26], quadratic energy functions are incapable of distinguishing between differ-
ent types of n-fold helical symmetry (n ≥ 3) and hemitropy. Along similar lines, the energy function (23) can
be shown to be applicable to n-fold helical symmetry.

3. Growth formulation

Growth in elastic bodies is typically modelled by introduction of a multiplicative decomposition of the deforma-
tion gradient into pure growth and pure elastic deformation parts [15, 34]. This decomposition assumes a virtual
stress-free incompatible configuration. For one-dimensional structures where growth manifests as increase in
overall length, first the stress-free rod isolated from its environment and boundary conditions can be allowed
to grow free into a virtual state, and then the boundary and environmental factors can be forcibly imposed
[18, 35].

One-dimensional growth models, where cross-sections simply translate during free growth, are not suitable
for several classes of chiral rods. Chiral rods usually have a physical winding bias intrinsic to the microstructure
[26]. Length-wise growth with no cross-sectional rotation can modify this microstructure. For example, a rod
with helical symmetry made to grow axially will have to change its inherent pitch if the cross-sections are not
allowed to rotate during growth; and as a result the constitutive parameters controlling material chirality must
change accordingly. In such examples, to be able to look at growth that does not alter the microstructure, or
restricts the microstructure to modify itself in a particular manner, it is essential that we look at rod growth in a
more general setup.

Similarly, in chiral rods where material symmetry arises from fibre reinforcement [36], rod growth is a result
of individual fibre growth and it is the growth pattern of these fibres that dictates whether the rod’s cross-sections
must rotate, as they are translated during growth. Consider a rod that is composed of fibres twisted helically in
the unstressed reference state; if the cross-sections are not allowed to rotate during growth, it would have an
unwinding or over-winding effect on the fibres, thus generating stresses. In such cases, for growth to take place
without the generation of any stress, the cross-sections must rotate.

This is why we choose to individually treat all three configurations (reference, virtual and current) as special
Cosserat rods, and then analyse the relative rotations.

3.1. General framework for growing rods

Let Ro denote the initial stress-free reference configuration of the rod, occupying {Se3 : − 1
2

≤ S ≤ 1
2
} and

denote by S a signed arc-length parameter of the centre-line in Ro. Let r̃(S) be the curve taken by the centre-line

in the virtual grown configuration R̃, such that the point Se3 in Ro gets mapped to r̃(S) in R̃ (Figure 3). The

virtual configuration is assumed to be stress-free. We define a signed arc-length s(S) in R̃ by

s(S) :=
∫ S

0

‖̃r ′(τ )‖dτ , (25)

where ‖ · ‖ denotes the Euclidean vector norm.
We denote the transverse cross-section at S in Ro by 0o(S) and let it get mapped to 0̃(S) in the virtual

configuration R̃. We define W(S) ∈ SO(3) to be the rotation of 0̃(S) with respect to 0o(S), and let it map the
fixed basis {e1, e2, e3} to a virtual director field given by

ẽi(S) = W(S)ei. (26)

When the boundary conditions and environmental factors are imposed, let the centre-line take the curve r(S) in

the current configuration R, and the cross-section 0̃(S) in R̃ be mapped to 0(S) in R. We define R(S) ∈ SO(3)
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Figure 3. Kinematics of an initially straight rod growing from origin So, depicting the configurations: reference Ro, virtual R̃ and

current R, along with the multiplicative decomposition Q = RW.

to be the rotation of 0(S) with respect to 0̃(S) and Q(S) ∈ SO(3) to be the net rotation of 0(S) with respect to
0o(S), so that

Q(S) = R(S)W(S). (27)

The virtual director field is transformed into another director field in the current configuration, given by

di(S) = R(S)̃ei(S) = Q(S)ei. (28)

All the maps we have introduced are assumed to be smooth for the sake of convenience. Analogous to
r :

[
− 1

2
, 1

2

]
→ E

3, we define another map r̂ :
[
s(− 1

2
), s( 1

2
)
]

→ E
3 to denote the same curve via the

reparametrization,

r(S) =
(
r̂ ◦ s

)
(S). (29)

This implies

r′(S) = ‖̃r ′(S)‖
∂̂r

∂s
, (30)

where (·)′ :=
∂

∂S

(
·
)
, taking the magnitude of which gives the one-dimensional multiplicative decomposition

∥∥∥∥
∂r

∂S

∥∥∥∥ =
∥∥∥∥
∂̃r

∂S

∥∥∥∥
∥∥∥∥
∂̂r

∂s

∥∥∥∥ . (31)

Similarly, we define R̂ :
[
s(− 1

2
), s( 1

2
)
]

→ SO(3) by

R(S) =
(
R̂ ◦ s

)
(S). (32)

We assume the transverse cross-sections to remain orthogonal to the centre-line in both virtual and current
configurations, hence the conditions

r̃ ′ · ẽα = 0 (33)

and r′ · dα = 0 (34)

must hold, where equation (34) is equivalent to the unshearability constraint (6). The symbols and notations
introduced in this section are pictorially represented in Figure 3.
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3.1.1. Homogeneous growth kinematics. We consider the growth to be homogeneous throughout the rod. This
assumption leads to the following constraints:

• The length-wise growth parameter denoted by γ := ||̃r ′(S)|| is a constant – that is, it is independent of S.
• Let h ∈ R be such that 0 < |h| < 1. Consider the relative rotation of cross-section 0̃(S + h) with respect

to 0̃(S):

ẽi(S + h) = W(S + h)W(S)−1 ẽi(S). (35)

For all permissible h, the relative rotation W(S + h)W(S)−1 is assumed to be independent of S, and hence
can be denoted as a function of h only:

W(S + h)W(S)−1 =: 5(h). (36)

This gives us the decomposition

W(S + h) = 5(h)W(S). (37)

Choosing ~ 6= 0 such that all the tensor fields appearing in the following calculation make sense, we have

[
5(h + ~) −5(h)

]
W(S) = W(S + h + ~) − W(S + h) (38a)

= 5(h)
[
W(S + ~) − W(S)

]
. (38b)

Dividing by ~ and taking the limit ~ → 0 yields

∂5(h)

∂h
W(S) = 5(h)

∂W(S)

∂S
. (39)

We define the following tensor fields for our convenience:

3(S) := W(S)T ∂W(S)

∂S
, and �(S) :=

∂W(S)

∂S
W(S)T . (40)

Now equation (39) implies

5(h)T ∂5(h)

∂h
= �(S). (41)

Since h and S can be chosen arbitrarily, independent of each other, we conclude that �(S) is constant.
Another way to interpret equation (36) is to set

∂

∂S

[
W(S + h)W(S)−1

]
= O . (42)

We expand the derivative to get

∂

∂S

[
W(S + h)W(S)−1

]
=

∂

∂S

[
W(S + h)

]
W(S)T − W(S + h)W(S)T ∂W(S)

∂S
W(S)T (43a)

= W(S + h)
[
3(S + h) −3(S)

]
W(S)T . (43b)

This implies 3(S + h) = 3(S) for all choices of S and h, chosen independent of each other, which means
3 is constant.
Moreover, differentiating the condition WWT = I = WT W of orthogonality with respect to S yields

3T = −3 and �T = −�; (44)

that is, 3 and � are skew-symmetric.
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• We fix a point on the centre-line that gets mapped to itself under the growth transformation, along with its
corresponding cross-section. Thus, we assume the existence of a point So ∈

[
− 1

2
, 1

2

]
satisfying

r̃(So) = Soe3 and W(So) = I. (45)

This can also be interpreted as if the rod is allowed to grow while being held at So (origin of growth).
It is held in such a way that no incompatibility or stress is caused due to growth. We define vectors
a := axial

(
3

)
and ω := axial

(
�

)
; these are actually constant vectors and can be related by

ω = W(S)a . (46)

Since this is also satisfied for the specific point S = So, we imply a = ω and 3 = �. This also means that
axis

(
W(S)

)
= a for all S.

Thus one can solve the system

WT ∂W

∂S
= 3 with W(So) = I, (47)

for W to obtain (Appendix A)

W(S) = e(S−So)3, (48)

where tensor exponential is defined by the series expansion of exponential function.

3.1.2. Extension to a general growing curve. Consider a general scenario in which the initial configuration Ro is a
special Cosserat rod. Let r̄ :

[
− 1

2
, 1

2

]
→ E

3 be its centre-curve, where r̄(S) is arc-length parametrized. Let

W̄(S) ∈ SO(3) denote the orientation of 0o(S) with respect to the fixed basis, mapping those to an orthonormal
director field ēi(S) := W̄(S)ei associated with initial configuration. Since W(S) ∈ SO(3) maps 0o(S) to 0̃(S),
the virtual director field should be given by ẽi(S) = W(S)W̄(S)ei, so that equation (35) is modified as

ẽi(S + h) = W(S + h)W̄(S + h)W̄(S)−1W(S)−1ẽi(S). (49)

Homogeneous growth law still requires γ to be constant. The tensor W(S + h)W(S)−1 is again independent
of S. In addition, the rod is assumed to be held at So ∈

[
− 1

2
, 1

2

]
while growing, so that we have

r̃(So) = r̄(So) and W(So) = I. (50)

This assumption, along with the kind of homogeneity used in induced rotations, gives such a W(S) that makes
all the cross-sections rotate about the particular axis a. Moreover, the solution is given by equation (48), which
in turn implies

ẽi(S) = e(S−So)3W̄(S)ei. (51)

In fact, the constant vector ω = a can be treated as the growth parameter controlling relative rotation of cross-
sections while γ controls the lengthwise growth as in the former case. Whenever the centre-curves are normal

to the cross-sections, throughout Ro and R̃, we deduce

r̃(S) = r̄(So) + γ

∫ S

So

e(τ−So)3r̄ ′(τ ) dτ . (52)

We emphasise that equations (51) and (48) do not assume the respective centre-curves to be normal to the

cross-sections in Ro and R̃.
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3.2. Growth in straight rods

Consider a straight rod with flip-symmetric hemitropy in its reference configuration. A straight virtual
configuration condenses to

r̃(S) =
[
So + γ [S − So]

]
e3, (53)

which, with the aid of equation (33), results in

W(S)e3 = e3 ∀S ∈
[

−
1

2
,

1

2

]
. (54)

This indicates that ω is along e3. We introduce another growth parameter ω, defined by

ω = ωe3, (55)

so that its corresponding skew tensor is

� = ωA, with A = e2 ⊗ e1 − e1 ⊗ e2. (56)

Since the rotation tensor can also be expressed as

2φ = eφA, (57)

we get

W(S) = 2(S−So)ω. (58)

The parameters γ and ω capture all the necessary information regarding growth. It is evident that γ > 1
denotes growth while γ < 1 denotes atrophy. Similarly, ω and −ω signify two opposite cross-sectional rotations
caused by growth while ω = 0 indicates no growth-induced rotation.

This type of growth is helical in nature. Consider any line in the bulk of the rod parallel to its axis, but not

the axis itself. As the rod grows this line transforms into a helix of pitch
γ

ω
. Similarly, any helix in the initial

configuration transforms into another coaxial helix, not necessarily with the same pitch. This is a reflection of
the fact that the Darboux vector of a helix is a constant vector aligned along its axis.

3.2.1. Growth law. The growth law adopted here considers rotation of cross-sections with respect to each other in
the due course of growth. Consider a rotating basis field {e∗

1(S), e∗
2(S), e∗

3(S) = e3} given by

e∗
i (S) = 2 S

M

ei, (59)

representing a helix embedded in the initial configuration of a rod. As the rod grows this transforms into
W(S)e∗

i (S) in the virtual configuration. Let us denote this by a basis field {f∗1(s), f∗2(s), f∗3(s)} defined on the
virtual arc-length parameter by

W(S)e∗
i (S) =:

(
f∗i ◦ s

)
(S). (60)

This is equivalent to

f∗i (s) = 2 s
γM

+[ s
γ

−So]ωei. (61)

Let h 6= 0 be such that e∗
i (S + h) and f∗i (s + h) are well defined, then we obtain

e∗
i (S + h) = 2 h

M

e∗
i (S), (62)

f∗i (s + h) = 2 h
γ

[ 1
M

+ω]f
∗
i (s). (63)
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This shows that our chosen growth map transforms the initial helix with pitch M into another helix with pitch,
say µ, which can be expressed as

µ =
γM

1 + ωM
. (64)

This motivates us to define a symmetry-preserving growth law for rods possessing helical symmetry.
Rods with helical symmetry. Consider a rod which, due to its microstructure, possesses simple helical

symmetry or n-fold helical symmetry. Let M be the pitch associated with its microstructure. Once growth
parameters γ and ω are known, equation (64) serves as an evolution law for the pitch of its microstructure.

We introduce the idea of symmetry-preserving growth – wherein the growth map fixes all helices with pitch
the same as that of the microstructure (µ = M). Thus, for rods with a pitch associated with their microstructure
we have the following helical growth law

γ = 1 + ωM, (65)

where γ is the only growth parameter and M comes from the material symmetry. For rods having helical
symmetry, this assumption of symmetry-preserving growth provides a rationale for relative rotation of cross-
sections during growth.

Hemitropic rods. Although there are different versions [26, 30] of how helical symmetry can be used to arrive
at hemitropy, there is no pitch directly associated with transverse hemitropy (equation (19)). So, for hemitropic
rods (and even isotropic), one may use the same helical growth law (65) without any notion of microstructural
pitch, in which case both γ and M are independent growth parameters. For such a growth law, all helices with
pitch M remain unaltered under the growth map, so we denote it as the characteristic pitch of growth.

3.2.2. Calculation of strains. The grown configuration is obtained by imposing environmental and boundary effects

on the virtual stress-free configuration. Hence the strain energy is a function of
∂̂r

∂s
, R̂ and

∂R̂

∂s
. We define the

vector fields

ν̂ =
∂̂r

∂s
and κ̂ = axial

(
∂R̂

∂s
R̂T

)
. (66)

Let their components be ν̂ = ν̂idi and κ̂ = κ̂idi with respect to the director frame in the current configuration.
Consider the derivative

∂di

∂S
=
∂Q

∂S
Q−1di =

[
∂R

∂S
W + R

∂W

∂S

]
W−1R−1di (67a)

=
∂R

∂s

∂s

∂S
R−1di + R

∂W

∂S
W−1ẽi (67b)

= γ κ̂ × di + R[ω × ẽi] (67c)

= [γ κ̂ + Rω] × di. (67d)

Now define the axial vector β := axial

(
∂Q

∂S
Q−1

)
, which, along with the straight growth assumption, implies

β = γ κ̂ + ωd3. (68)

Given the growth parameters, this relation will be used in retracting the actual strains from the apparent
curvature β. Corresponding to ν̂ and κ̂ we define

ν = r ′ and κ = axial
(
R′ RT

)
, (69)

along with their convected components ν = νidi and κ = κidi. These speeds and curvatures can be related to
the actual strains by

νi = γ ν̂i and κi = γ κ̂i. (70)
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With the unshearability constraint in place, we have να = ν̂α = 0, while ν3 = γ ν̂3 represents the multiplicative
decomposition for lengthwise growth. Using the energy density function (23), internal force n(S) = ni(S)di(S)
and moment m(S) = mi(S)di(S) in the current configuration can be related to the strains as follows:

n3 = g(̂ν3) + Aκ̂3, (71)

m3 = A[̂ν3 − 1] + Bκ̂3, (72)

mα = C κ̂α. (73)

3.2.3. Equilibrium equations. The local linear and angular momentum balance equations for static equilibrium [18,
35] are as follows:

∂n

∂s
+ f = 0, (74)

∂m

∂s
+
∂r

∂s
× n + l = 0, (75)

where f and l respectively denote the body force and body moment per unit virtual arc-length. The change of

variable
∂

∂s
(·) =

1

γ

∂

∂S
(·) to reference coordinates results in

n′ + γ f = 0, (76)

m′ + r′ × n + γ l = 0. (77)

4. Growing rod with guided–guided ends

A fixed–fixed rod subject to axial displacement or load is constrained both axially and rotationally, and is known
to buckle out-of-plane with a transversely hemitropic constitutive law. But in a fixed-free hemitropic rod subject
to an axial load, material chirality does not lead to any chiral deformation and the solution is always planar [32].
For a growing rod, there can be another intermediate boundary condition pair – with guided ends – which is
rotationally constrained, but axially free at both ends. A guided boundary condition is equivalent to fixing the
end of the rod to a block constrained by a slot to translate only along the rod’s axis (Figure 4). In this section
we show that a growing rod with guided ends can give rise to non-planar chiral solutions by itself, without any
additional load. We use the energy function (23) and the growth law (65) to model the rod. Even though all
the calculations would be similar, the results can be discussed separately for two different problems – first, a
hemitropic rod, and second, a rod with n-fold helical symmetry.

The linear and angular momentum balance equations are

d

ds

[
nαQeα +

[
g(̂ν3) + Aκ̂3

]
Qe3

]
= 0, (78)

d

ds

[
Cκ̂αQeα +

[
A[̂ν3 − 1] + Bκ̂3

]
Qe3

]

+̂r ′ ×
[
nαQeα +

[
g(̂ν3) + Aκ̂3

]
Qe3

]
= 0, (79)

along with the boundary conditions

n
(

±
1

2

)
· e3 = 0, (80)

r
(

±
1

2

)
· eα = 0 (81)

and Q
(

±
1

2

)
= I. (82)
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Figure 4. Schematic of guided–guided boundary condition. The guides arrest all degrees of freedom at the ends except for axial

translation.

The unshearability constraint (34) results in

r′ · Qeα = 0. (83)

Equations (78)–(83) comprise our boundary value problem to be solved for the fields r, R and nα. Since we
have not imposed any sort of axial constraint, with these sets of boundary conditions we will get a family of
solutions differing by a scalar multiple of e3.

The rod is assumed to be of unit length; thus, all the kinematic quantities are dimensionless by default.
The components of internal force, internal moment, material constants A, B and the response function g(·) can
all be non-dimensionalized against C by either dividing the concerned quantities in equations (71)–(73) by C,
or equivalently setting C = 1 in the boundary value problem (94)–(101). We follow the bifurcation analysis
methodology presented by Healey and Papadopoulos [32] and Smith and Healey [37], wherein first a primary
solution is determined which is then perturbed and the boundary value problem is re-derived in terms of the
perturbations to get linearized equations.

4.1. The straight solution

Let us consider a solution in which the rod always remains straight while growing, given by

r(S) = λSe3 , Q(S) = I , nα(S) = 0 , (84)

where S ∈
[
− 1

2
, + 1

2

]
. This solution has its local force, moment and strain fields as follows:

ν̂(s) =
λ

γ
e3, (85)

κ̂(s) = −
ω

γ
e3, (86)

n(S) =
[

g
( λ
γ

)
− A

ω

γ

]
e3, (87)

m(S) =
[

A
[ λ
γ

− 1
]

− B
ω

γ

]
e3. (88)
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For such a solution to comply with the force boundary condition (80), we require λ to satisfy

g
( λ
γ

)
= A

ω

γ
, (89)

where A denotes the degree of hemitropy and g(·) is the axial force response function. As we approach a

‘no-growth’ stage, the strain ν̂3 =
λ

γ
→ 1 and the ratio

m3

κ̂3

= B −
A2

[
λ
γ

− 1
]

g
(
λ
γ

) (90)

approaches B −
A2

g′(1)
, which represents the torsional rigidity [31].

4.2. Perturbed solution

Consider a first-order perturbation of the straight solution (with 0 < ε � 1) given by

r(S) = λSe3 + ερ(S), (91)

Q(S) = eε9(S), (92)

nα(S) = εηα(S), (93)

where 9(S) is skew-symmetric with axial(9) =: ψ . We require these perturbed fields to satisfy our boundary
value problem. Substituting the perturbations (91)–(93) into our boundary value problem (78)–(83) results in
the following linearized problem:

η′
αeα = 0, (94)

[ψ ′′ + ωe3 × ψ ′] · eα eα +
[
A[λ− γ ] − Bω

]
ψ ′ × e3 + γ λe3 × ηαeα = 0, (95)
[
g′

( λ
γ

)
ρ ′′ + Aψ ′′

]
· e3 = 0, (96)

[Aρ ′′ + Bψ ′′] · e3 = 0, (97)[
ρ ′ − λψ × e3

]
· eα = 0, (98)

ψ
(

±
1

2

)
= 0, (99)

ρ
(

±
1

2

)
· eα = 0, (100)

[
g′

( λ
γ

)
ρ ′

(
±

1

2

)
+ Aψ ′

(
±

1

2

)]
· e3 = 0, (101)

with details provided in Appendix B. Since Bg′( λ
γ

)
− A2 is non-zero (assumed to be positive), equations (96)

and (97) imply

ρ ′′ · e3 = 0 and ψ ′′ · e3 = 0. (102)

Boundary condition (99) requires ψ(S) ∈ span{e1, e2}, which motivates the introduction of the decomposition

ρ(S) = ρt(S) + ρa(S), (103)

where ρt(S) ∈ span{e1, e2} and ρa(S) ∈ span{e3}.
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Equations (94)–(101) can now be reduced to the following (details in Appendix C):

ψ ′′ + ζψ ′ × e3 = ψ ′
(

+
1

2

)
− ψ ′

(
−

1

2

)
, (104)

ρ ′
t = λψ × e3 , (105)

ρ ′′
a = 0, (106)

accompanied by the boundary conditions

ρt

(
±

1

2

)
= 0, (107)

ρ ′
a

(
±

1

2

)
= 0. (108)

The new parameter ζ appearing in equation (104) is defined as

ζ := A[λ− γ ] − [B + 1]ω. (109)

It is clear that ρa(S) = Coe3 for all S, where Co is a constant that appears because we have put no physical
constraint in the axial direction. As the rod can slide axially without causing any strain, we can fix Co = 0.

For ζ = 0, the problem admits only trivial solutions (Appendix C). Now assuming ζ 6= 0, the differential
equations (104) and (105) admit general solutions of the form

ψ(S) =
C1

ζ




sin(ζS)

−cos(ζS) + 2S sin ζ
2

0


 +

C2

ζ




−cos(ζS) − 2S sin ζ
2

−sin(ζS)

0


 +




C3

C4

0


 , (110)

ρt(S) = C1

λ

ζ 2




−sin(ζS) + ζS2 sin ζ
2

cos(ζS)

0


 + C2

λ

ζ 2




cos(ζS)

sin(ζS) + ζS2 sin ζ
2

0




+ λ




C5 + C4S

C6 − C3S

0


 , (111)

where C1 , C2 , · · · , C6 are generic integration constants in R. The representations ψ and ρt are with respect to

the fixed basis. The boundary conditions (99) when invoked into equation (110) leads to

[C1 − C2] sin
ζ

2
= 0, (112)

simultaneously giving

C3 =
C2

ζ
cos

ζ

2
, C4 =

C1

ζ
cos

ζ

2
. (113)

The values of ζ 6= 0 for which sin ζ
2

= 0 eventually leads to the trivial solution (Appendix C). Therefore, we
assume C1 = C2, which when substituted in the general solution (111) and forced to satisfy equation (107),
leads to the condition

1

ζ
sin
ζ

2
−

1

2
cos

ζ

2
= 0. (114)

It simultaneously requires

C5 = −
C1

ζ 2

[ζ
4

sin
ζ

2
+ cos

ζ

2

]
= C6. (115)
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Hence we have an out-of-plane solution,

ρt(S) = C1

λ

ζ 2

[
cos(ζS) +

[
S2 −

1

4

]
ζ sin

ζ

2
− cos

ζ

2

]



1

1

0




+ C1

λ

ζ 2

[
Sζcos

ζ

2
− sin(ζS)

]



1

−1

0


 , (116)

whose existence is subject to the condition that parameters γ and λ admit sensible solutions (γ > 0 and
λ > 0). A positive increasing sequence (an)∞n=1 satisfying tan(an) = an can be defined. The values taken by
ζ ∈ {±2an : n ∈ N} correspond to the discrete bifurcation modes.

4.3. Results and discussion

In view of the equivariance properties of our problem (Appendix D), any rotation of equation (116) about e3 is
an acceptable solution. Hence the solution can be simplified to

ρ(S) = C1

λ

ζ 2




cos(ζS) +
[
S2 − 1

4

]
ζ sin ζ

2
− cos ζ

2

sin(ζS) − Sζcos ζ
2

0


 , (117)

ψ(S) = C1

λ

ζ




cos ζ
2

− cos(ζS)

2S sin ζ
2

− sin(ζS)

0


 , (118)

η1(S) = 0, (119)

η2(S) = C1

ζ

γ
cos

ζ

2
, (120)

where representations (117) and (118) are with respect to the fixed basis. This solution is clearly flip-symmetric
about e1, thus suggesting that equation (116) is also flip-symmetric, but about an axis different from e1. The
deformed centre-line r(S) for this solution is

r(S) =
λ

ζ 2




cos(ζS) +
[
S2 − 1

4

]
ζ sin ζ

2
− cos ζ

2

sin(ζS) − Sζcos ζ
2

ζ 2S


 , (121)

represented with respect to the fixed basis, wherein εC1 = 1 is set for the sake of simplicity. For a particular
ζ ∈ {±2an : n ∈ N}, the end-to-end distance λ and growth stage γ can be found by solving the system

g
( λ
γ

)
=

A

M

[
1 −

1

γ

]
, (122)

ζ = A[λ− γ ] −
B + 1

M
[γ − 1], (123)

simultaneously (Table 1, Appendix E). Equations (122)–(123) couple the axial force response of the rod with the
bifurcation mode caused due to growth, via the kinematic constraint of symmetry-preserving growth (equation
(65)). Whenever this system does not admit a solution γ > 0 and λ > 0, the perturbation chosen gives only
trivial solutions, indicating that out-of-plane buckling is not guaranteed. Note that, linear stability analysis
reveals only the shape of the buckled state, without any information on its amplitude. In the ensuing discussion,



1692 Mathematics and Mechanics of Solids 26(11)

Figure 5. Out-of-plane bifurcated solution for the case M = −0.1, A = −8, B = 1.2 and F = 105. The spatial curves shown

correspond to the shape of the rod’s centre-line in the first three buckled modes. These solutions are flip-symmetric about e1

(Appendix D). The values of end-to-end distance λ and growth stage γ at buckling are calculated using equations (122)–(123). The

magnitude of ζ denotes the mode of bifurcated solution, while its sign controls the chirality. Reflections about the e1–e3 plane

correspond to the reversal in chirality ζ 7→ −ζ .

all results are described in terms of γ , λ and ζ – these are the fundamental kinematic quantities that help us
understand the interplay between growth and material chirality.

An inspection of equation (121) reveals that the sign change ζ 7→ −ζ reverses the chirality of the solution
curve, reflecting it about the e1–e3 plane (Figure 5). Moreover, since our solution is flip-symmetric, this is
equivalent to the reflection in the e1–e2 plane. Reflections in the e2–e3 plane also give solutions of opposite
chirality, but need to be rotated by 180◦ about the e3-axis to coincide with the reflections in e1–e3 plane. These
centre-line solutions with handedness are similar to those obtained by Healey and Papadopoulos [32] for a
fixed–fixed rod under axial compression.

Internal chirality of the rod is taken care of by the constants M and A. In the case of hemitropic rods, A
captures chirality in load response of the rod while M contains information regarding the chiral growth law. For
rods with n-fold helical symmetry, A denotes the same thing, but with the assumption of symmetry-preserving
growth in place, M captures chirality in microstructure.

Consider two rods with opposite internal chirality with all other material properties the same. Let one of
them with chiral constants A, M have a solution with bifurcation mode ζ , end-to-end distance λ and growth
stage γ . Naturally the second rod with opposite internal chirality is expected to give rise to a reflected solution
with bifurcation mode −ζ , while end-to-end distance and growth stage are still the same. Thus, equations (122)
and (123) imply that the chiral constants associated with the second rod are −A and −M. We infer that the
complete reversal of internal chirality in rods requires the transformations M 7→ −M and A 7→ −A to be
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taken simultaneously. In addition, the ζ solution of a rod with internal chirality M, A and the −ζ solution of a
rod with opposite internal chirality −M, −A are mirror images with respect to e1–e2 and e1–e3 planes.

In the absence of guides, the end-to-end distance of the rod would have been the same as its growth stage
γ . Therefore, in order to understand the influence of guides on this end-to-end distance, we compare the
growth stage γ at which the rod buckles with the corresponding value of λ. Assuming that equations (122) and
(123) admit an acceptable solution, the monotonicity of g(·) and the condition g(1) = 0 reveal the following
observations:

Growth γ > 1

• A and M are of the same sign if and only if λ > γ , signifying that the ends in the cur-
rent configuration have moved away from each other, as compared to both initial and virtual
configurations.

• A and M are of opposite sign if and only if λ < γ , signifying that the ends in the current configu-
ration have come closer as compared to the virtual configuration, but no guaranteed comparison can
be made with the initial configuration.

Atrophy γ < 1

• A and M are of opposite sign if and only if λ > γ , signifying that the ends in the current configura-
tion have moved apart as compared to the virtual configuration, but no guaranteed comparison can
be made with the initial configuration.

• A and M are of the same sign if and only if λ < γ , signifying that the ends in the current
configuration have come closer as compared to both initial and virtual configurations.

For a rod with n-fold helical symmetry with the growth law assumed to be symmetry-preserving, these results
reveal an interesting interplay between chiralities in microstructure and load response of the rod. But for a
hemitropic rod, the growth law allowing the cross-section to rotate makes the guided–guided problem similar
to a non-growing rod subject to a axial twist at one end while the other end is free to move axially. The results
above directly reflect the twist–extension type Poisson effect expected in hemitropic rods.

Case of isotropy A = 0. In this case, the solutions have n3 = 0 with

γ = λ = 1 −
ζM

B + 1
. (124)

A growing isotropic rod has an out-of-plane solution with sign of ζ opposite to that of M. But for a decaying

isotropic rod, equation (124) guarantees an out-of-plane solution only if |M| <
B + 1

2a1

, and hence such solutions

exist only up to the first few modes (for the chosen perturbation), with sign of ζ the same as that of M.
For small A 6= 0, the solution is close (in terms of γ and λ) to that of the isotropic case with B, g(·), M and

ζ kept the same. In addition, the chirality of these solutions is the same as that of the corresponding isotropic
case. With A 6= 0, growing rods admit ζM > 0 and atrophying rods admit ζM < 0 only if A is taken to be
very large, which in turn may be unrealistic.

Consider two rods with degrees of hemitropy A+ > 0 and A− < 0, such that A+ + A− = 0, everything else
being kept the same. One of these cases gives a solution where ends come closer, while the ends move apart
in the other case (comparisons made here are with respect to the virtual configuration). Let λ+ and λ− denote
the respective solutions for A+ and A−, whereas λo denotes the same for the isotropic case. While λo may lie
between λ+ and λ−, it is also a possibility that both λ+ and λ− might lie on the same side of λo (Figure 6), thus
suggesting that no definitive comment can be made on this.

5. Conclusion

In this work we study the growth of slender elastic rods with chiral material symmetries – transverse hemitropy
and multi-fold dihedral helical symmetry. Based on the intuitive notion that rods with helical symmetry should
twist during growth, we propose a homogeneous growth law that allows for relative rotation of cross-sections.
A guided–guided rod setup is considered to illustrate the occurrence of out-of-plane buckling at certain stages
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Figure 6. Variation of end-to-end distance λ and growth stage γ at buckling with the degree of hemitropy A for first mode solutions

(ζ = 8.986).

of growth (or atrophy). These solutions obtained are flip-symmetric and chiral in nature. A complete mirroring
of the rod, including both growth and constitutive properties, gives a solution with opposite chirality, under the
same deformation. We show that the end-to-end distance at bifurcation modes for the isotropic case need not
lie between those for rods of opposite material chiralities, with the rest of the elastic and growth properties
kept the same. The end-to-end distances for different combinations of growth (atrophy) and material chirali-
ties have also been examined to understand the effect of twisting growth on the constitutive twist–extension
coupling.

Embedding our biologically active (growth or atrophy) chiral rod setup in an elastomeric matrix and intro-
ducing inhomogeneities similar to that by Almet et al. [38] could be an interesting direction to explore. One
can also consider a ply of biologically active rods, like growing bi-rods [24], to study the effect of growth and
material chiralities of individual rods on the total deformation.
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Appendix A: the growth map

A1 Solving for W(S)

In order to solve equation (47) for W(S), we first define orthogonal tensor fields 8 := eS3 and U := 8W−1. Then we have the

following:

∂8

∂S
= 38 = 83, (125)

8T ∂8

∂S
= WT UT ∂U

∂S
W +3 , (126)

thus implying that U(S) is a constant equal to eSo3, which results in

W(S) = e[S−So]3. (127)

Appendix B: derivation of perturbed equations

B1 Perturbations

In this appendix, we list the expressions for strain fields, perturbed to first order in ε. These arise from the perturbed solutions (91)–(93).

We begin by calculating the series expansions for apparent speed ν3 and curvature β:

ν3 = r′ · d3 =
[
λe3 + ερ′] ·

[
eε9e3

]
(128a)

=
[
λe3 + ερ′] ·

[
e3 + εψ × e3 + · · ·

]
(128b)

= λ+ ερ′ · e3 + · · · . (128c)

Now for any v ∈ E
3,

∂Q

∂S
QT v =

∂Q

∂S

[
v − εψ × v + · · ·

]
(129a)

= εψ ′ ×
[
v − εψ × v + · · ·

]
+ · · · (129b)

= εψ ′ × v + · · · , (129c)

which means that

β = εψ ′ + · · · . (130)

Equations (68) and (70) can now be used to calculate the following expressions for the perturbations in strains:

ν̂3 =
1

γ
[λ+ ερ′ · e3 + · · · ], (131)

κ̂α = ε
1

γ
[ψ ′ + ωe3 × ψ] · eα + · · · (132)

and κ̂3 = −
ω

γ
+ ε

1

γ
ψ ′ · e3 + · · · . (133)

Additionally, we also calculate

g(̂ν3) = g
( λ
γ

)
+ ε

1

γ
g′

( λ
γ

)
ρ′ · e3 + · · · (134)

and n3 = g
(
ν̂3

)
+ Aκ̂3 = ε

1

γ

[
g′

( λ
γ

)
ρ′ + Aψ ′

]
· e3 + · · · . (135)
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B2 Linearization

To linearize the problem, the equilibrium equations along with the unshearability constraint are perturbed using equations (91)–(93).

We expand each term appearing in the governing equations individually, retaining only linear terms in ε.

B2.1 Linear momentum. Balance of linear momentum, upon substituting perturbations (93) and (135), requires the following to be

equal to zero:

dn

dS
=

d

dS

[
nαQeα +

[
g(̂ν3) + Aκ̂3

]
Qe3

]

= ε

[
η′
αeα +

1

γ

[
g′

( λ
γ

)
ρ′′ + Aψ ′′

]
· e3e3

]
+ · · · . (136)

We equate the transverse and axial components individually to zero, thus resulting in equations (94) and (96).

B2.2 Angular momentum. First we use equations (131)–(133), (135) and (93) to obtain the following simplified expansions:

r′ × n =
(
λe3 + ερ′) × ε

[
ηαeα +

1

γ

[
g′

( λ
γ

)
ρ′ + Aψ ′

]
· e3e3

]
(137a)

= ελe3 × ηαeα + · · · . (137b)

And

dm

dS
=

d

dS

[
Cκ̂αQeα +

[
A
[
ν̂3 − 1

]
+ Bκ̂3

]
Qe3

]

= ε
1

γ

[
C[ψ ′′ + ωe3 × ψ ′] · eα eα +

[
A[λ− γ ] − Bω

]
ψ ′ × e3

+ [Aρ′′ + Bψ ′′] · e3 e3

]
+ · · · . (138)

These are used in the angular momentum balance equation (79), whose transverse and axial components are equated individually

to zero, subsequently giving equations (95) and (97).

B2.3 Unshearability. The constraint of unshearability requires us to equate

r′(S) · Q(S)eα =
[
λe3 + ερ′] ·

[
eα + εψ × eα + · · ·

]
(139a)

= ε
[
ρ′ − λψ × e3

]
· eα + · · · (139b)

to zero, thus resulting in equation (98).

Appendix C: solution for perturbations

This appendix comprises the details missing in Section 4.2. We first demonstrate how the system (94)–(101) can be simplified to obtain

equation (104). Proceeding on similar lines as that of Healey and Papadopoulos [32], we eliminate ηα to obtain a differential equation

in ψ alone. Integrating equation (94) we get

ηαeα = c, (140)

for some constant c ∈ span{e1, e2}. Having introduced the parameter ζ in equation (109), equation (95) transforms into

ψ ′′ + ζψ ′ × e3 = γ λc × e3, (141)

which upon integration and application of boundary condition (99) gives

γ λc × e3 = ψ ′
(

+
1

2

)
− ψ ′

(
−

1

2

)
, (142)

thus leading to the differential equation (104) in ψ .
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C1 Solution for ψ

Now we explain in detail the procedure used to solve equation (104) for ψ . Denote by y the two-component representation of ψ ′
t with

respect to {e1, e2} and let b denote a similar representation for ψ ′
t

(
+ 1

2

)
− ψ ′

t

(
− 1

2

)
. Define matrix M =

[
0 −1

1 0

]
so that equation

(104) can be rewritten as

y′ = ζMy + b. (143)

Assume that ζ 6= 0 for the time being. Observe that solving equation (143) is equivalent to solving

x′ = ζM x, (144)

so that the general solution of equation (143) would be given by

y = x −
1

ζ
M−1b, (145)

b = y
(

+
1

2

)
− y

(
−

1

2

)
= x

(
+

1

2

)
− x

(
−

1

2

)
. (146)

Thus we have general solutions for x and y given by

x(S) = C1

[
cos(ζS)

sin(ζS)

]
+ C2

[
sin(ζS)

−cos(ζS)

]
, (147)

y(S) = C1




cos(ζS)

sin(ζS) + 2
ζ

sin
ζ
2


 + C2


sin(ζS) − 2

ζ
sin

ζ
2

−cos(ζS)


 , (148)

where C1 and C2 are constants in R.

This gives the solution for ψ as equation (110). Finally, all trivial and non-trivial solutions discussed in Section 4.2 can be

summarized as follows:

Case-I Assume ζ = 0. Equation (104) with boundary condition (100) invoked gives

ψ(S) =
1

2

[
S2 −

1

4

][
ψ ′

(
+

1

2

)
− ψ ′

(
−

1

2

)]
, (149)

substituting which into equation (105) gives the following relation between boundary values:

ρt

(
+

1

2

)
− ρt

(
−

1

2

)
= −

λ

12

[
ψ ′

(
+

1

2

)
− ψ ′

(
−

1

2

)]
× e3. (150)

Invoking boundary condition (107), we imply

ψ ′
(
+

1

2

)
= ψ ′

(
−

1

2

)
, (151)

thus resulting in the trivial solution ψ(S) = 0 = ρ(S).

Case-II Assume ζ 6= 0. In this case, a general solution (111) is obtained, which subsequently gives rise to the following sub-cases based

on equation (112).

• Let sin
ζ
2

= 0 with ζ 6= 0. This implies ζ = 2nπ where n ∈ Z \ {0}. Each such value of ζ gives a solution

ρt(S) =
C1λ

ζ 2




−sin(ζS) + (−1)nζS

cos(ζS)

0


 +

C2λ

ζ 2




cos(ζS)

sin(ζS) − (−1)nζS

0


 + λ




C5

C6

0


 . (152)

But for this to agree with equation (107), we require C1 = 0 = C2 and C5 = 0 = C6, thus leading to a trivial solution.

• Let C1 = C2 with ζ 6= 0. This leads to non-trivial out-of-plane solution (116), which is discussed further in Section 4.3.
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Appendix D: equivariance properties of solutions

Let F be the tensor defined by flip action – a 180-degree rotation – about the e1 axis and2φ denote the rotation tensor about the e3 axis

as defined in equation (10).

The components of F with respect to the fixed basis can be represented as

F =




1 0 0

0 −1 0

0 0 −1


 . (153)

For any solution
[
r(S) , Q(S) , nα(S)

]
of the boundary value problem (78)–(83), the tuple

[
2φr(S) ,2φQ(S)2φ

T , (2φ)αβnβ (S)
]

(154)

also solves the system (78)–(83) for all 0 ≤ φ < 2π and so does

[
Fr(−S) , FQ(−S)F, −Fαβnβ (−S)

]
. (155)

Equivalently in terms of perturbations, any solution
[
ρ(S) ,ψ(S) , ηα(S)

]
of the boundary value problem (94)–(101) generates an entire

class of solutions comprising

[
2φρ(S) ,2φψ(S) , (2φ)αβηβ (S)

]
(156)

for all 0 ≤ φ < 2π and

[
Fρ(−S) , Fψ(−S), −Fαβηβ (−S)

]
. (157)

Our boundary value problem is equivariant with respect to the action of a group generated by rotations about the e3 axis and flip

about the e1 axis.

A solution is said to be flip-symmetric if

[
Fr(−S) , FQ(−S)F, −Fαβnβ (−S)

]
=

[
r(S) , Q(S) , nα(S)

]
, (158)

or equivalently if the perturbations satisfy

[
Fρ(−S) , Fψ(−S), −Fαβηβ (−S)

]
=

[
ρ(S) ,ψ(S) , ηα(S)

]
(159)

for all S ∈
[
− 1

2
, + 1

2

]
. These equivariance properties of solutions are explained in much greater detail by Papadopoulos [31].

Appendix E: calculation of λ and γ

First of all, numerical values of A, B, F and M are fixed. Inspired by the calibration calculations presented by Papadopoulos [31], for a

rod of length L = 1 with circular cross-section and material constant C = 1, radius r of the cross-section can be shown to be

r =
2

√
F

, (160)

where both r and F are dimensionless. For instance, F = 106 is equivalent to considering a 1 m rod with diameter 4 mm. In addition,

we have the following values of ζ corresponding to different bifurcation modes:

ζ ∈ { ± 8.986 , ± 15.45 , ± 21.808 , ± 28.132 , ± 34.442 , · · · }. (161)

We introduce variables x = λ
γ and y = 1

γ . For a particular ζ , equations (122) and (123) require us to solve

F ln(x) +
[

A2

B
+

A2ζ

Mζ − B − 1

]
x =

[
A2

B
+

A[A + ζ ]

Mζ − B − 1

]
(162)
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for x. We define the following solution set:

S(m, c) :={x : ln(x) = mx + c , x ∈ (0, ∞)}. (163)

We observe that

|S(m, c)| =





1 if m ≤ 0

0 if m > 0 and ln(m) + c + 1 > 0

1 if m > 0 and ln(m) + c + 1 = 0

2 if m > 0 and ln(m) + c + 1 < 0

, (164)

where m, c ∈ R and | · | denotes the cardinality of a set. We set

m = −
A2

F

[
1

B
+

1

Mζ − B − 1

]
and c =

A

F

[
A

B
+

A + ζ

Mζ − B − 1

]
. (165)

Clearly m is positive only when 1 < ζM < 1 + B. Thus, if ζ and M have opposite sign, equation (162) has a guaranteed solution.

Whenever they are of the same sign, the choice |M| <
1

2a1
guarantees a solution to equation (162), although there may be several

other scenarios leading to a solution.

Once we have a solution xo ∈ S(m, c), we have corresponding

yo =
MA[xo − 1] − B − 1

Mζ − B − 1
(166)

and λo =
xo

yo
, γo =

1

yo
would give the complete solution (Table 1).

Table 1. Sample calculation for F = 105 and ζ = 8.986.

M A B λ− 1 γ − 1

Growth –0.1 –8 1.2 0.4089 0.4086†

–0.1 8 1.2 0.4082 0.4086†

−2 × 10−4 24 0.2 −2.5 × 10−4 1.5 × 10−3

Atrophy 10−4 –16 0.4 3.8 × 10−4 −0.64 × 10−3

10−2 –16 0.32 –0.0671 –0.0682‡

10−2 16 0.32 –0.0693 –0.0682‡

†,‡ Values are very close.

Note that sometimes we may get an absurd solution yo < 0. For example, the case M = 0.16, A = −8, B = 0.4 and F = 105

when solved with ζ = 8.986 gives xo = 0.9815, yo = −36.4484, an invalid solution. Moreover, in this case we have m = −0.0185,

indicating that there is no other valid out-of-plane deformation arising from the chosen perturbation.


