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Incubation represents a life stage of crucial importance for the optimal development of 
avian embryos. For most birds, incubation poses a trade-off between investing in self-
maintenance and offspring care. Furthermore, incubation is affected by environmental 
temperatures and, therefore, will be likely impacted by climate change. Despite its 
relevance and readily available temperature logging methods, avian incubation 
research is hindered by recognised limitations in available software. In this paper, a 
new quantitative approach to analyse incubation behaviour is presented. This new 
approach is embedded in a free R package, incR. The flexibility of the R environment 
eases the analysis, validation and visualisation of incubation temperature data. The 
core algorithm in incR is validated here and it is shown that the method extracts 
accurate metrics of incubation behaviour (e.g. number and duration of incubation 
bouts). This paper also presents a suggested workflow along with detailed R code to aid 
the practical implementation of incR.
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Introduction

Incubation represents a crucial life stage for egg-laying vertebrates, of which birds 
are a paramount example. Fine control of incubation is essential and has deep eco-
logical and evolutionary implications, notably for developing offspring but also for 
their parents (Conway and Martin 2000, Durant et al. 2013). For embryos, the ther-
mal environment that the incubating individual provides is essential for successful 
development. Suboptimal incubation temperatures can lead to delayed embryonic 
growth (Hepp et al. 2006, Nord and Nilsson 2011), hormonal and immune changes 
(Ardia et al. 2010, DuRant et al. 2014), and long-term survival consequences 
(Berntsen and Bech 2016). However, incubating individuals need to divide their time 
budget between incubation and self-maintenance (e.g. foraging) and, therefore, they 
allocate time to each activity according to prevalent ecological conditions (e.g. ambi-
ent temperatures (Coe et al. 2015) or food availability (Londoño et al. 2008)). Despite 
a long standing scientific interest in incubation, we are still elucidating subtle eco-
logical causes and consequences of variation in this behaviour (Durant et al. 2013, 
Smith et al. 2015, Bulla et al. 2016) which may have important practical implications, 
for example, in a context of global climate change (Griffith et al. 2016).

incR: a new R package to analyse incubation behaviour

Pablo Capilla-Lasheras

P. Capilla-Lasheras (http://orcid.org/0000-0001-6091-7089) (p.capilla@exeter.ac.uk), Centre for Ecology and Conservation, College of Life and 
Environmental Sciences, Univ. of Exeter, Penryn, UK.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.; 

Communication



2

The study of avian incubation is nowadays fuelled by 
recent technological advances (Smith et al. 2015). In par-
ticular, the use of iButtonsÒ (Maxim Integrated) and probed 
Tinytags (Gemini Data Loggers) allows researchers to mea-
sure incubation temperature as frequently as every second for 
long periods of time with minimal disturbance. These tech-
nologies have the potential to expand the range of species and 
scientific questions that researchers can address. However, the 
amount of data collected is usually much larger than it was 
traditionally available and several analytical hurdles must be 
overcome.

Before answering biological questions about incubation 
patterns, the observer needs to summarise the data and 
effectively reduce them to a few variables that can be cor-
related with a set of predictors of interest. For example, 
number of incubation bouts and their duration are popu-
lar metrics in avian studies (Cooper and Voss 2013). The 
first software for the analysis of incubation temperatures 
was released more than 10 yr ago: Rhythm (Cooper and 
Mills 2005). The benefits of Rhythm were immediate as it 
allowed the automated differentiation between time peri-
ods when eggs were and were not being incubated (Cooper 
and Voss 2013, Coe et al. 2015). This software made fast 

and objective an otherwise time-consuming and subjec-
tive activity. However, in a time when incubation data col-
lection is easier than ever before, Rhythm lacks much of 
the flexibility required for the handling of big data sets. 
Rhythm also has limited analytical and graphical capa-
bilities, which are a desire when thousands of temperature 
records may be available. However, apart from Rhythm, no 
other specialised software is currently available to analyse 
incubation temperature data.

To overcome these difficulties, I have developed a new R 
package, incR. This package provides a suite of R functions 
that 1) prepare and format a raw temperature time-series (via 
the incRprep and incRenv functions), 2) apply an auto-
mated algorithm to score incubation (incRscan), 3) plot 
the data (incRplot) and 4) calculate biologically relevant 
metrics of incubation (e.g. number of incubation bouts) 
(Fig. 1). Users can apply the whole pipeline or use any of 
the components of incR separately. incR takes advantage 
of the flexibility in data handling and graphical capabilities 
offered by R. I first explain the workflow of incR and its 
automated algorithm to score incubation. Then, I use video-
recordings of incubating blue Cyanistes caeruleus and great 
tit Parus major females along with incubation temperature 

Figure 1. incR workflow and visualisation of corresponding analysis of nest temperature data at each step of the workflow. After the user 
collates information from a single nest, incR can be used. incRprep prepares raw data time series for the pipeline (1) and incRenv 
adds environmental temperatures to the initial data table (shown as green lines in the plot 2). incRscan classifies data points into absence 
(purple) or presence (light red) of the incubating individual in the nest (3). From a sequence of 0’s and 1’s calculated by incRscan, 
incRbouts, incRatt, incRact and incRt extract information about on/off-bouts, nest attendance, start and end of activity and 
averaged nest temperatures for customised time windows. incRplot can be used to visualise the results of incRscan and produce the 
graph shown in panel 3.
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data to validate the automated algorithm. I further show how 
incR can accurately calculate several metrics of incubation 
behaviour. Finally, I discuss the general application of this 
new method and its potential limitations. A stable version of 
the package is available on CRAN (ver. 1.1.0) and a devel-
opment version can be found on GitHub (< https://github.
com/PabloCapilla/incR >).

incR workflow

The method implemented in incR exploits variation in 
nest (incubation) and ambient temperature to calculate the 
presence or absence of an incubating individual in the nest. 
Ambient temperature data are ideally collected near the nest-
ing site but can also be obtained from web-based sources if 
the latter is not available. Code and advice to replicate the 
analyses presented here can be found in Supplementary 
material Appendix 1 and 2, the package documenta-
tion (< https://cran.r-project.org/web/packages/incR/
incR.pdf >) and in a package vignette (accessible in R via: 
browseVignettes(“incR”)). Additionally, incR is 
distributed with an example data set that can be explored to 
understand data structure and the use of each incR func-
tion. For details to install the package, visit: < https://github.
com/PabloCapilla/incR >.

Data preparation: incRprep and incRenv
To start working with incR, the user needs to have a file with 
temperature and time information for a single nest under 
study. This file should consist of at least two columns: date-
time and temperature values. Once this initial file is prepared, 

the first step in the pipeline is performed by incRprep, 
which simply prepares the dataset for other pipeline compo-
nents. Then, incRenv can be used to automatically assign 
environmental temperature to every incubation temperature 
observation, information required by incRscan to score 
incubation (Fig. 1). incR is distributed with sample data 
that can be used as a reference for the appropriate formatting 
of new data.

Automated incubation scoring: incRscan
The algorithm implemented by incRscan exploits changes 
in nest temperature that arise from the behaviour of the 
incubating adult by examining the difference between incu-
bation (i.e. temperature in the nest cup) and environmen-
tal temperatures (see Table 1 for definitions of terms used 
throughout the paper).

Four possible situations broadly exist regarding the change 
in nest temperature after the incubating individual enters 
(on-bout) and leaves (off-bout) the nest. These four sce-
narios are classified as follows: 1) incubation off-bout when 
nest temperature is high (close to maximum incubation 
temperature); 2) incubation on-bout when nest tempera-
ture is high (close to maximum incubation temperature);  
3) incubation off-bout when nest temperature is low (close 
to environmental temperature); 4) incubation on-bout when 
nest temperature is low (close to environmental tempera-
ture). See Supplementary material Appendix 3 Fig. A1 for 
a visual representation of these four scenarios. Cases 3 and 4 
are especially sensitive to the assumption that environmental 
temperature is lower than maximum incubation temperature 
(see Results and Discussion). The change in nest temperature 

Table 1. Glossary of terms used in this manuscript.

Term Type Description Chosen by the user?

Incubation temperature or 
nest temperature

– Temperature inside the nest cup at any given time point. By 
this term I refer to a variable value that depends on 
whether, and for how long, the incubating individual is in 
or out the nest

–

Environmental temperature – Air temperature outside nest –
incRscan R function Calculates presence or absence of the incubating individual 

in the nest based on nest and ambient temperature 
variation

–

temp.diff.threshold incRscan argument Difference allowed between nest and environmental 
temperatures

Yes

lower.time incRscan argument Start of a time window when the incubating individual is 
assumed to be in the nest

Yes

upper.time incRscan argument End of a time window when the incubating individual is 
assumed to be in the nest

Yes

sensitivity incRscan argument Reduction in off-bout threshold when nest temperature is 
close to environmental temperature

Yes

maxNightVariation incRscan argument Maximum variation allowed in the lower.time – upper.time 
window. It controls for big drops in temperature within 
this temporal window (i.e. night-time incubation off-bouts)

Yes

maxDrop Internal calculation 
in incRscan

Maximum drop in temperature between two consecutive 
time points within the lower.time – upper.time 
window

No. calculated and 
reported by 
incRscan

maxIncrease Internal calculation 
in incRscan

Maximum increase in temperature between two consecutive 
time points within the lower.time – upper.time 
window

No. calculated 
and reported by 
incRscan
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that is expected after an incubation on-/off-bout differs across 
the four scenarios.

Assuming that environmental temperature is normally 
lower than maximum incubation temperature, in scenario 1,  
when the incubating individual leaves the nest, a sharp 
drop in nest temperature is expected to follow (Off-bout(1) 
in Supplementary material Appendix 3 Fig. A1). At this 
point, any increase in nest temperature would mean that 
the bird has returned to the nest (scenario 2, On-bout(2) in 
Supplementary material Appendix 3 Fig. A1). If an off-bout 
occurs when nest temperature is close to the environmental 
temperature (scenario 3), the decrease in nest temperature 
after the event would be small (Off-bout(3) in Supplementary 
material Appendix 3 Fig. A1). When a long off-bout brings 
nest temperature close to the environmental temperature, an 
incubation on-bout would be reflected in a large increase in 
nest temperature (scenario 4, On-bout(4) in Supplementary 
material Appendix 3 Fig. A1).

These four scenarios represent simplified extremes in a 
spectrum of possible situations but they illustrate the general 
principle. To explain the analytical approach in more practi-
cal terms, I here describe the analysis of one day of incubation 
(day 1), using the terminology employed in the R package 
(Table 1).

For every time point in the incubation time series, 
incRscan calculates the difference between nest and envi-
ronmental temperatures. Then, these differences are com-
pared against the value of temp.diff.threshold 
(Table 1), determining whether scenarios 1 and 2 or 3 and 
4 (see above) are applicable for a given time point. Two cases 
are possible: 1) nest temperature is higher than environmen-
tal temperature by more than temp.diff.threshold 
degrees; or, 2) nest temperature is within temp.diff.
threshold degrees of the environmental one.

Comparing the change in nest temperature between 
consecutive temperature recordings against temperature 
thresholds, incRscan determines whether the incubating 
individual is in the nest or an off-bout has occurred. Rather 
than having a fixed threshold for the entire analysis, a flex-
ible threshold value is applied among days. Within days, the 
threshold to detect off-bouts can also change controlled by 
temp.diff.threshold and sensitivity (i.e. to 
accommodate changes in cooling rates between scenarios 1/2 
and 3/4 – see below). No threshold choice is required from 
the user as threshold values are calculated by incRscan for 
each day of analysis. For this automatic calculation of thresh-
olds to take place, the user needs to specify some period of 
the 24-h cycle when an incubating bird can be assumed to 
be incubating eggs. This time window is controlled by the 
arguments lower.time and upper.time, representing 
the start and end of the time of day during which incubation 
is assumed to be always occurring (for instance, for diurnal 
bird species this period can be set at night, when the incubat-
ing individual rests in the nest). Within this time window, 
the maximum decrease in nest temperature between pairs 
of consecutive points is calculated and set as a threshold for 
incubation off-bouts (hereafter, maxDrop) for scenario 1. 

Assuming that nest temperatures are above environmental 
values, maxDrop is thought to effectively represent the max-
imum drop in temperature associated with periods when the 
incubating individual is in the nest. The threshold for incu-
bation off-bout in situation 3 must be lower than in scenario 
1 (i.e. when nest temperature is close to environmental tem-
perature); thus, the argument sensitivity, that must be 
specified by the user (taking values from 0 to 1), allows for 
such reduction, setting the off-bout threshold in scenario 3 as 
maxDrop × sensitivity. Similarly, maxIncrease 
is defined as the maximum increase in temperature between 
pairs of consecutive points within the lower.time - 
upper.time window and is set as a threshold for incuba-
tion on-bouts in scenario 4. Any increase in nest temperature 
in scenario 2 would mean an incubation on-bout. Note that 
maxDrop and maxIncrease do not need to be chosen 
by the user but are calculated by incRscan for every day 
of analysis and reported in an R object named incRscan_
threshold. See Supplementary material Appendix 1 and 
2 for a practical example.

Once these thresholds are set, temperature differences 
between successive pairs of data points throughout the 
day and between upper.time and lower.time are 
calculated. These values are sequentially compared with the 
value of maxDrop and maxIncrease, following a set of 
conditions:

For scenario 1 and 2,

T T T Ti i i i− < − >( ) ( )− −1 1maxDrop A B; 0

For scenario 3 and 4,

T T

T T
i i

i i

− <
− >

( )
( )

−

−

1

1

maxDrop sensitivity

maxIncrease

× C
D

;

Ti–Ti–1being the ith and i – 1th temperature recordings 
from i = 2 to i = I (I being equal to the total number of daily 
data points evaluated). Off-bout periods are, then, defined 
between Ti’s satisfying A or C and the closest subsequent 
situation in which Tj , when i < j, satisfies B or D. On-bout 
periods start after an off-bout finishes and last until A or C is 
fulfilled again.

This algorithm can be sensitive to highly variable tempera-
tures or marked drops in temperature within the lower.
time - upper.time window. To make incRscan 
conservative and robust against these two potential sources 
of error, whenever |maxDrop|>maxNightVariation 
is fulfilled for a particular day of study, the value of max-
Drop and maxIncrease of the previous day of incuba-
tion is instead used. maxNightVariation represents the 
maximum drop in temperature allowed in a period of con-
stant incubation (i.e. within the lower.time - upper.
time window). When this value is set too high, real off-
bouts will be missed by incRscan.

The result of this algorithm is a temporal sequence of 0’s 
and 1’s representing on-bouts (1’s) and off-bouts (0’s). Using 
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these sequences, other functions within incR can be used to 
infer incubation behaviour.

Additional functions to visualise nest temperatures and extract 
biological metrics of incubation
Regardless of whether or not incRscan has been used to 
score incubation, the incR package offers a suite of functions 
that can be applied to any binary time-series representing 
incubation. The current package ver. (1.1.0) allows the user 
to visualise the results of incRscan (incRplot generates 
a plot similar to graph 3 in Fig. 1 and Supplementary material 
Appendix 3 Fig. A1), calculate onset and end of daily activ-
ity (incRact), percentage of daily time spent in the nest 
(incRatt), number and average duration of on/off-bouts 
per day as well as individual off-bout duration and timing 
(incRbouts) and nest temperature mean and variance for 
a customised time window (incRt). The implementation 
of these functions is straightforward as they only require a 
variable with binary data for on and off-bouts. These data are 
provided by incRscan under the column name incR_
score. The function argument incubation.vector 
in incRact, incRatt, incRbout and incRt allows 
the user to manually specify the name of the column with 
binary data for incubation scores (see Supplementary material 
Appendix 2 and package documentation in R).

Validation of incR using temperature and  
video-recording data

By performing a validation analysis, my aim is two-fold. 
It is unclear how different values for the arguments in 
incRscan will affect its performance. Therefore, I first car-
ried out a sensitivity analysis in which I evaluated the accuracy 
of incRscan over different values of its most important 
user-defined arguments. Before the package has been tested 
in a broad variety of environmental contexts and species, I 
recommend that users of incR perform a similar analysis 
to validate the accuracy of the package for their own system. 
Thus, my second aim here is to provide detailed guidance 
(and R code in Supplementary material Appendix 1 and 2) 
for such analysis.

I applied the whole pipeline to incubation temperatures 
collected using iButtonÒ devices. For the same incubation 
events, I used video footage of these nests to visually score 
incubation and then compared these results to the automatic 
algorithm implemented in incRscan.

Field protocol and incubation data collection
Incubation temperatures were recorded during 2015 and  
2016 using iButtonÒ devices in two blue tit and six great 
tit clutches. Blue tit data came from an urban and subur-
ban population in Glasgow city (n = 2 clutches; 55°52.18ʹN, 
4°17.22ʹW and 55°54ʹN, 4°19.2ʹW) (Pollock et al. 
2017), whereas great tit incubation data were recorded in 
an oak forest at the Scottish Centre for Ecology and the 
Natural Environment (n = 2 clutches; SCENE, 56°7.73ʹN, 
4°36.79ʹW) (Pollock et al. 2017) and in a mixed 

forest (dominated by oak, birch and pine trees) near the 
Netherlands Inst. for Ecology (NIOO) (n = 4; ~52°7ʹN, 
6°59ʹE) (Spoelstra et al. 2015). Each iButtonsÒ was wrapped 
in a piece of black cloth and placed in the nest cup, above the 
lining materials and among the eggs. Nest temperatures were 
recorded by iButtonsÒ every 2 or 3 min. Video cameras inside 
the nest-boxes were used to monitor individual females and 
visually score incubation (see Pollock et al. 2017 for a general 
explanation about video camera deployment). In total, 12 d 
of incubation were completely or partially monitored using 
both iButtonsÒ and recording cameras. Environmental tem-
peratures for the same period in Scotland were recorded using 
iButtonsÒ placed outside nest-boxes. For the Dutch clutches, 
environmental temperatures from a weather station approxi-
mately 18 km away from the nest-box population were used. 
Data from the iButtonsÒ were downloaded in the field using 
portable devices and a single file per nest was compiled in 
preparation to use incR.

Data analysis
Using video footage, I determined whether or not the incu-
bating female had been present in the nest at every iButtonÒ 
temperature time point. After preparing incubation tem-
perature data using incRprep and incRenv, I applied 
incRscan to score incubation and compared its results 
to the footage-based scoring. I tested the robustness of the 
performance of incRscan to changing values of its three 
key arguments, 1) maxNightVariation (testing values 
from 0.5 to 10 every 0.5), 2) sensitivity (from 0 to 
1 every 0.1) and 3) temp.diff.threshold (from 0.5 
to 10 every 0.5) (see Table 1 for definitions). When testing 
one argument, the others were kept to default values of 1.5, 
0.15 and 3 for maxNightVariation, sensitivity 
and temp.diff.threshold respectively. These three 
arguments need to be chosen by the user (Table 1). This 
approach assumes that there are no interacting effects 
between parameter values. However, as a preliminary step in 
the analysis, I confirmed that that was the case. Therefore, 
I present here a 1-dimensional grid search (i.e. varying 
values of one parameter while keeping the others fixed to 
a given value).
lower.time and upper.time were always fixed to 

10 pm and 3 am (night time). For every test, I calculated 
the percentage of correctly scored incubation time points. 
After selecting the best-performing combination of argu-
ment values (i.e. highest percentage of agreement between 
incRscan and video footage), I compared daily incubation 
attendance (i.e. percentage of time spent in the nest), number 
of daily off-bouts and mean daily off-bout duration between 
incRscan-based and video footage-based incubation 
scores. I present Pearson’s correlations coefficients between 
the two metrics. incR functions, statistical tests and graphi-
cal illustrations (apart from the left-hand side of Fig. 1) were 
produced in R ver. 3.4.4 (R Core Team). Detailed practical 
guidelines to use incR and reproduce the validation shown 
in this manuscript can be found in Supplementary material 
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Appendix 1 and 2 as well as in the package’s vignette (acces-
sible in R via: browseVignettes(“incR”)).

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.56hk7t5 > (Capilla-Lasheras 
2018).

Results and discussion

Within nest-boxes, changing values of maxNightVari-
ation did not affect the performance of incRscan. 
Similar results were found for sensitivity and temp.
diff.threshold, with only analysis of data from one 
nest-box being markedly affected by changes in these argu-
ments (Supplementary material Appendix 3 Fig. A2A–C). 
It is important to note that when maxNightVariation 
is set to a very low value (effectively not allowing for much 
temperature variation in the lower.time - upper.
time time window) incRscan fails to yield any result 
as no temperature threshold would be available. This result 
can be seen in Supplementary material Appendix 3 Fig. A1A: 
when evaluating maxNightVariation equal to 0.5°C, 
data from only two out of eight nest-boxes were extracted by 
incRscan.

Consistent variation in incRscan best-performing 
argument values was found among nest-boxes (Fig. 2), 
suggesting that differences in, for example, iButtonsÒ deploy-
ment may be affecting the accuracy of the incRscan algo-
rithm. This potential effect has been qualitatively suggested 
before (Smith et al. 2015) and highlights the importance 
of collecting high quality data in the field. However, the 
percentage of agreement was always high (> 80%, Fig. 2). 
Highly consistent results were found within nest-boxes with 
marked among-box variation with only one exception 
(nest-box G178_GT, Fig. 2) in which setting maxNight-
Variation to 4°C improved the percentage of agreement 
compared to that found with the default value (3°C). The 
general pattern across the eight nest-boxes is that values 
above 1.5°C for maxNightVariation give the high-
est accuracy (90.27%, Supplementary material Appendix 
3 Fig. A1D). Similarly, values below 0.3 for sensitiv-
ity (90.27%) and a temp.diff.threshold value of 
4°C (91.16%) were found to be the most accurate argument 
choices (Supplementary material Appendix 3 Fig. A2E–F).

Given these results, I set the parameters to their overall opti-
mal values of 1.5°C, 0.25 and 4°C for maxNightVaria-
tion, sensitivity and temp.diff.threshold 
respectively, yielding a percentage of agreement across nest-
boxes of 91.16% (maximum = 98.56%; minimum = 80.42). 
With these argument values, attendance calculated based on 
video footage and inferred by incRscan showed a Pearson’s 
correlation coefficient of 0.992 (t = 24.81, p < 0.0001, 95% 
confidence interval = 0.971–0.998. Fig. 3A). Likewise, 
the algorithm in incRscan was able to provide accurate 

off-bout information (Fig. 3B, C). incR-estimated off-bout 
number and mean daily off-bout duration were highly corre-
lated with real off-bout number and duration as extracted from 
video footage (for off-bout number: r = 0.972, t10 = 13.04,  
p < 0.0001, 95% confidence interval = 0.900–0.992;  
for daily mean off-bout duration: r = 0.996, t10 = 34.69,  
p < 0.0001, 95% confidence interval = 0.985–0.999).

These results show that the method presented here can 
yield accurate metrics of incubation behaviour. Based on 
the validation of Rhythm presented in Bueno-Enciso et al. 
(2017), incR performs better than that software and yields 
higher correlations between video and iButtonÒ data (Bueno-
Enciso et al. 2017); however, note the possible influence of 
different environmental temperatures across studies. In this 
study the difference between nest temperatures and ambient 
temperatures ranged from a minimum of –0.98 (i.e. ambient 
temperature 0.98 degrees higher than nest temperature) to a 
maximum of 32.49, with a mean value across nest-boxes of 
20.34°C (standard deviation = 5.18) (Supplementary mate-
rial Appendix 3 Table A1). For number of off-bouts, the dis-
crepancies between incR and video footage seem to arise 
from incR slightly over-estimating the number of off-bouts 
(Fig. 3B). This effect was mainly caused by data from two nest-
boxes (G178_GT and GT173_GT) which were collected 
in the same year and location. However, the magnitude of 
this discrepancy was small (six off-bouts of maximum differ-
ences between estimates for whole days; estimated regression  

Figure 2. Percentage of agreement between incRscan and video-
footage across eight different nest-boxes. Colour codes represent 
individual nest-boxes and each point within nest-box illustrates the 
percentage of agreement for each of the three 1-dimensional grid 
searches, after the best values were selected for maxNightVari-
ation, sensitivity and temp.diff.threshold. 
Consistent results are found within nest-boxes with one exception 
(G178_GT) in which setting maxNightVariation to 4°C 
improved the percentage of agreement compared to that of the 
default value. Points are slightly jittered in the x axis to aid visualisa-
tion of overlaying points.
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slope ± SE = 0.926 ± 0.071) and the magnitude and direc-
tion of this error is unlikely to differentially affect compari-
sons across groups of nests (e.g. experimental versus control in 
an experimental setup). Additional metrics to those presented 
here can be calculated using incR (Fig. 1 and see package 
documentation), for which high reliability is expected given 
the results of this validation.

Benefits of incR

The benefits of incR are multiple. It represents a quanti-
tative improvement over other methods. The results of the 
validation suggest that incR may perform better than other 
approaches (see validation of Rhythm in Bueno-Enciso et al. 
2017). No assumptions about minimum off-bout time or off-
bout temperature reductions are needed and the assessment of 
different parameter values for incRscan is straightforward 
(Supplementary material Appendix 1 and 2). incRscan 

uses changes between consecutive temperature points, rather 
than total temperature reduction during an off-bout, mak-
ing the detection of short off-bouts possible. Furthermore, 
the inclusion of data on environmental temperatures informs 
the analysis, allowing for off-bout detection when nest and 
environmental temperatures are similar. In Supplementary 
material Appendix 1 and 2, I offer detailed instructions to 
reproduce the analysis presented here. More generally, using 
a script-based approach will improve repeatability and will 
ease collaboration. incR embraces the philosophy of the R 
project: it is completely free and is in constant improvement. 
Further developments in the method to score incubation 
could be embedded in or used jointly with incR to extract 
metrics of incubation.

Limitations

The capability of incR, or very likely of any other analyti-
cal tool to study incubation temperatures, to yield accurate 
results will certainly correlate with data quality. Optimal 
placement of the logging device among the eggs (i.e. close 
to the incubating adult and not buried inside nest materials) 
and data validation are, therefore, crucial. Two key assump-
tions underlie the use of incRscan. First, the incubating 
individual is assumed to rest in the nest in the lower.time 
- upper.time time window. This assumption holds for 
most species in temperate and tropical zones, for which activ-
ity outside the nest is paused during night time (a reversed 
pattern is expected in nocturnal species). However, careful 
consideration of this assumption will be needed when the 
species of interest do not have a rhythmic incubation pattern 
or rhythms differ from 24 h (Bulla et al. 2016). Secondly, the 
accuracy of incRscan will also depend on the difference 
between maximum incubation temperature and environ-
mental temperature. Small differences between them will lead 
to subtle temperature changes after the incubating individual 
enters and leaves the nest, affecting the detectability of such 
events. The validation presented here encompasses a wide 
range of values for the difference between nest and environ-
mental temperatures (Supplementary material Appendix 3  
Table A1) but further tests would need to be carried out to 
evaluate the accuracy of incR in hot environments. Under 
these conditions, apart from maximising the percentage of 
agreement between incRscan incubation scores and the 
data set for validation, researchers should pay careful atten-
tion to maximise agreement in other incubation metrics of 
such as number of incubation off-bouts. Comparing the 
performance of incRscan for data collected on the same 
species at different latitudes (and thus with likely large or 
small differences between environmental and nest tempera-
tures) might provide valuable information on the general 
applicability of incRscan.

Conclusions

We have developed a method that accurately extracts behav-
ioural and temperature information from series of incubation 

Figure 3. Correlations between video-footage and incR estimates 
of incubation attendance (percentage of daily time spent in the nest 
(A), number of daily off-bouts (B) and daily mean off-bout dura-
tion in minutes (C). Colour codes represent individual nest-boxes 
and each point illustrates one day of incubation. Dashed black line 
was drawn following an intercept of 0 and a slope of 1.
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temperature recordings. This method can potentially be used 
to study incubation in a broad range of species and ecologi-
cal contexts and, therefore, assist the wide community of 
researchers studying incubation in the wild. For different spe-
cies and environments, validation will be needed but we also 
provide detailed practical advice to carry out such validation. 
In order to aid its application, two appendices show in detail 
how researchers can easily adapt and calibrate this method to 
their data.

Acknowledgements – Barbara Helm and Davide Dominoni offered 
the inspiration to write this manuscript: without their support 
and guidance none of this work would have been possible. Robyn 
Womack and Natalie van Dis very kindly let me use their great 
tit data from Glasgow and the Netherlands. They also tested the 
package in multiple occasions and provided thorough technical 
advice. Field data collection was significantly eased by the help of 
Davide Dominoni, Barbara Helm, Chris Pollock, Jessica Clark and 
Paul Jerem, along with many other volunteers. Many people at the 
Inst. of Biodiversity, Animal Health and Comparative Medicine of 
the Univ. of Glasgow provided very valuable advice; in particular, 
I thank Jason Matthiopoulos. I also thank Barbara Helm, Davide 
Dominoni, Natalie van Dis, Natalia Bravo-Santano, Andreas Nord, 
Caren Cooper, Wesley Hochachka and two anonymous reviewers 
for providing very valuable comments on an earlier draft of this 
manuscript.
Funding – This work was supported by a postgraduate scholarship 
from Iberdrola Foundation and by the Biotechnology and Biological 
Sciences Research Council-funded South West Biosciences Doctoral 
Training Partnership (BB/M009122/1).
Conflicts of interest – PC-L declares no conflict of interest.

References

Ardia, D. R., Pérez, J. H. and Clotfelter, E. D. 2010. Experimental 
cooling during incubation leads to reduced innate immunity 
and body condition in nestling tree swallows. – Proc. R. Soc. 
B 277: 1881–1888.

Berntsen, H. H. and Bech, C. 2016. Incubation temperature 
influences survival in a small passerine bird. – J. Avian Biol. 47: 
141–145.

Bueno-Enciso, J., Barrientos, R. and Sanz, J. J. 2017. incubation 
behaviour of blue Cyanistes caeruleus and great tits Parus major 
in a Mediterranean habitat. – Acta Ornithol. 52: 21–34.

Bulla, M., Valcu, M., Dokter, A. M., Dondua, A. G., Kosztolányi, 
A., Rutten, A., Helm, B., Sandercock, B. K., Casler, B., Ens, 
B. J., Spiegel, C. S., Hassell, C. J., Küpper, C., Minton, C., 
Burgas, D., Lank, D. B., David, C., Loktionov, E. Y., Nol, E., 
Kwon, E., Smith, F., Gates, H. R., Vitnerová, H., Prüter, H., 
James, A., Clair, J. J. H. S., Lamarre, J., Rausch, J., Reneerkens, 
J., Conklin, J. R., Burger, J., Bêty, J., Coleman, J. T., Figuerola, 
J., Hooijmeijer, J. C. E. W., Alves, J. A., Smith, J. A. M., Koi-
vula, K., Gosbell, K., Exo, K., Niles, L., Koloski, L., Mckinnon, 
L., Praus, L., Giroux, M., Sládeček, M., Boldenow, M. L., 
Goldstein, M. I., Šálek, M., Senner, N., Rönkä, N., Lecomte, 

N., Gilg, O., Vincze, O., Johnson, O. W., Smith, P. A., 
Woodard, P. F., Pavel, S., Battley, P. F., Bentzen, R., Lanctot, R. 
B., Porter, R., Saalfeld, S. T., Freeman, S., Brown, S. C., 
Yezerinac, S., Székely, T., Montalvo, T., Piersma, T., Loverti, V., 
Pakanen, V., Tijsen, W. and Kempenaers, B. 2016. Unexpected 
diversity in socially synchronized rhythms of shorebirds.  
– Nature 540: 109–113.

Capilla-Lasheras, P. 2018. Data from: incR: a new R package to 
analyse incubation behaviour. – Dryad Digital Repository, 
<http://dx.doi.org/10.5061/dryad.56hk7t5>.

Coe, B. H., Beck, M. L., Chin, S. Y., Jachowski, C. M. B. and 
Hopkins, W. A. 2015. Local variation in weather conditions 
influences incubation behavior and temperature in a passerine 
bird. – J. Avian Biol. 46: 1–10.

Conway, C. J. and Martin, T. E. 2000. Evolution of passerine 
incubation behavior: influence of food, temperature, and nest 
predation. – Evolution 54: 670–685.

Cooper, C. B. and Mills, H. 2005. New software for quantifying 
incubation behavior from time-series recordings. – J. Field 
Ornithol. 76: 352–356.

Cooper, C. B. and Voss, M. A. 2013. Avian incubation patterns reflect 
temporal changes in developing clutches. – PLoS One 8: e65521.

Durant, S. E., Hopkins, W. A., Hepp, G. R. and Walters, J. R. 
2013. Ecological, evolutionary, and conservation implications 
of incubation temperature-dependent phenotypes in birds.  
– Biol. Rev. 88: 499–509.

DuRant, S. E., Carter, A. W., Denver, R. J., Hepp, G. R. and 
Hopkins, W. A. 2014. Are thyroid hormones mediators of 
incubation temperature-induced phenotypes in birds? – Biol. 
Lett. 10: 20130950.

Griffith, S. C., Mainwaring, M. C., Sorato, E. and Beckmann, C. 
2016. High atmospheric temperatures and “ambient incuba-
tion” drive embryonic development and lead to earlier hatching 
in a passerine bird. – R. Soc. Open Sci. 3: 150371.

Hepp, G. R., Kennamer, R. A. and Johnson, M. H. 2006. Maternal 
effects in wood ducks: incubation temperature influences incuba-
tion period and neonate phenotype. – Funct. Ecol. 20: 307–314.

Londoño, G. A., Levey, D. J. and Robinson, S. K. 2008. Effects of 
temperature and food on incubation behaviour of the northern 
mockingbird, Mimus polyglottos. – Anim. Behav. 76: 669–677.

Nord, A. and Nilsson, J.-Å. 2011. Incubation temperature affects 
growth and energy metabolism in blue tit nestlings. – Am. Nat. 
178: 639–651.

Pollock, C., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. and 
Dominoni, D. M. 2017. Integrated behavioural and stable 
isotope data reveal altered diet linked to low breeding success 
in urban-dwelling blue tits (Cyanistes caeruleus). – Sci. Rep. 7: 
5014.

Smith, J. A., Cooper, C. B. and Reynolds, S. J. 2015. Advances in 
techniques to study incubation. – In: Deeming, D. C. and 
Reynolds, S. J. (eds), Nests, eggs, and incubation: new ideas 
about avian reproduction. Oxford Univ. Press, p. 312.

Spoelstra, K., van Grunsven, R. H. A., Donners, M., Gienapp, P., 
Huigens, M. E., Slaterus, R., Berendse, F., Visser, M. E. and 
Veenendaal, E. 2015. Experimental illumination of natural 
habitat – an experimental set-up to assess the direct and indirect 
ecological consequences of artificial light of different spectral 
composition. – Phil. Trans. R. Soc. B 370: 20140129.

Supplementary material (Appendix JAV-01710 at < www.
avianbiology.org/appendix/jav-01710 >). Appendix 1–3.


