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ABSTRACT

Context. Magnetic null points are associated with high-energy coronal phenomena such as solar flares and are often sites of reconnec-
tion and particle acceleration. Dynamic twisting of a magnetic null point can generate a Kelvin-Helmholtz instability (KHI) within its
fan plane and can instigate spine-fan reconnection and an associated collapse of the null point under continued twisting.
Aims. This article aims to compare the effects of isotropic and anisotropic viscosity in simulations of the KHI and collapse in a
dynamically twisted magnetic null point.
Methods. We performed simulations using the 3D magnetohydrodynamics code Lare3d with a custom anisotropic viscosity module.
A pair of high-resolution simulations were performed, one using isotropic viscosity and another using anisotropic viscosity, keeping
all other factors identical. We analysed the results in detail. A further parameter study was performed over a range of values for
viscosity and resistivity.
Results. Both viscosity models permit the growth of the KHI and the eventual collapse of the null point. Over all studied parameters,
anisotropic viscosity allows a faster growing instability, while isotropic viscosity damps the instability to the extent of stabilisation
in some cases. Although the viscous heating associated with anisotropic viscosity is generally smaller, the ohmic heating dominates
and is enhanced by the current sheets generated by the instability. This leads to a greater overall heating rate when using anisotropic
viscosity. The collapse of the null point occurs significantly sooner when anisotropic viscosity is employed.
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1. Introduction

This paper presents the results of a series of numerical exper-
iments intended to develop an understanding of the effect of
anisotropic viscosity on the Kelvin-Helmholtz instability (KHI)
in the fan plane of a magnetic null point, reproducing and extend-
ing the work of Wyper & Pontin (2013). We continue to stress
the null point beyond the time investigated in Wyper & Pontin
(2013), which allows us also to study the effect of anisotropic
viscosity on the spontaneous collapse of the null point. The
experiments take the form of a dynamic twisting of an ini-
tially static magnetic null point at the footpoints of its spine,
resulting in a current-vortex sheet that forms in the fan plane
and can be unstable to the KHI, given appropriate parameter
choices. All experiments were carried out using both isotropic
and anisotropic viscosity over a range of parameter choices.
Anisotropic viscosity was modelled following MacTaggart et al.
(2017). Continued driving after the moment at which the KHI
occurs causes the null point to spontaneously undergo spine-fan
reconnection and collapse.

The KHI has been well-studied in the magnetohydrody-
namic (MHD) context and can be found in a number of coronal
situations, both in numerical simulations (Howson et al. 2017;
Wyper & Pontin 2013) and in observations (Foullon et al. 2011;
Yang et al. 2018). Faganello & Califano (2017) offer a recent
review of the KHI in MHD and Chandrasekhar (1961) provide a
classical treatment.

In general, the effect of a magnetic field is stabilising; when
the wave vector of a perturbation in a velocity shear layer is par-
allel or at an oblique angle to a magnetic field, magnetic tension
acts to stabilise the KHI (Chandrasekhar 1961; Ryu et al. 2000).
Otherwise, the KHI acts as an interchange instability and the
magnetic field does not affect its linear stability (Chandrasekhar
1961).

In a current-vortex sheet, where a velocity shear coincides
with a magnetic shear, the balance of shear layer strength and
thickness dictates whether the KHI, the tearing instability, or
a combination of the two is excited. Generally, when the mag-
netic shear is strong compared to the velocity shear, the KHI is
suppressed and the tearing instability grows (Einaudi & Rubini
1986). This can be somewhat modified by the inclusion of vis-
cosity (Einaudi & Rubini 1989). The nonlinear development of
the KHI is known to enhance reconnection by the local dis-
tortion of magnetic field lines, the generation of current sheets
(Min et al. 1997) and by generating local turbulence in conjunc-
tion with the tearing instability (Kowal et al. 2020).

The effect of (anisotropic) viscosity on the stability of a
current-vortex sheet is to suppress the growth of the KHI,
although viscosity is found to enhance the linear growth of the
tearing instability when the KHI is stabilised by a strong mag-
netic field (Einaudi & Rubini 1989). A number of studies sug-
gest isotropic viscosity can also slow and even suppress the
KHI (Howson et al. 2017; Roediger et al. 2013; Wyper & Pontin
2013).
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Magnetic null points are an abundant feature in the topo-
logically complex coronal magnetic field (Edwards & Parnell
2015). Given they are sites that coincide with changes in
topology, they are strongly associated with reconnection pro-
cesses (Yang et al. 2020; Sun et al. 2013). Additionally they are
inferred to participate in a number of high-energy phenomena,
such as in the generation of flare ribbons in compact solar flares
(Masson et al. 2009; Pontin et al. 2016) and the production of
jets (Moreno-Insertis & Galsgaard 2013) and of coronal mass
ejections (Barnes 2007; Zou et al. 2020), particularly through
their key involvement in the breakout model of solar eruptions
(Antiochos et al. 1999; Maclean et al. 2005).

A much-studied form of reconnection in 3D null points is
spine-fan reconnection, where a strong current sheet forms in
the vicinity of the null point and enables efficient reconnec-
tion between the magnetic field that makes up the spine and
fan plane, collapsing the field around the null in the process
(Thurgood et al. 2018). The collapse of a null point has the
potential to develop into a form of oscillatory reconnection
(McLaughlin et al. 2012; Thurgood et al. 2017).

The layout of this paper is as follows. We present the numer-
ical setup of the simulations in Sect. 2, including a description
of the model of the linear null point and footpoint driver. The
methods of calculating stability measures, shear layer properties,
and reconnection rate are described in Sect. 3. In the first part of
Sect. 4 we present the results of a high-resolution pair of simu-
lations for a single choice of viscosity and resistivity parameters
and we compare the effects of the viscosity model used. In the
second part, the results of a parameter study are described, gen-
eralising the high-resolution results. The article concludes with
a discussion of findings in Sect. 5 and conclusions in Sect. 6.

2. Model and numerical setup

2.1. Governing equations

We consider the non-dimensionalised visco-resistive MHD
equations,

Dρ
Dt

= −ρ∇ · u, (1)

ρ
Du
Dt

= −∇p +  × B + ∇ · σ, (2)

DB
Dt

= (B · ∇)u − (∇ · u)B + η∇2B, (3)

ρ
Dε
Dt

= −p∇ · u + Qν + Qη, (4)

posed in a rectangular domain Ω, where ρ is the mass density, u
is the plasma velocity, p is the thermal pressure,  is the current
density, B is the magnetic field, σ is the viscous stress tensor, η
is the resistivity, equivalent to the inverse Lundquist number, and
ε is the specific energy density, given by the equation of state for
an ideal gas,

ε =
p

ρ(γ − 1)
, (5)

where the specific heat capacity ratio is given by γ = 5/3.
The terms Qν = σ : ∇u and Qη = η| |2 are the viscous and
ohmic heating contributions, respectively. The material deriva-
tive is D/Dt = ∂/∂t + (u · ∇).

The non-dimensionalisation scheme is identical to that used
in the code Lare3d (Arber et al. 2001), where a typical magnetic
field strength B0, density ρ0, and length scale L0 are chosen and

the other variables non-dimensionalised appropriately. Veloc-
ity and time are non-dimensionalised using the Alfvén speed
uA = B0/

√
ρ0µ0 and Alfvén crossing time tA = L0/uA, respec-

tively. Temperature is non-dimensionalised via T0 = u2
Am̄/kB,

where kB is the Boltzmann constant and m̄ is the average mass
of ions, here taken to be m̄ = 1.2mp (a mass typical for the solar
corona) where mp is the proton mass. Dimensional quantities can
be recovered by multiplying the non-dimensional variables by
their respective reference value (e.g. Bdim = B0B). The refer-
ence values used here are B0 = 5 × 10−3 T, L0 = 1 Mm, and
ρ0 = 1.67× 10−12 kg m−3, giving reference values for the Alfvén
speed of uA = 3.45 Mm s−1, Alfvén time tA = 0.29 s, and tem-
perature T0 = 1.73 × 109 K. These reference values are defined
away from the null point, where the Alfvén speed is zero and the
Alfvén time is not defined.

2.2. Models of viscosity

Here we use and compare both isotropic and anisotropic models
of viscosity. In the isotropic case, the Newtonian viscosity model
is used,

σiso = νW, (6)

where ν is the viscous parameter (termed the viscosity through-
out this paper) and W is the rate-of-strain tensor,

W = ∇u + (∇u)T − 2
3 (∇ · u)I. (7)

In the anisotropic case, we use the switching viscosity model of
MacTaggart et al. (2017),

σswi = ν
(
1− s(α|B|)

)
W+νs(α|B|)

[
3
2

(Wb · b)
(
b ⊗ b −

1
3

I
)]
, (8)

where b = B/|B| is the unit vector in the direction of the mag-
netic field and s(α|B|) is the switching function; this is an inter-
polation function which controls the degree of anisotropy in the
tensor based on the local magnetic field strength. This model
focuses on the most important components (for the solar corona)
of the full Braginskii tensor (Braginskii 1965), the parallel and
isotropic components, in order better to model viscosity in the
vicinity of magnetic null points (Hollweg 1986). While previ-
ous work (MacTaggart et al. 2017) has used a phenomenological
form for the switching function s, here we use a form based on
the coefficients of the Braginskii tensor,

s(a) =
3 + f (2a) − 4 f (a)

3
, (9)

where

f (a) =
6
5

a2 + 2.23
a4 + 4.03a2 + 2.23

, (10)

and a = α|B|, where α is a parameter used to control the depen-
dence of s on |B|.

Physically, α = eτ/m, where e is the electron charge, m is
the ion mass, and τ is the ion-ion collision time

τ = 0.82 × 10−6 T 3/2

n
s, (11)

where n is the ion number density. For typical active region con-
ditions, T = 2×106 K and n = 3×103 m−3 giving τ = 0.773 s and
α ≈ 108. Were this value to be used in Eq. (9), s would change so
rapidly with |B| that the region near the null point where s ≈ 0,
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Fig. 1. Field configuration after four Alfvén times. The driver speed is
also shown as a slice, where white indicates peak driving speed.

corresponding to where the viscosity is isotropic, would be of
sub-grid scale at the resolutions used here. To properly resolve
the region of isotropic viscosity, we choose α = 12. It should
be noted that s(a) with α > O(10) has a very similar profile to
that with α = 108. The main results that we will present will
depend primarily on the region of anisotropic viscosity, outside
the region of isotropic viscosity. Therefore, it is important for
our results that they are not influenced by any potential numeri-
cal errors, at the null, which are outside our control. Our choice
of α allows us to avoid such errors whilst still representing an
improved model of plasma viscosity.

2.3. Null point model

The magnetic structure of the null point with the spine parallel
to the z-axis is determined by an imposed initial magnetic field
given in non-dimensional units by

B = (x, y,−2z). (12)

The domain Ω is a box of dimension [−3.5, 3.5] × [−3.5, 3.5] ×
[−0.25, 0.25] in the x, y, and z directions, respectively. We per-
formed test simulations in both larger and smaller domains at
resolutions of 320 grid points per dimension and the results are
qualitatively similar. The initial velocity is uniformly zero, the
initial density is uniformly ρ = 1, and the internal energy is uni-
formly ε = 5/4, corresponding to a temperature of 1.44 × 109 K
and a plasma beta of β ≈ 0.017. While this temperature is at the
high end for the solar corona, the value was chosen to align with
parameters used by Wyper & Pontin (2013). Additionally, test
simulations run with lower temperatures resulted in prohibitively
long running times.

On the domain boundaries, the fluxes of the magnetic field,
the density, and the specific energy density are set to zero. That
is, on the x-boundaries,

∂B
∂x

= 0;
∂ρ

∂x
=
∂ε

∂x
= 0 for x = ±3.5, (13)

and similarly, the y- and z-derivatives are zero on their respective
boundaries. On the x- and y-boundaries, the velocity and its (nor-
mal) derivative are zero, and on the z-boundaries the velocity is
given by a driver, described below.

The driver takes the form of a slowly accelerating, rotating
flow at the upper face of the box z = 0.25 given by

u = u0 ur(r) ut(t)
(
−y, x, 0.25

)T
. (14)

Here ur(r) describes the radial profile of the twisting motion in
terms of the radius r2 = x2 + y2,

ur(r) = ur0
(
1 + tanh(1 − rdr2)

)
, (15)

where rd controls the radial extent of the driver and ur0 is a nor-
malising factor. The extent of the driving region can be seen
in Fig. 1. The imposed acceleration of the twisting motion is
described by ut(t) with

ut(t) = tanh2(t/tr), (16)

where the parameter tr controls the time taken to reach the final
driver velocity u0. The parameters used in all simulations are
u0 = 0.09, ur0 = 5.56, tr = 0.25, and rd = 36. At the lower
boundary z = −0.25, the flow is in the opposite direction.

This driver twists the magnetic field around the spine of
the null point, introducing twist throughout the entire structure
(Fig. 1). The form of driver allows the system to be acceler-
ated slowly enough that the production of disruptive shocks and
fast waves is minimal. It is unavoidable that some waves are
produced during the boundary acceleration, however these pro-
vide a useful source of noise that acts as a perturbation. As in
Wyper & Pontin (2013), there is no prescribed perturbation that
results in either the KHI or the null collapse; all perturbations
are dynamically generated due to noise in the system. This entire
setup is similar to that of Wyper & Pontin (2013).

The main parameter study required 18 simulations to be run
in total; one per viscosity model for each of the nine parameter
choices. To limit the time required to complete the study, a rel-
atively low resolution of 320 grid points in each direction was
used for these runs. A single, higher resolution pair of simula-
tions were run, one for each viscosity model, at a resolution of
640 grid points for a single parameter choice. As well as allow-
ing a detailed analysis of this case, these higher resolution sim-
ulations provide evidence that the lower resolution simulations
have suitably converged.

3. Methods of analysis

3.1. Stability measures

Following Wyper & Pontin (2013), two quantities are used to
understand the stability of the current-vortex sheet: the fast mode
Mach number Mf , associated with the velocity shear, and a
parameter Λ describing the balance of stability between the tear-
ing mode and the KHI in a current-vortex sheet1. The fast mode
Mach number is given by

Mf =
∆u√

c2
s + c2

A

, (17)

where ∆u is the velocity change across the shear layer and cs
and vA are the local sound and Alfvén speeds, respectively. The
parameter Λ measures the relative strength of the velocity shear
to magnetic shear and is given by

Λ =
Lb

Lu
M2/3

A , (18)

1 Wyper & Pontin (2013) additionally use the projected Alfvén Mach
number alongside the two measures used here, however it is our opinion
that Λ captures the same information.
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where Lb is the width of the magnetic shear layer, Lu is the width
of the velocity shear layer, and MA is the projected Alfvén Mach
number

MA =
∆u
√
ρ

∆B
· (19)

Since the shear layer occurs in the presence of a guide field (that
of the initial magnetic null point), which is not included in the
linear stability study of the KHI, the difference in magnetic field
∆B across the shear layer is used in the Alfvén Mach number
as opposed to the full magnetic field strength |B|. In this way the
Alfvén Mach number can be considered to be projected on to the
shear layer.

Plotting the radial dependence of these quantities over the
shear layers gives an indication of the local linear stability based
on the stability analysis performed by Einaudi & Rubini (1986).
The analysis predicts that a current-vortex sheet is linearly unsta-
ble to the KHI where Mf < 2 and Λ > 1. Where Λ < 1, the anal-
ysis predicts that the sheet is unstable to the tearing instability
instead. It should be noted that the analysis of Einaudi & Rubini
(1986) is 2D so can only be approximately used in the study of
the KHI here, where there is an additional guide field in the sys-
tem.

To calculate the stability measures, the peak vorticity and
current density within the current-vortex sheets are measured,
along with the radii at which the peaks occur. These radii are
then used as the locations at which the absolute difference in
azimuthal velocity ∆u and magnetic field ∆B across the shear
layers is measured, calculated as the difference between the max-
imum and minimum values of velocity or magnetic field either
side of the shear layer. The distance between the maximum and
minimum points gives a measurement of the thickness of the
shear layers, Lu and LB.

3.2. Reconnection rate

The reconnection rate is calculated using the same method
employed in previous work by the same authors (Quinn et al.
2020). In summary, we calculate the reconnection rate local to
a given magnetic field line as the local parallel electric field
(that is, parallel to the magnetic field) integrated along the field
line. By choosing a grid of starting points and integrating along
each associated field line, an image is constructed of recon-
nection rates projected onto the grid of field line seed points.
This is used to explore the spatial distribution of reconnection.
The maximum value across all seed points gives the conven-
tionally accepted measure of reconnection rate, the maximum
integrated value (Galsgaard & Pontin 2011; Priest et al. 2003;
Schindler et al. 1988).

4. Results

In the first subsection of the results section, the evolution of a
pair of high-resolution simulations is presented, both performed
using resistivity of η = 10−4 and viscosity ν = 10−4, but with dif-
ferent viscosity models. The purpose of these simulations is to
capture the main features of the null point dynamics in response
to the driver: the formation of a current-vortex sheet in the fan
plane, the appearance of counterflows, the (potential) growth of
a KHI, and the eventual collapse of the null point. This pair of
high-resolution simulations also highlights, in detail, the differ-
ences between the isotropic and the switching viscosity models,
in particular the suppression of the KHI in the isotropic case,

and the quicker collapse of the null point in the switching case.
These results are then extended to other parameter choices in the
second subsection.

4.1. Evolution of a typical case

We detail the evolution of the high-resolution, typical cases in
stages, exploring the formation, stability, and breakup of the
current-vortex sheet before investigating the collapse of the null
point. Then, we summarise the evolution through an analysis of
the energy budget and the reconnection rate in time.

4.1.1. Formation of the current-vortex sheet

Initially, the torsional Alfvén waves injected by the driver trace
out the field surrounding the null, moving first along the spine
then out across the fan plane. This occurs from above and below.
The upper and lower waves diffuse via viscosity and resistivity
and eventually meet, creating shear layers in the velocity and
magnetic field in the form of rings of vorticity and current den-
sity centred around the null point (Fig. 2a). These shear layers
are jointly called the current-vortex sheet. Without any diffusion
in the system, the waves would travel far along the fan plane
before meeting. The presence of both viscosity and resistivity
diffuses the waves as they travel along the field, allowing the
upper and lower waves to meet around r = 1, where the current-
vortex sheet forms. The hole in the sheet is due to magnetic ten-
sion forces opposing the twisting motion, as illustrated in Fig. 3
of Wyper & Pontin (2013). This also gives rise to counterflows
(not shown) similar to those seen in Wyper & Pontin (2013) and
Galsgaard (2003).

In the switching case, the reduced effective viscosity pro-
duces a vortex ring that is larger in radius and stronger in
magnitude. The current density ring is somewhat larger in the
switching case, but of equivalent peak magnitude to that in the
isotropic case. Since the viscosity diffuses velocity directly and
affects the magnetic field only indirectly, the vorticity is naturally
affected by the change in viscosity model more than the current
density. This difference in vorticity but not current density affects
the relative size of the stability measures.

Figure 2b shows the relevant stability measures as functions
of radius across the fan plane at t = 6, a time when the fan
plane has become unstable to the KHI in the switching case but
remains stable in the isotropic case (see Fig. 3b). The measure
Λ confirms that the current-vortex sheet is linearly stable to the
KHI in the isotropic case and unstable in the switching case for
r > 0.6. This linear prediction matches the location where the
KHI is observed to develop. In the switching case, the peak of
Mf aligns with the observed region of initial growth of the insta-
bility. In the switching case, Λ and Mf are significantly larger due
to the greater vorticity (Fig. 2a). In the isotropic case the more
efficient dissipation of velocity results in a generally weaker vor-
ticity ring and thus lower values of the stability measures.

4.1.2. Disruption of the current-vortex sheet

As expected from the linear stability measures shown in Figs. 2b
and 3 shows the development of the out-of-plane velocity from
t = 2 to 10 and reveals that the current-vortex sheet is only unsta-
ble to the KHI in the switching case. Both cases exhibit a similar
morphology of uz, despite a growing difference in strength, until
t = 6 when the KHI only appears in the switching case, ini-
tially along the diagonals (Fig. 3b) before spreading azimuthally
(Fig. 3c). There is no evidence of the KHI in the isotropic case.
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Fig. 2. Rings of vorticity and current density and associated linear sta-
bility criteria. Panel a: vorticity and current density for both viscosity
models at t = 3 and z = 0. Panel b: linear stability measures as functions
of radius at t = 6. The switching model permits rings of greater radial
extent and notably stronger vorticity, resulting in a current-vortex sheet
that is linearly unstable to the KHI. The thin dashed grey line Λ = 1 is
the boundary between the KHI and the tearing instability from the 2D
linear analysis of Einaudi & Rubini (1986).

In both cases the current-vortex sheet grows in radius and
magnitude with time, more in the switching case than in the
isotropic. The shearing action of the counterflows produces a
secondary ring of strong current density closer to the spine,
which is greater in magnitude in the isotropic case. By t = 10
the KHI has disrupted the current-vortex sheet (Fig. 4a) and the
resultant rolls create strong, small-scale current sheets, enhanc-
ing the local reconnection rate.

Figure 4b shows the spatial distribution of the reconnection
rate for both viscosity models. Each pixel in the image repre-
sents one field line passing through that pixel along which the
parallel electric field has been integrated. The colour of the pixel
is given by the value of the integration and the starting locations
of the field lines are a grid of points in the plane z = 0.23. The
reconnection rate is greatest close to the centre of the plot, cor-
responding to regions of slippage reconnection due to the strong

currents in the spine and current-vortex sheet. The effects of the
boundary can be seen as long dark lines that spiral outwards from
the origin. The switching case shows a greater peak reconnection
rate due to the small-scale current sheets created by the KHI,
and the enhanced reconnection far from the null can be seen as
ripple-like structures at the fringes of the plot.

4.1.3. Spine-fan reconnection

This section presents the results of driving the magnetic null
point to the moment at which it undergoes spontaneous collapse.
The collapse is instigated by a velocity shear across the null that
generates a magnetic shear, permitting spine-fan reconnection.
We present the results of the isotropic case in detail first, then
explore the effect of the KHI in the switching case.

In typical studies of spine-fan reconnection (such as
Pontin et al. 2007), the spines of a null point are dragged in
opposite directions at the boundaries. This motion pulls the field
above and below the null point in opposite directions and cre-
ates a current sheet that acts to reconnect field lines between the
spine and fan. Here, the field near the null is shifted not because
of motions at the footpoints of the spine, but due to imbalances
in the velocity above and below the null point. These imbal-
ances arise due to small pressure differences generated during
the course of the initial driving. Figure 5 presents the magnetic
field lines before and during the reconnection.

The twist in the spines creates a current that heats the con-
tained plasma via ohmic heating and generates a small pres-
sure force directed towards the null point, driving two oppositely
directed streams of plasma along the spine (Fig. 6a). Where these
streams meet (at the null point), they form a stagnation point
flow, compressing the plasma in the vicinity of the null point
and flowing out along the fan plane. Due to small asymmetries
in the pressure that accrue during the simulation, an imbalance
in the velocity appears above and below the null point (Fig. 6b).

The velocity shear around the null point shears the magnetic
field accordingly, creating a current sheet through the null point
(Fig. 5b). This current sheet enables reconnection between the
spine and fan, which further extends, thins, and strengthens the
sheet, continuing the reconnection process until the field around
the null point collapses. The collapse itself can be seen in the
kinetic energy as a dramatic increase starting at t ≈ 18 (Fig. 7a).
The development of the current sheet and the resultant spine-
fan reconnection is similar to that of Pontin et al. (2007) with
the exception that the twist in the field unravels as the reconnec-
tion proceeds (see also the similarity in behaviour compared to a
model for solar polar jets in Pariat et al. 2009 which is driven by
twisting motions). In the switching case, the development of the
spine-fan reconnection and associated collapse is qualitatively
similar to that in the isotropic case with the exception that the
reconnection occurs notably earlier and evolves over a shorter
timescale.

4.1.4. Energy budget and reconnection rate

The kinetic energy in the switching case is a measure of the main
evolution of a KHI-unstable current-vortex sheet as presented in
detail previously (Fig. 7a). The initial injection of the Alfvén
waves and formation of the current-vortex sheet can be seen at
t ≈ 3. As the null point continues to be driven, the sheet becomes
unstable to the KHI and the kinetic energy grows accordingly
from t ≈ 3 to 8. At t ≈ 8 the KHI saturates as small-scale current
sheets form and Ohmic heating begins to drain energy from the
instability (Fig. 7f). This is also reflected in the reconnection rate
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Fig. 3. Development of the KHI in the out-of-plane velocity uz at t = 2, 6, and 10 for both viscosity models. The isotropic results have been
multiplied by as much as 1000 in order to compare them to the switching results. In the switching case, the KHI appears initially along the
diagonals before extending azimuthally. In the isotropic case, there is no evidence of the instability.

(Fig. 7g) where the small current sheets in the rolls of the KHI
in the fan plane enhance reconnection locally. Around t = 14,
a transient increase in the kinetic energy reveals the start of the
null point collapse.

In the isotropic case, the increased kinetic energy and
enhanced reconnection rate associated with the KHI are absent,
however the collapse of the null point produces significantly
more kinetic energy at t ≈ 17 than in the switching case (Fig. 7a).
The ohmic heating is similarly damped without the influence of
the KHI (Fig. 7f). This results in the switching model extract-
ing more energy from the field (Fig. 7b) and heating the plasma
much more effectively (Fig. 7c). One significant finding is that
the velocity shears created by the KHI allow anisotropic vis-
cous heating of comparable levels to that of isotropic viscosity
(in contrast to much larger differences observed in other situa-
tions e.g. the kink instability of a twisted flux tube presented in
Quinn et al. 2020).

The reconnection rate reveals some interesting features about
the nature of reconnection within the system and how the pres-
ence of the KHI affects the null point collapse (Fig. 7g). One
interesting observation is that the switching case shows a greater
reconnection rate than that of the isotropic case even before the
onset of the KHI (i.e. for t < 6), suggesting the switching model
allows for enhanced reconnection. As in Quinn et al. (2020),
here too this is due to the switching model permitting greater
velocities, greater compression, and thinner, stronger current
sheets. It is then unclear whether the generally enhanced recon-
nection rate in the switching case for times t = 5 to 10 can be
attributed to the current-enhancing effect of the switching model
or is an effect of the KHI. Certainly, the spiky nature of the recon-
nection rate from t = 8 to 15 can be attributed to the small,
strong current sheets produced in the rolls of the KHI, which
do not appear in the stable isotropic case. The collapse of the
null point is observed in the reconnection rate in the switching
case around t = 15 and in the isotropic case around t = 17,
however it differs significantly between the two cases. In the
isotropic case, the reconnection rate increases during the col-
lapse, while in the switching case, it decreases. This is due to the
difference in the state of the nulls in each case as the collapse
occurs.

In the isotropic case, where the KHI has not been excited, the
flows and magnetic field are relatively simple and smooth such
that the collapse is able to form large current sheets and recon-
nect many field lines at once. In contrast, in the switching case

the KHI broke up the current-vortex sheet, introduced inhomo-
geneities throughout the fan plane, and generated small current
sheets. This results in a collapse that struggles to reconnect with
the same efficiency as in the smoother, simpler isotropic case.
Additionally, there is simply more free magnetic energy in the
system where the KHI remains stable, allowing current sheets to
form more effectively during the collapse. In essence, the KHI
places the null point in a more complex state where the collapse
is less efficient at reconnecting field lines.

4.2. Study of parameter dependencies

The results shown in Sect. 4.1 change dramatically when the
resistivity ν and the viscosity η are varied. This section presents
results of simulations where ν takes values of 10−5, 10−4, or 10−3

and η takes values of 10−4 or 10−3. This results in six pairs of
simulations, each choice being run with switching viscosity or
isotropic viscosity. We performed the simulations at a resolution
of 320 grid points per dimension, half that of the high-resolution
cases described in detail above, and run to t = 15 instead of to
t = 20 as in the latter. The null point collapse occurs sooner
than at higher resolution and shows behaviour more typical of
fast reconnection, which is indicative of inadequate resolution
(Miyama et al. 2012). For this reason, focus is placed on the
development of the KHI rather than on the null point collapse,
leaving a parameter study of the null point collapse itself open
as an avenue of future research. Generally, increasing the resis-
tivity η to 10−3 produces a null point that is more unstable to the
KHI (even in isotropic cases). Increasing the viscosity ν damps
the KHI but does not totally suppress it, while decreasing ν leads
to a faster growing KHI.

4.2.1. Shear layer stability

Figure 8 shows the stability measures as functions of radius for
every studied parameter choice and for both viscosity models at
t = 8. In every case Mf < 2, a necessary condition for instability
of the current-vortex sheet. The condition on Λ for instability is
Λ > 1. All layers with the switching model are linearly unstable
to the KHI (Figs. 8b and d) while the isotropic cases show a
mix of linear stability. When ν = 10−5, the viscosity is weaker
and the linear stability analysis predicts that the layers should be
unstable for either value of η. The opposite is true for ν = 10−3,
when the isotropic viscosity is at its most dissipative.
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Fig. 4. Breakup of the current-vortex sheet and associated reconnection
at t = 10. Panel a: current and vorticity density at z = 0. Panel b: spatial
distribution of reconnection rate measured as the parallel electric field
integrated along field lines traced from locations in the plane z = 0.23.
Both panels show both viscosity models with isotropic shown on the left
half of each figure and switching on the right. The current-vortex sheet
remains stable in the isotropic case while that in the switching case has
been fragmented by the KHI. The resultant small-scale reconnection
in the rolls produces localised pockets of strong vorticity and current
density.

In general, increased diffusion leads to a thicker, weaker
ring, due to the Alfvén waves diffusing more before meeting in
the fan plane. The switching model, being generally less diffu-
sive than the isotropic model, permits velocity shear layers with
much greater peak vorticity. Due to the coupling between the
magnetic field and the velocity in an Alfvén wave, the isotropic
model appears to provide some diffusion to the magnetic field
during the formation of the magnetic shear layer. This results in
a layer with weaker peak current, however the switching model
affects the magnetic layer very little. Lower resistivity results in a

(a)

(b)

Fig. 5. Collapse of the null point visualised with field lines in the
isotropic case. Field lines are plotted from a circle of radius 0.05 around
the upper and lower spine footpoints. Contours of | j| = 60 are also plot-
ted and reveal the strong current within the spine as well as the forma-
tion of the central sheet associated with the spine-fan reconnection. At
t = 18.5 the bulk of the field lines making up the core of the spine have
reconnected.
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Fig. 6. Velocity imbalance above and below the null point. Panel a:
slice of the pressure through y = 0 overlaid with fluid velocity, where
the longest arrows correspond to a fluid velocity of approximately 0.1.
Panel b: |ux(x)| − |ux(−x)|, the difference in ux between the left and right
sides of the plane x = 0. This gives a measure of the asymmetry in the
velocity around the null point.

stronger vorticity layer (in the switching case) but also a stronger
current layer, and vice versa. for larger resistivity.

The observed stability of the current-vortex sheet to the
KHI in each case is determined via inspection of the out-of-
plane velocity for each parameter choice and is summarised for
each parameter choice in Table 1. Some entries are marked as
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Fig. 7. Energy components and reconnection rate as functions of time. (a) Kinetic energy. (b) Magnetic energy. (c) Internal energy. (d) Viscous
heating. (e) Ohmic heating. (f) Reconnection rate.
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Fig. 8. Stability measures as functions of radius r for all parameter choices at t = 8. Measures are plotted for ν = 10−5 (solid), ν = 10−4 (dashed),
and ν = 10−3 (dotted) for each value of η and each viscosity model. The cases where Λ > 1 are unstable with the exception of the isotropic cases
where ν = 10−4, η = 10−3 (dashed line in Fig. 8c). (a) Isotropic; η = 10−4. (b) Switching; η = 10−4. (c) Isotropic; η = 10−3. (d) Switching; η = 10−3.

unstable*, referring to their being marginal cases; in these the
KHI is directly observed in the out-of-plane velocity but the
growth rate is close to zero and the perturbation remains neg-
ligibly small even at the final time of t = 15. The observed sta-
bility is well matched by the theoretical conditions of instability
Λ > 1 and Mf < 2 in all but one case. This exception at η = 10−3,
ν = 10−4 is close to marginal and the result is most likely affected
by the choice of resolution. This indicates that, despite the dif-
ference in geometry, the stability analysis of Einaudi & Rubini
(1986) is of practical use in predicting the stability of the KHI in
magnetic null points. This condition even accurately predicts the
stability of the marginal cases.

4.2.2. Kinetic energy profiles

Figure 9 shows the kinetic energy as a function of time for all
parameter choices and for both viscosity models. The strongly

KHI-unstable cases show a similar kinetic energy profile to that
of the unstable typical case (Fig. 7a). In the switching cases,
the peak kinetic energy is larger when η = 10−4 in two cases
(Figs. 9d and e). This is a result of the reduced diffusion of
the magnetic field resulting in a stronger vorticity layer. The
isotropic cases in Fig. 9 show an interesting trend in that the
kinetic energy becomes stronger for smaller values of the vis-
cosity ν (as expected) or for larger values of the resistivity η.
In particular, the isotropic case where η = 10−3 and ν = 10−5

(Fig. 9a) is the only isotropic case where the KHI is significantly
unstable. In this case, the kinetic energy profile shares a similar
shape to the associated switching case, but the enhanced dissipa-
tion prevents the KHI from generating similar levels of kinetic
energy. Instead, the profile is flatter and saturates at a later time.

Table 1 reveals three cases of interest that are explored
through their kinetic energy profiles. The marginally unstable
isotropic case, where η = 10−4 and ν = 10−5, does show some
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Table 1. Stability in the isotopic and switching cases for different
choices of ν and η.

η ν Iso lin Iso obs Swi lin Swi obs

10−3 10−3 Stable Stable Unstable Unstable
10−3 10−4 Unstable Stable Unstable Unstable
10−3 10−5 Unstable Unstable Unstable Unstable
10−4 10−3 Stable Stable Unstable Unstable*
10−4 10−4 Stable Stable Unstable Unstable
10−4 10−5 Unstable Unstable* Unstable Unstable

Notes. Both linear stability (“lin”, as predicted by Λ > 1 in Fig. 8) and
observed stability (“obs”) are shown. Entries marked as unstable* show
growth of the KHI but the growth rate of the perturbation is close to
zero. The isotropic model mostly results in stability while the switching
model mostly results in instability.

growth but it is notably less than the fully unstable case (Fig. 9d).
Given that the current-vortex sheets in both these cases share
similar strengths of vorticity, it is the combination of viscous
dissipation of perturbations and enhanced magnetic shear in the
lower η case that acts to stabilise the sheet. This conclusion
can similarly be drawn for the outlying switching case where
η = 10−4 and ν = 10−3 (Fig. 9f). The remaining case of interest
is where η = 10−3 and ν = 10−4, the single case where the lin-
ear prediction disagrees with the observed stability (Fig. 9b). In
this case, the kinetic energy plateaus as the viscosity dissipates
kinetic energy as it is generated by the instability.

4.2.3. Heating profiles

Figure 10 presents the total heat generated by viscous and ohmic
dissipation and the total internal energy at t = 13, prior to any
null collapse. Looking first at the viscous heating (Fig. 10a),
Qν generally decreases with decreasing viscosity ν, as one may
expect, with the exception of the isotropic cases where the resis-
tivity is η = 10−4. Instead, in these cases the viscous heating
shows little dependence on ν. This reveals the complex, nonlin-
ear relationship between viscous heating, the value of ν, and the
flows generated.

In the switching cases, generally an increase in ν increases
viscous heating and decreases ohmic heating. The decrease in
ohmic heating is due to two complementary effects. Firstly, vis-
cosity generally slows flows and limits the compression of cur-
rent sheets, consequently limiting ohmic heating; thus a larger
ν produces less ohmic heating. Secondly, the nonlinear phase
of the KHI enhances ohmic heating in the fan plane and, since
the instability is more unstable for smaller ν, ohmic heating
increases with decreasing ν. The overall effect is a decrease
in internal energy with increasing ν. This is also true for the
η = 10−3 isotropic cases.

The ohmic heating profile similarly reveals complex
behaviour in the isotropic cases (Fig. 10b). The stark difference
in trends can be explained by considering the spatial distribution
of ohmic heating that mirrors that of the current density. The two
main current structures in a twisted null point are the current-
vortex sheet and the structure associated with the twisted spines.
Although the spine currents are two separate regions of current
density, they contribute equally to the ohmic heating so are con-
sidered as one here. These are the main sources of ohmic heating
and the balance of contributions from each source, for different
values of η and ν, is non-trivial and results in the observed dif-
ference in trends.

Figure 11 reveals how the contributions from the current-
vortex sheet and spines change with ν, and the effect that has
on the total ohmic heating. These measures are calculated as
the mean of the ohmic heating in the xy-plane (representing the
heating within the current-vortex sheet) and that in the yz-plane
(representing the heating in the spines). These are not true mea-
surements of the ohmic heating within each current structure,
however they provide a useful proxy.

For any value of η, the spine heating increases and the
current-vortex heating decreases as ν increases. This is due to
greater viscosity dissipating the initial Alfvén waves more effec-
tively and reducing the magnetic shear in the current-vortex
sheet while retaining magnetic shear in the spines. The differ-
ence in how rapidly the relative contributions change with ν
gives rise to the difference in total ohmic heating trends found
in Fig. 10b. When η = 10−4, the heating in the sheet decreases
faster than the spine heating increases with ν, resulting in a drop
in total ohmic heating (Fig. 11b). The opposite is true when
η = 10−3 (Fig. 11a).

5. Discussion

While the values of the resistivity η used in the simulations per-
formed here are orders of magnitude greater than typical coronal
estimates, the values of viscosity ν are certainly within realistic
bounds. When using a model of viscosity appropriate in the solar
corona (the switching model), we found that the KHI is unsta-
ble, regardless of parameter choice. This strongly suggests that
in the real corona the KHI can be excited in current-vortex sheets
similar to those studied here.

This paper details the investigation of the KHI and null point
collapse around an axisymmetric, linear null point, an idealised
model of a real null point (such as that observed in Masson et al.
2009). The impact of different null point configurations such as
those with asymmetry (e.g. those investigated by Thurgood et al.
2018; Pontin et al. 2016) is unclear. Similarly, the simplicity
of the driver used here is unlikely to reflect the true nature of
drivers in the real solar corona. The impact of driver complex-
ity on spine-fan reconnection has been specifically investigated
by Wyper et al. (2012) who, however, focus on sheared drivers
as opposed to the torsional drivers employed here. It would be
of interest to understand how different magnetic field configura-
tions and forms of driver affect the formation and stability of the
kind of current-vortex sheets studied here.

The simulations detailed here have been performed with
a model of anisotropic viscosity that only captures the paral-
lel component of viscosity. As discussed by Einaudi & Rubini
(1989), perpendicular components can become significant in
strong velocity shears (such as those found in the fan plane of
a twisted null point) despite the small size of the associated
transport coefficient. A similar set of experiments exploring the
effect of perpendicular viscosity could provide useful insight,
particularly in ascertaining if the growth of the tearing instabil-
ity in the current-vortex sheet could be accelerated by perpen-
dicular viscosity, as is found in the linear analysis performed by
Einaudi & Rubini (1989). That being said, we expect that the
inclusion of perpendicular effects will lead to differences that
are quantitative (e.g. affecting the numerical size of the KHI
growth rate) rather than qualitative. This is because the perpen-
dicular components of viscosity act in localised regions (e.g.
MacTaggart et al. 2017) and not everywhere in the domain like
isotropic viscosity. Thus, we expect the effects of perpendicular
viscosity to play a role more similar to parallel viscosity than
isotropic viscosity.
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Fig. 9. Kinetic energy as function of time for each parameter choice and viscosity model. An increase in ν damps the energy released during the
KHI in the switching cases and totally suppresses the KHI in most isotropic cases. (a) ν = 10−5; η = 10−3. (b) ν = 10−4; η = 10−3. (c) ν = 10−3;
η = 10−3. (d) ν = 10−5; η = 10−4. (e) ν = 10−4; η = 10−4. (f) ν = 10−3; η = 10−4.
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Fig. 10. Internal energy, total viscous, and total ohmic heating as functions of viscosity ν at t = 12.5, before the onset of any null collapse, for all
parameter choices. Isotropic (blue, solid) and switching viscosity (orange, dashed) are both shown. An upwards-facing triangle denotes the higher
value of η = 10−3 and a downwards-facing triangle, η = 10−4. The anisotropic viscous heating can become significant for larger values of ν yet,
when ν is smaller, the lack of viscous heating is compensated by enhanced ohmic heating.

An important finding of this investigation is the sponta-
neous collapse of the null point without shearing drivers (as in
Pontin et al. 2007) or prescribed current density perturbations
(as in Thurgood et al. 2018). The formation of the current sheet
at the null point (which facilitates spine-fan reconnection and
null point collapse) is primarily driven by a shearing motion at
the null point, itself a result of oppositely directed streams of
plasma flowing along the spine towards the null point. These
flows rely on pressure gradients that are generated by ohmic
heating in the twisted spine. It may be that the pressure gener-
ated under ideal conditions (or using realistically small coronal
resistivity) is not enough to drive the null-directed flows and,
thus not enough to collapse the null point. Further investigation
of this form of collapse within a twisted null point is required to
ascertain if such a collapse is possible in the real corona.

We also explored the effect of the form of viscosity on the
collapse of the null point in the two high-resolution simulations
(of Sect. 4.1) and we found that in the switching case, where the
KHI is unstable, the null point collapses notably earlier than in
the isotropic case, where the KHI is stable. It is unclear if the

early null collapse is a consequence of the KHI or the use of the
switching model. From the results of the isotropic case, the null
point collapse appears to be ultimately caused by slight asym-
metries in the spine-aligned flows, so one may conjecture that,
in the switching case, the KHI introduces its own asymmetries
that cause the early collapse of the null point. A higher resolu-
tion version of the unstable, isotropic case (where ν = 10−5 and
η = 10−3) would provide clarity.

It is unclear how the unravelling of the null point as it col-
lapses affects the ability of the null point to undergo the kind of
oscillatory reconnection found by Thurgood et al. (2017). One
observed phase in the oscillatory process is the generation of
back-pressure, which halts and reverses the spine-fan reconnec-
tion process. The simulations performed here do not run for a
long enough time to investigate the generation of back-pressure.
It may be that a collapsing twisted null point is unable to pro-
duce the required back-pressure if it unravels during its initial
collapse. Running the high-resolution simulations reported here
for a longer time would reveal if the particular setup studied can
generate oscillatory spine-fan reconnection. Alternatively, using
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Fig. 11. Ohmic heating contributions from separate current structures
in the spine and fan. We show the mean ohmic heating contributions
from the spines (dotted) and current-vortex sheet (dashed) and their sum
(solid) for η = 10−3 (a) and η = 10−4 (b) in only the isotropic cases at
t = 10. The value of η dictates how rapidly the balance of contributions
shifts from fan to spine with ν, resulting in different trends in total ohmic
heating.

a pre-twisted null point as an initial condition with the pertur-
bation used to collapse the null point found in Thurgood et al.
(2017) would provide a similar experiment.

6. Conclusions

In this paper two models of viscosity have been applied to a mag-
netic null point that has been dynamically twisted at its foot-
points in such a way that a current-vortex sheet forms in the
fan plane. This sheet has the potential to become unstable to
the KHI. We found that increased viscous dissipation, particu-
larly in the form of isotropic viscosity, has a stabilising effect on
the sheet, to the point of complete suppression of the instability.
This is primarily due to viscosity thickening the sheet and thus
increasing its stability. The presence of the instability enhances
reconnection and viscous heating within the sheet.

After some time, the null point spontaneously collapses due
to an imbalance in spine-directed, pressure-driven flows. This
was found to occur sooner when the KHI is present. The general
development of the collapse and associated spine-fan reconnec-
tion is similar to that of previous work with the exception that
the twist in the spine unravels during the collapse.

The investigation of the stability of the current-vortex sheet
was extended with a parameter study over an order of magnitude
difference in resistivity and two orders of magnitude in viscos-
ity. The results show that the KHI is mostly unstable when using
anisotropic viscosity and mostly stable when using isotropic
viscosity.

The general qualitative behaviour that we have found in
this study matches well with our previous study on the effect
of anisotropic viscosity on the kink instability in a flux tube
(Quinn et al. 2020). The more localised influence of anisotropic
viscosity compared to isotropic viscosity allows for the creation
of much smaller length scales, both in the magnetic and veloc-
ity fields. The weaker effect of direct damping, by anisotropic
viscosity compared to isotropic viscosity, means that the shorter

length scales also coincide, in general, with higher magnitudes,
thus enhancing the possibility of instability. Even with differ-
ent dynamical drivers (the null point is twisted in this study
whereas the flux tube in Quinn et al. 2020 is initially unstable
and allowed to relax), the cases with anisotropic viscosity exhibit
the fast development of instabilities and reconnection in the way
described above. Although anisotropic viscosity does not affect
the magnetic field directly, it does have a significant indirect
influence through nonlinear interaction. Therefore, in the study
of nonlinear dynamics in the solar corona, taking account of
anisotropic viscosity is important as it can result in the devel-
opment of behaviour that would be absent if only isotropic vis-
cosity were considered.

Finally, our results have important implications for under-
standing energy release in the corona. The more efficient recon-
nection described above, which is an indirect consequence
of anisotropic viscosity, allows for two important effects in
the corona. First, the amount of ohmic heating produced is
greater with anisotropic viscosity compared to isotropic viscos-
ity. This is simply due to the production of many small-scale
current sheets, as described above. Second, magnetic instabil-
ities develop more quickly with anisotropic viscosity. By this,
we mean that the build up or development (Quinn et al. 2020) of
instabilities occurs faster. This is because more efficient recon-
nection, with anisotropic viscosity, allows for the easier release
of energy (see Fig. 7a for example). With isotropic viscosity,
the small-scale current sheets allowed by anisotropic viscosity
do not form, and so it is more difficult for the magnetic field to
release its energy. Quinn et al. (2020) showed that in an evolving
kink-unstable flux tube, magnetic relaxation occurs through sec-
ondary instabilities when only isotropic viscosity is present. That
is, the field has to wait until an ideal instability occurs to release
its energy as reconnection is not efficient enough to release it
sooner. In the present study, the instabilities in the magnetic field
develop faster for the anisotropic case, whilst there is a slower
build up for the isotropic case, leading to a later phase of insta-
bility (see Fig. 7a again for a clear picture of this). There are
many models of coronal dynamics that are based on the slow
build-up of magnetic energy through photospheric deformations
leading to a sudden release via an ideal instability (an example
that is pertinent to our study can be found in Pariat et al. 2009).
Our results suggest that instabilities of this type may be more
efficient due to the indirect influence of anisotropic viscosity
on reconnection. It will be an important avenue of research to
model the effects we have found in this work on an active region
scale.
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Appendix A: Associated software

A.1. Anisotropic viscosity module

A custom version of Lare3d (Arber et al. 2001) has been devel-
oped where a new module for anisotropic viscosity has been
included. The new version can be found online2, and also
archived at Bennett et al. (2020), and should be simple to merge
into another version of Lare3d for future research. The version
of Lare3d used in the production of the results presented here,
including initial conditions, boundary conditions, control param-
eters, and the anisotropic viscosity module, can be found at
Arber et al. (2020). The data analysis and instructions for repro-
ducing all results found in this report may be also found online3.

All simulations were performed on a single, multi-core
machine with 40 cores and 192 GB of RAM, although
this amount of RAM is much higher than was required; a
conservative estimate of the memory used in the largest simu-
lations is around 64 GB. Most simulations completed in under

2 https://github.com/jamiejquinn/Lare3d
3 https://github.com/jamiejquinn/khi_null_point_code
and have been archived at https://doi.org/10.5281/zenodo.
4483221

two days, although the longest running simulations (the highest
resolution cases shown here) completed in around two weeks.

A.2. Field line integrator

As described in Sect. 3.2, the reconnection rate local to a single
field line is given by the electric field parallel to the magnetic
field, integrated along the field line. The global reconnection rate
for a given region of magnetic diffusion is the maximum value
of the local reconnection rate over all field lines threading the
region. A field line integrator was developed specifically for this
calculation and is detailed here.

Magnetic field lines lie tangential to the local magnetic field
at every point x(s) along the line,

dx(s)
ds

= b(x(s)), (A.1)

where s is a variable that tracks along a single field line and b is
the unit vector in the direction of B. This equation is discretised
using a second-order Runge-Kutta scheme to iteratively calcu-
late the discrete positions xi along a field line passing through
some seed position x0,

xi+1 = xi + hb(x′i), (A.2)

x′i = xi + h
2 b(xi), (A.3)

where h is a small step size. Since b is discretised, the value at an
arbitrary location xi is calculated using a linear approximation.
The integration of a scalar variable y is carried out along a field
line given by a sequence of N locations xi using the midpoint
rule,

Y =

N∑
i=1

(y(xi−1) + y(xi))
2

, (A.4)

where Y is the result of the integration. In practice, N is not spec-
ified and the discretised field line contains the required number
of points to thread from its seed location to the boundary of the
domain.

While the linear interpolation, second-order Runge-Kutta,
and midpoint rule are all low order methods, testing higher
order methods showed little change in results but dramatically
increased the runtime of the analysis. The lower order methods
used offer an acceptable compromise between speed and accu-
racy. The above algorithm is implemented in Python and can
be found in the code directory linked in the Associated soft-
ware section above, in shared/field_line_integrator.py
with examples of use in main/field_line_integrator.Rmd.
The integration of multiple field lines is an embarrassingly par-
allel problem and is parallelised in a straightforward manner
using a pool of threads supplied by the Pool feature of the
Python library multiprocessing. Although the integrator is
used solely to integrate the parallel electric field along magnetic
field lines in this study, the tool can be easily applied to arbitrary
vector and scalar fields.
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