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Abstract 15 

For proton exchange membrane fuel cells (PEMFCs), the distribution of reactant streams 16 

in the reactor is critical to their efficiency. This study aims to investigate the optimal design of 17 

the inlet/outlet flow channel in the fuel cell stack with different geometric dimensions of the 18 

tube and intermediate zones (IZ). The tube-to-IZ length ratio, the IZ width, and the tube 19 

diameter are adjusted to optimize the geometric dimensions for the highest pressure uniformity. 20 

Four different methods, including the Taguchi method, analysis of variance (ANOVA), neural 21 

network (NN), and multiple adaptive regression splines (MARS), are used in the analyses. The 22 

results indicate the tube diameter is the most impactive one among the three factors to improve 23 

the pressure uniformity. The analysis suggests that the optimal geometric design is the tube-to-24 

IZ length ratio of 9, the IZ width of 14 mm, and the tube diameter of 9 mm with the pressure 25 

uniformity of 0.529. The relative errors of the predicted pressure uniformity values by NN and 26 

MARS under the optimal design are 1.62% and 3.89%, respectively. This reveals that NN and 27 

MARS can accurately predict the pressure uniformity, and are promising tools for the design of 28 

PEMFCs.  29 

Keywords: Fuel cell stack; pressure uniformity; Taguchi method; Analysis of variance 30 

(ANOVA); Neural network (NN); Multivariate adaptive regression splines (MARS).  31 
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Nomenclature 32 

𝐵𝑖(𝑥) Basic function 33 

𝐶0 Inertial resistance 34 

𝐶𝑖 Constant coefficient 35 

𝐷𝜔 Cross-diffusion term 36 

d Penalizing parameter 37 

E Error function 38 

𝑓(𝑥𝑖) Predicted value 39 

𝐺̃𝑘 Generation of 𝑘 40 

𝐺𝜔 Generation of 𝜔 41 

In Inlet 42 

K Permeability 43 

𝑘 Turbulent kinetic energy 44 

𝑀 Number of BFs 45 

𝑁 Number of observations 46 

Out Outlet 47 

P Pressure (Pa) 48 

∆𝑃𝑡𝑜𝑡𝑎𝑙 Total pressure drop (Pa) 49 

∆𝑃𝑛 Pressure drop of the nth cell (Pa) 50 

∆𝑃𝑖𝑛𝑙𝑒𝑡 Pressure drop in the inlet channel (Pa) 51 

∆𝑃𝑜𝑢𝑡𝑙𝑒𝑡 Pressure drop in the outlet channel (Pa) 52 

𝑆𝑘 Source term 53 

𝑆𝑤 Source term 54 

T Transpose matrix 55 

𝑌𝑘 Dissipation of 𝑘 56 
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𝑌𝜔 Dissipation of 𝜔 57 

𝑦 Pressure uniformity 58 

𝑦𝑗̂ Output value 59 

𝑦𝑗 Desired output value. 60 

Greek letters 61 

𝛾 Porosity 62 

𝜏 Stress tensor (N∙m-2) 63 

𝜇 Viscosity coefficient (kg∙m-1∙s-1) 64 

𝜇𝑇 Scalar turbulence viscosity coefficient 65 

𝜌 Fluid density (kg∙m-1) 66 

𝜔 Specific dissipation rate 67 

𝜈⃑ Velocity vector (m∙s-1) 68 

𝜎𝑘 Closure coefficients of 𝑘 69 

𝜎𝜔 Closure coefficients of 𝜔 70 

  71 
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1. Introduction 72 

Proton exchange membrane fuel cells (PEMFCs) are a device that generates electricity and 73 

heat by the electrochemical reactions of hydrogen and air. Because of the high energy efficiency, 74 

no pollution, fast startup time, and low operation temperature, PEMFCs have been considered 75 

as a potential power source [1]. In practical applications, a PEMFC connects multiple cells into 76 

a stack to satisfy the required wattage supply. A lot of studies have been devoted to the analysis 77 

of flow field and flow channel design in the PEMFC system. Operating conditions, stack 78 

mechanisms, and uneven flow distributions all have great influences on the uniformity of the 79 

cell voltage [2-5]. Among these factors, the uniform distribution of the reaction gas in each cell 80 

is quite critical which can greatly improve the fuel cell efficiency and lifetime. Therefore, it is 81 

very important to understand the influence of flow uniformity on fuel cell efficiency and energy 82 

loss to improve fuel cell performance [6]. 83 

Many researchers have used the Taguchi method to study fuel cell effectiveness. The 84 

Taguchi method is an experimental method that can help the design of fuel cells by analyzing 85 

the effects of different factors. Accordingly, the most suitable or optimal design can be 86 

determined. This method can save a lot of time and cost which has been widely used in different 87 

research fields [7-10]. Wu et al. [11] combined the Taguchi method with the three-dimensional 88 

PEMFC model to achieve the optimal placement of rectangular cylinders in the channel. They 89 

also used the Taguchi method to find the best experimental combination of the factors and used 90 

the finite element method to simulate the migration phenomenon and electrochemical reaction. 91 

Karthikeyan [12] employed a standard orthogonal array of the Taguchi method and considered 92 

various landing-to-channel width ratios of the interdigitated flow channels to optimize the 93 

pressure and temperature distributions in the cell. 94 

The Taguchi method can also be used together with the neural network (NN) in fuel cell 95 

research to reduce the number of experiments or simulations and achieve the goal efficiently 96 
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[13]. A well-designed NN model has excellent multi-dimensional mapping capabilities and can 97 

accurately represent the complex relationship between input and output spaces [14]. It has been 98 

extensively used in various research fields of science and technology. The combination of the 99 

Taguchi method and NN technology can successfully solve some problems that the Taguchi 100 

method fails to obtain the true optimal value when it is employed purely in the analysis [15, 101 

16]. By the combination of the Taguchi method NN, Wu et al. [17] performed an analysis of 102 

PEMFC performance to determine the optimal operation parameters such as the operating 103 

temperature, pressure, and the flow rates of reactants. Chang et al. [18] used the same method 104 

with a numerical PEMFC model to predict the optimal working power of an unknown PEMFC. 105 

Chang [13] also combined the Taguchi method and the genetic algorithm NN model to propose 106 

a new method for estimating the output voltage of a PEMFC. Yu et al. [19] utilized the Taguchi 107 

method with NN to determine the maximum power output of a PEMFC from the experimental 108 

data. 109 

Multivariate adaptive regression splines (MARS) is another commonly used classification 110 

technique in the research of data analysis. It is a nonlinear and nonparametric regression 111 

statistical method. This method does not need any assumption for the association between 112 

dependent and independent variables [20, 21], which can model nonlinearities and interactions 113 

between variables mechanically for higher-dimensional data analysis [22]. In some 114 

investigations, researchers have tried to combine MARS and neural networks in the analyses 115 

[23-25]. Adoko et al. [26] established a model that predicted the diameter convergence of a 116 

high-speed railway tunnel in the weak rock by the methods of MARS and artificial neural 117 

networks. Cheng et al. [27] built an evolutionary multivariate adaptive regression splines 118 

(EMARS) model which was a hybrid of MARS and artificial bee colony (ABC) to estimate the 119 

shear strength of reinforced concrete (RC) deep beams. Zhang et al. [28] successfully developed 120 

the backpropagation neural network (BPNN) and MARS models to assess pile drivability 121 
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concerning the maximum compressive stresses (MCS), maximum tensile stresses (MTS), and 122 

blow per foot (BPF). 123 

So far the researches are quite limited about the effects of geometric dimensions of inlet 124 

and outlet flow channels of a PEMFC stack on its internal flow fields. At the same time, no 125 

researchers have applied the MARS to PEMFC. Therefore, this study aims to investigate the 126 

variation of the flow field in a fuel cell stack with different geometric dimensions of inlet and 127 

outlet channels by comprehensively combining computational fluid dynamics (CFD), Taguchi 128 

method, ANOVA, NN, and MARS. A stack consisting of 30 cells is considered to determine 129 

the optimal geometric sizes of the inlet and outlet channels for improving the pressure 130 

uniformity. The results can provide important insights and references for the promotion of fuel 131 

cell stack performance. 132 

2. Mathematical formulation 133 

2.1. Schematic of PEMFC stack model 134 

The model of the PEMFC stack has 30 cells and consists of the tubes, intermediate zones 135 

(IZ), and inlet/outlet channels, as shown in Fig. 1a, in which the flow channels in the stack are 136 

approximated by porous zones. The porous medium model is used in the simulations since it 137 

can simulate the flow characteristics in the fuel cell stack efficiently without the loss of 138 

generality [29, 31-33], in which the permeability of porous medium can indicate the pressure 139 

drop in the flow channels. The tube and the IZ represent the end plate, as depicted in Figs. 1c-140 

d, and the IZs at the inlet and outlet sections are expansive and contractive, respectively. The 141 

geometry of the tube and the IZs at the inlet and outlet sections are exactly equal. The thickness 142 

of each cell is 0.800 mm and the distance between adjacent cells is 0.635 mm. The three-143 

dimensional fuel cell model was built by SolidWorks 2018. In the simulations, the internal fluid 144 

flow is assumed to be pure gas flow only, and the transport of liquid water is ignored. The 145 

effects of electrochemical reaction and heat transfer on the fluid flow are neglected for 146 
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simplification. The complicated texture of the flow channel is replaced by a narrow long straight 147 

plate and treated as porous medium zones. 148 

2.2. Theoretical model and simulation 149 

The gas flow is assumed to be incompressible turbulent flow because the Reynolds number 150 

in the flow channel is above 4000. The effect of gravity is ignored, and the no-slip condition is 151 

employed on the walls. The fuel cell stack is divided into two parts: the non-porous zones and 152 

the porous medium zones. The governing equations in the non-porous zones are [30] 153 

𝛻 ∙ (𝜌𝜈⃑) = 0 (1) 

𝜌 𝜈⃑ ∙ 𝛻 𝜈⃑ = −𝛻𝑃 + 𝛻 ∙ [𝜇(𝛻 𝜈⃑ +(𝛻 𝜈⃑)𝑇)] (2) 

where ρ is the fluid density, ν⃑⃑ is the air velocity, P is the pressure, and μ is the viscosity. In 154 

the porous medium zones, the governing equations are [31, 32] 155 

𝛻 ∙ (𝛾𝜌𝜈⃑) = 0 (3) 

𝛻 ⋅ (𝛾𝜌𝜈⃑𝜈⃑) = −𝛾𝛻𝑃 + 𝛻 ⋅ (𝛾𝜏) − (
𝛾2𝜇

𝐾
𝜈⃑ +

𝛾3𝐶0

2
𝜌|𝜈|𝜈⃑) (4) 

where 𝛾  is the porosity, 𝜏 is the viscous stress tensor, 𝜇  is the viscosity, 𝐾  is the 156 

permeability, and 𝐶0  is the inertial resistance. Permeability and inertial resistance were 157 

obtained through a trial and error process from the experiment data correlating the pressure and 158 

volume flow rate. After trial and error, the permeability and inertial resistance are 9×108 and 159 

100, respectively. In order to simulate the turbulent flow, the commercial software ANSYS 160 

2019 R3 was used to perform the simulations in which the shear stress transport (SST) 𝑘 − 𝜔 161 

turbulence model was employed. The SST 𝑘 − 𝜔 model has a similar form to the standard 162 

𝑘 − 𝜔 model and can solve transport equations for the turbulent kinetic energy 𝑘 and the 163 

specific dissipation rate 𝜔 as follows: 164 

𝜌(𝜈⃑ ⋅ 𝛻)𝑘 = 𝛻 ∙ [(𝜇 + 𝜇𝑇𝜎𝑘)𝛻𝑘] + 𝐺̃𝑘 − 𝑌𝑘 + 𝑆𝑘 (5) 

𝜌(𝜈⃑ ⋅ 𝛻)𝜔 = 𝛻 ∙ [(𝜇 + 𝜇𝑇𝜎𝜔)𝛻𝜔] + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝑤 (6) 

In these equations, 𝐺̃𝑘  represents the generation of turbulence kinetic energy due to mean 165 
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velocity gradients, and 𝐺𝜔 stands for the generation of 𝜔. 𝑌𝑘 and 𝑌𝜔 are respectively the 166 

dissipation of 𝑘 and 𝜔 due to turbulence, 𝑆𝑘  and 𝑆𝑤 are user-defined source terms, and 167 

𝐷𝜔 is the cross-diffusion term. 168 

The constants in the SST 𝑘 − 𝜔 turbulence model were the same as the default values 169 

used in ANSYS 2019 R3. A pressure-based solver was chosen from the options offered in 170 

ANSYS, where a finite volume method was used to discretize the governing equations. A 171 

coupled scheme was utilized for pressure-velocity coupling calculations. The spatial 172 

discretization was conducted by the green-gauss node based on gradient and the second-order 173 

upwind method was used for solving the pressure and momentum. TC 174 

The grid tests for the numerical results were carried out before executing simulations. Four 175 

grid numbers of Mesh 1 (329,755), Mesh 2 (551,904), Mesh 3 (756,032), and Mesh 4 176 

(1,751,332) were tested, and the appropriate grid number was determined by comparing the 177 

volumetric flow rates at the inlet with the experimental data. For the case of a single cell, the 178 

simulation results were 0.197, 0.187, 0.183, and 0.180 L/min for the four grid numbers, 179 

respectively, and the experimental data was 0.186 L/min. The numerical results converged 180 

gradually with increasing grid number, while the time consumption increased greatly, 181 

especially for the case of Mesh 4. The results showed that Mesh 2 was sufficient to obtain a 182 

reasonable prediction with a relative error of less than 1% in comparison with the experimental 183 

data. The comparisons were also performed for the other three flow rates with excellent 184 

agreements,  as illustrated in Fig. 2. For the case of a 10-cell stack, the measured flow rate 185 

was 4.85 L/min at the inlet pressure of 8.71 kPa. The simulation result was 5.32 L/min which 186 

was also in good agreement with a relative error of less than 10%. Similar results were also 187 

observed for the other three cases, as shown in Fig. 2 at different flow rates. Accordingly, Mesh 188 

2 was employed to perform the present simulations. The comparisons in Fig. 2 also intrinsically 189 

fulfilled the numerical validation. 190 

2.3. Taguchi method 191 
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The Taguchi method is an efficient and cost-saving technique for experiment design. It is 192 

characterized by an orthogonal array that screens the experiments to be performed without 193 

compromising any main or interacting effect of the parameters. The orthogonal array contains 194 

factors and levels, while the signal-to-noise ratio (S/N ratio) is made and used to assort the 195 

experimental results. Three different forms of S/N ratios, including the nominal-the-better (NB), 196 

the larger-the-better (LB), and the smaller-the-better (SB), are defined in the method [7]. The 197 

sensitivity of the parameters on the physical behavior can be figured out clearly by employing 198 

a parameter of signal-to-noise (S/N) ratio. In the S/N ratio, the signal represents the desired real 199 

value, while noise designates the undesired factors in measured values [10]. The objective of 200 

the present study is to maximize the pressure uniformity in the fuel cell stack. Thus, the LB 201 

criterion is adopted and the S/N ratio in terms of pressure uniformity is written as: 202 

𝑆

𝑁
= −10 log10 (

1

𝑦2
) (7) 

where y is a dimensionless value which means the pressure uniformity in the fuel cell stack, 203 

and is defined as [33] 204 

𝑦 =
∆𝑃𝑛

∆𝑃𝑡𝑜𝑡𝑎𝑙
=

∆𝑃𝑡𝑜𝑡𝑎𝑙 + ∆𝑃𝑖𝑛𝑙𝑒𝑡 − ∆𝑃𝑜𝑢𝑡𝑙𝑒𝑡

∆𝑃𝑡𝑜𝑡𝑎𝑙
= 1 +

∆𝑃𝑖𝑛𝑙𝑒𝑡 − ∆𝑃𝑜𝑢𝑡𝑙𝑒𝑡

∆𝑃𝑡𝑜𝑡𝑎𝑙
 

(8) 

where ∆𝑃𝑛 is the pressure drop of the nth cell in the stack, ∆𝑃𝑡𝑜𝑡𝑎𝑙 is the total pressure drop 205 

of the stack, ∆𝑃𝑖𝑛𝑙𝑒𝑡 is the pressure drop in the inlet channel, and ∆𝑃𝑜𝑢𝑡𝑙𝑒𝑡 is the pressure drop 206 

in the outlet channel. 207 

The pressure drop affects the pressure uniformity and can be used to evaluate the fluid flow 208 

distribution within the channel qualitatively [33]. Thus, pressure uniformity for optimization is 209 

used instead of flow distribution, while they both may result in the same result. According to 210 

the definition of Eq. (8), the ideal pressure uniformity should approach one as close as possible. 211 

2.4. Operating conditions 212 

In the design of the tube and IZ, three control factors are considered: the tube-to-IZ length 213 
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ratio, the IZ width, and the tube diameter, as shown in Fig 1b, which are denoted by Factors A, 214 

B, and C, respectively. The ranges of sizes for designing the geometry of the tube and IZ are 215 

based on the practical sizes of PEMFC. The total length of the tube and IZ are 140 mm, and the 216 

IZ length is no more than 40 mm. The IZ width is less than 20 mm of the width of the inlet/outlet 217 

channel. The tube diameter is 12 mm which is less than the height of the inlet/outlet channel. 218 

Each factor consists of four levels as listed in Table 2. For the Taguchi method, a typical 219 

orthogonal array L16 (3
4) with 16 runs is given in Table 3. 220 

2.5. Data analysis 221 

The required network can be acquired using the neural network (NN) in the prediction 222 

function, and the multivariate adaptive regression splines (MARS) models are calculated with 223 

the regression function of the software PolyAnalyst 6.0. 224 

2.5.1. Neural network (NN) 225 

NN is a non-linear statistical data modeling instrument. It is usually optimized through a 226 

learning method based on mathematical statistics. There are many kinds of NN [34]. The 227 

backpropagation neural network (BPNN) was employed in this study. The BPNN is an 228 

algorithm for error backpropagation training with a multi-layer network structure that has three 229 

layers of network configuration: an input layer, a hidden layer, and an output layer. It is mainly 230 

composed of two stages which are the activation function and the update of weight values. The 231 

BPNN is fitted using the steepest descent method and the network connection weight values 232 

and thresholds are automatically adjusted by the backpropagation of the output error. 233 

Accordingly, the desired error could be achieved by minimizing the error value of the network. 234 

It aims to learn the parameters that can minimize the mean square error, and the defined error 235 

function 𝐸 is expressed as [35, 36] 236 

𝐸 =
1

2
∑(𝑦𝑗̂−𝑦𝑗)

2
𝑙

𝑗=1
 

(9) 

where 𝑦𝑗̂ is the output value and 𝑦𝑗 is the target value. The brief procedures are described as 237 
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follows [37] and also in the flowchart shown in Fig. 3: 238 

I. Compare the output data with the target value and calculate the error in each neuron. 239 

II. For each neuron, determine how much the output must be adjusted to be lower or higher 240 

to match the target value. 241 

III. Modify the weight value of each neuron to correct errors and improve accuracy. 242 

IV. Give high importance to neurons connected by the stronger weight value. 243 

V. Repeat the above steps until the final output error reached the target value. 244 

2.5.2. Multivariate adaptive regression splines (MARS) 245 

MARS is a well-known nonparametric regression method proposed by Friedman [38]. In 246 

comparison with the linear regression model, MARS can model nonlinearities and interactions 247 

between variables automatically. The MARS model is built into a spline in multi-dimension 248 

space and the spline is a continuous piecewise polynomial function [39]. It is expressed by a 249 

weighted value of basic functions (BFs) as the following equation 250 

𝑓(𝑥𝑖) = ∑ 𝐶𝑖𝐵𝑖(𝑥)𝑘
𝑖=1  , (10) 

where k is the total number of terms in the function, 𝐶𝑖 is a constant coefficient estimated by 251 

the least-squares method, and 𝐵𝑖(𝑥) is the basic function. The BFs usually contains three items. 252 

One is the constant coefficient, another is a hinge function such as max (0, x-constant) or max 253 

(0, constant-x), and the other is the product of two or more hinge functions. The notation max(·,·) 254 

denotes the maximum of two given values and x is the knot. MARS builds a model in two 255 

phases. In the first step, the knot in a hinge function is selected from the predictor values of 256 

observations which are assumed to be a set of candidate knots. MARS gradually adds suitable 257 

knots and the candidate knot that minimizes the fitting error is the most suitable knot in each 258 

round of knot addition. At the end of the first step, it usually builds an overfitted model that has 259 

a good fit to build the model but does not generalize well to new data. Therefore, the second 260 

step is to prune redundant BFs in the overfitted model. The generalized-cross-validation (GCV) 261 

technique is used to delete the BFs that supplies the lowest contributions. The GCV formula is 262 
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GCV =

1
𝑁

∑ [𝑦𝑖𝑓(𝑥𝑖)]2𝑁
𝑖=1

[1 −
𝑀 + 𝑑 × (𝑀 − 1)/2

𝑁 ]
2
 

(11) 

where M is the number of BFs, N is the number of observations, d is the penalizing parameter, 263 

and 𝑓(𝑥𝑖) is the predicted value. Accordingly, the GCV value influences the number of BFs 264 

along with the number of knots and can reduce model overfitting. The relative importance of 265 

the factor can be produced by observing the GCV reduction when a factor is removed from the 266 

model after the model is determined. 267 

3. Results and discussion 268 

3.1. Factor analysis in the Taguchi method 269 

The pressure uniformity profile for the 16 cases in Table 3 is shown in Fig. 4a, and the 270 

simulation results are carried into the Taguchi optimization method. The results show that Case 271 

7 has the highest pressure uniformity of 0.5224, whereas Case 16 has the lowest pressure 272 

uniformity of 0.375. Eq. (7) is used to determine the signal-to-noise (S/N) ratio of each case, 273 

and the S/N ratios of Case 7 and Case 16 are -5.6406 and -8.5191, respectively. The S/N ratios 274 

of the 16 cases are shown in Fig. 4b, while the distributions of the mean S/N ratios of the three 275 

factors in different levels based on Table 2 are shown in Fig. 4c. Consider the mean S/N ratio 276 

of Factor A in Level 1, its value is the average of the S/N ratio for Factor A at Level 1, namely, 277 

the average of -8.0501 (Case 1), -7.1649 (Case 2), -6.5507 (Case 3), and -5.7052 (Case 4) [10]. 278 

Factors B and C at each level follow the same step to obtain the mean S/N ratios. The sensitivity 279 

of the pressure uniformity to the three factors within the investigated levels can be figured out 280 

by the maximum mean S/N ratio of the factor minus the minimum one, namely, the effect. A 281 

higher effect value of a factor implies the role played by the factor is more significant on the 282 

pressure uniformity because of the higher sensitivity of the pressure uniformity to the factor 283 

variation. The radar chart of the effect values of the three factors is shown in Fig. 5a. It depicts 284 

that the effect values are ranked by the tube diameter (Factor C, 2.688) > the tube-to-IZ length 285 
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ratio (Factor A, 0.213) > the IZ width (Factor B, 0.142). This implies that the IZ width almost 286 

plays no role in the pressure uniformity due to its very small effect value. 287 

3.2. Analysis of variance (ANOVA) 288 

ANOVA analysis is generally used to estimate and test the influence of the different factors. 289 

Here ANOVA is used to identify the important factor that could affect the pressure uniformity. 290 

The results of ANOVA are shown in Table. 4. The F value in ANOVA is the variance of the 291 

group means divided by the mean of the within-group variances. The higher the F value of the 292 

factor is, the greater the impact of the object value is [7]. From the critical value table of 𝐹𝛼 (𝛼 293 

is the false-rejection probability) under 3° of freedom of sum of the square of treatment, and 294 

12° of freedom of sum of the square of error, it gives F0.1 = 2.61, F0.05 = 3.49, and F0.01 = 5.95. 295 

Accordingly, the conditions of F < 2.61, 2.61 < F < 3.49, and F > 5.95 designate slight, mild, 296 

and high significant influences, respectively. The F value of Factor C is 2434.73 which is the 297 

highest among the three factors. This reflects that the tube diameter has a large influence on the 298 

pressure uniformity. The F values of Factors A and B are 19.15 and 4.0, respectively, indicating 299 

that their influence on the pressure uniformity is slight and mild. For the order of factor effect, 300 

it is the same as the Taguchi method, that is, the tube diameter (Factor C, 2434.73) > the tube-301 

to-IZ length ratio (Factor A, 19.15) > the IZ width (Factor B, 4.0). The difference between the 302 

results of the Taguchi method and ANOVA analysis is the importance of factor C to the pressure 303 

uniformity. In the Taguchi method, only Factor C is more important than Factor A. However, 304 

the effect of Factor C is far more important than Factors A and B in ANOVA analysis. 305 

3.3. Optimal combination 306 

The optimal combination of the three factors to pressure uniformity can be determined 307 

from the results shown in Table 4 and Fig. 4c. Scilicet, the tube-to-IZ length ratio is 9 (Level 308 

1), the IZ width is 14 mm (Level 1), and the tube diameter is 9 mm (Level 4). This combination 309 

is not included in the orthogonal array of the Taguchi method (Table 3), so the simulation for 310 

this combination is performed additionally. The simulation result of the pressure uniformity for 311 
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this combination is found to be 0.529. Comparing with all other cases in Fig. 4a, this 312 

combination exhibits the optimal operation in the 16 cases. Therefore, the use of the Taguchi 313 

method in optimizing the operating parameters for maximizing the pressure uniformity shows 314 

valuable results. Comparing with Case 7 which is the best operation in the 16 cases, the pressure 315 

uniformity can be enhanced. Among the 16 cases of the orthogonal array, Case 16 has the lowest 316 

pressure uniformity in comparison with the optimal combination recommended by the Taguchi 317 

method. 318 

The optimal case is compared with Case 16 to find the difference in the physical 319 

phenomenon. The velocity contours of the two cases are shown in Figs. 6a-b, and the 320 

corresponding pressure contours are shown in Figs. 6c-d. Furthermore, the detailed pressure 321 

and mean velocity profiles along the inlet and outlet channels are shown in Fig. 7. In these two 322 

cases, the highest pressure occurs at the end of the inlet channel, whereas the lowest pressure 323 

occurs at the front end of the outlet channel. The total pressure drop of Case 16 is smaller than 324 

that of the optimal case. In the inlet channel, the pressure gradually increases, while it decreases 325 

gradually in the outlet channel. The velocity distribution depends on the pressure distribution 326 

in the inlet and outlet channel. The highest velocity occurs in the outlet area for all 327 

configurations, while the lowest velocity occurs in the dead-end area. 328 

The flow patterns of the inlet and outlet channels of the two cases are compared and 329 

illustrated. The top and side views of the inlet channel are shown in Fig. 8, and those of the 330 

outlet channel are shown in Fig. 9. As shown in Fig. 8, when the flow enters the IZ from the 331 

tube, stronger recirculation zones in Case 16 are observed because its IZ is longer and the tube 332 

diameter is smaller than the width of IZ. This reduces the magnitude of fluid flow into the 333 

peripheral IZ. The large recirculation zones may redirect the fluid affecting the wall. There is 334 

an obvious vortex located at the intersection of the tube and the IZ. It causes an unstable flow 335 

in the IZ and affects the flow at the extremity of the inlet channel [40]. For the optimal case, 336 

the tube diameter is closer to the IZ width, so only small recirculation zones occur in the inlet 337 



 15 

channel. The fluid flowing towards the IZ shows smaller recirculation zones and backflow. A 338 

similar situation was also found where the proper flared tube design could improve the 339 

uniformity of the airflow [41]. For the top and side view of the outlet channel in Fig. 9, it is 340 

noticed that the flow field in the outlet channel is not uniform due to the presence of 341 

recirculation zones in the vicinity of some outlets of cell channels [42]. When the fluid enters 342 

the outlet channel, the distribution is less uniform in Case 16. This arises from the fact that the 343 

fluid is dispersed into the recirculation zones when entering the IZ from the tube. Therefore, 344 

the velocity of the fluid entering the end of the stack decreases. It leads to an unevenly 345 

distributed fluid flow at the extremity of the channel when the fluid is flowing from the cell 346 

channel to the outlet channel. Compare with Case 16, due to the smaller recirculation zones in 347 

the optimal case, the fluid flow is more concentrated when it enters the stack and can be 348 

effectively transferred to the extremity of the channel. Therefore, when the fluid flow enters the 349 

outlet channel from the inlet channel, it is more concentrated and stable. 350 

3.4. Data analysis in NN and MARS 351 

The database for the data analysis is the results obtained by the Taguchi method, and the 352 

data are divided into training data and test data of 70% and 30%, respectively. The tube diameter, 353 

the tube-to-IZ length ratio, and the IZ width are set to the three input parameters, and the 354 

pressure uniformity is set to the output parameter. In practice, the training algorithm uses a one-355 

layer network with resilient propagation (RPROP) [43], and the Elliot function [44] and the 356 

layer Sigmoid are used in the hidden layer and output layer, respectively. Fig. 10a shows the 357 

architecture of the neural network to illustrate the different geometry of the inlet channels for 358 

the pressure uniformity. The training process in NN stops when the error value between training 359 

and validation data is less than 0.005. As shown in Fig. 10b, the training at 200 consecutive 360 

epochs stops when the error value between training and validation data is less than 0.005. The 361 

regression plots of the NN model with 35 hidden neurons are shown in Fig. 11a. One can see a 362 

good fit between the predicted outputs and the targets (actual outputs) during training phases 363 
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with an NN model. The coefficient of determination (R2) between the predicted outputs and the 364 

targets is 0.975. The sensitivity of the three factors in NN is shown in Fig. 5b. The order of the 365 

importance of the three factors is the tube diameter (Factor C, 0.62) > the tube-to-IZ length ratio 366 

(Factor A, 0.201) > the IZ width (Factor B, 0.179). This order is in line with that of the Taguchi 367 

method.  368 

For the analysis of MARS, its model and the basic functions (BFs) for predicting the 369 

pressure uniformity are listed in Table 5. Some BFs include two splines functions which 370 

indicate the model can disclose the interactions. These interactions are the most important part 371 

of the generation of an accurate model to estimate the pressure uniformity in the PEMFC [26]. 372 

The obtained MARS model is 373 

y = 0.3831 + 0.0140 × 𝐵𝐹1 − 0.0028 × 𝐵𝐹2 + 0.1572 × 𝐵𝐹3 

−0.0451 × 𝐵𝐹4 − 0.0047 × 𝐵𝐹5 + 0.0071 × 𝐵𝐹6 + 0.0125 × 𝐵𝐹7 

−0.0775 × 𝐵𝐹8 − 0.0479 × 𝐵𝐹9 

(9) 

Fig. 11b shows a good fit between the predicted output of the MARS model during training and 374 

the target (actual output). The R2 value between the predicted outputs and the targets is 0.943. 375 

The relative importance of the input variables considered in this MARS model is shown in Fig. 376 

5c. Using the GCV value, the relative importance by removing the specified variable from the 377 

MARS model can be evaluated. The results show that the influences of the factors are ranked 378 

by the tube diameter (Factor C, 0.47) > the tube-to-IZ length ratio (Factor A, 0.45) > the IZ 379 

width (Factor B, 0.07). The values reflect that the tube diameter and the tube-to-IZ length ratio 380 

are relatively important parameters in the consideration of stack design. This rank also conforms 381 

with those of the Taguchi method and NN. 382 

Although the optimal combination has been found in the Taguchi method, it should be 383 

noted that the best-operating conditions may not be on the selected four levels. Therefore, the 384 

interval between each level can be divided into more levels, and the actual optimal combination 385 

can be determined more accurately [17]. In the Taguchi method, there are only four levels for 386 
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the three factors. In contrast, NN can further partition the four levels into more values and find 387 

the combinations that Taguchi does not consider. Accordingly, the four levels of the three factors 388 

in the Taguchi method are extended to seven levels in this study. Specifically, in NN, the seven 389 

levels of the tube-to-IZ length ratio include 9.0, 7.0, 5.7, 4.7, 4.0, 3.4 and 3.0, the levels of the 390 

IZ width consist of 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, and 17.0 mm, and the levels of the tube 391 

diameter comprise 7.50, 7.75, 8.00, 8.25, 8.50, 8.75, and 9.00 mm. In Figs. 12a-c, three IZ 392 

widths of 14.0, 15.5, and 17 mm are selected, and the pressure uniformity of each case is drawn 393 

into a three-dimensional graph for comparison. The results of NN show that the tube diameter 394 

has the greatest influence on the pressure uniformity of the fuel cell stack. The impacts of the 395 

tube-to-IZ length ratio and the IZ width on the pressure uniformity are subtle which exhibits no 396 

obvious change. The black dot in Fig. 12a is the highest uniformity and the optimal combination 397 

is recommended by NN. Similarly, in MARS the three parameters are expanded to more levels. 398 

Figs. 13a-c also shows the pressure uniformity distributions at the IZ widths of 14, 15.5, and 399 

17 mm in MARS. The result shows that when the tube diameter or the tube-to-IZ length ratio 400 

increases, the pressure uniformity increases. Once the IZ width increases, all areas with higher 401 

uniformity decreases. It can also be seen that the tube diameter is still the most influential factor 402 

on the pressure uniformity. 403 

Table 6 compares the results of the Taguchi method, NN, and MARS. The sensitivity 404 

analysis points out that the tube diameter is the key factor in affecting the pressure uniformity. 405 

The three different methods all suggest that the optimal combination is the tube-to-IZ length 406 

ratio of 9, the IZ width of 14 mm, and the tube diameter of 9 mm. NN and MARS also predict 407 

the pressure uniformity under the optimal combination, and their relative errors between the 408 

predictions and the simulation are 1.62 % and 3.89 %, respectively, showing that both NN and 409 

MARS can successfully predict the pressure uniformity in the fuel cell stack. 410 

4. Conclusions 411 
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The optimal design of tube and intermediate zones for a PEM fuel cell stack with 30 cells 412 

has been investigated in this work. The influences of the tube-to-IZ length ratio, the IZ width, 413 

and the tube diameter on the pressure uniformity in the fuel cell stack have also been analyzed 414 

using the Taguchi method, neural network (NN), and multiple adaptive regression splines 415 

(MARS). The results of the Taguchi method show that the importance of the three factors based 416 

on their impacts on the pressure uniformity follows the order of the tube diameter, the tube-to-417 

IZ length ratio, and the IZ width. It is found that the pressure distribution presents the highest 418 

uniformity under the combination of the tube-to-IZ length ratio of 9, the IZ width of 14 mm, 419 

and the tube diameter of 9 mm. In the Taguchi method, the F value of ANOVA also shows that 420 

the tube diameter is the most influential factor where a larger tube diameter and a smaller IZ 421 

width give rise to smaller recirculation zones and relatively stable fluid flow. Besides, a longer 422 

tube length can minimize the recirculation zones when the fluid flow enters the IZ. Hence, the 423 

recommended geometric dimensions of the Taguchi method intensify the pressure uniformity 424 

because the recirculation zones tend to be narrow and the vortex weakens. The influences of 425 

the three factors on the pressure uniformity analyzed by NN and MARS also suggest the same 426 

rank and optimal geometry as the Taguchi approach. The relative errors between the optimal 427 

predicted pressure uniformity of NN and MARS and the simulation result are 1.62 % and 3.89 428 

%, respectively, suggesting that NN and MARS are suitable tools in predicting the pressure 429 

uniformity in the fuel cell stack and thereby the fuel cell design. Overall, the present work 430 

benefits the data analysis from CFD results for the exploration of physical phenomena in 431 

PEMFC which could save the time and cost of simulation in the future. 432 
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Table 1 559 

Literature studies of PEMFCs with optimization methodology. 560 

Major research focus Optimization methodology Important finding Ref. 

Using rectangular cylinders to Analyze the 

performance of PEMFCs in the channel under 

reasonable pressure drop. 

Taguchi method The maximum power density of the optimal 

configuration design parameters is 0.69 W cm−2. [11] 

Optimization of design and operating 

parameters on the 25 cm2 electrode surface 

active area of the PEMFC was carried out. 

Taguchi method The maximum power density for optimized parameters 

of PEMFC obtained by using Minitab 17 was 0.406 

W/cm2 and from the CFD model it was 0.408 W/cm2. 
[12] 

Estimate the output voltage of PEM fuel cells. Genetic algorithm neural 

networks, Taguchi method 

Experiment results of PEMFC are employed to govern 

the factors’ value for GANN model optimizing. [13] 

Analysis numerous parameters affecting the 

PEMFC performance. 

Taguchi method, neural 

network 

The operating temperature and pressure are the 

significant factors in affecting the PEMFC performance. [17] 

Estimate the optimal performance of an 

unknown proton exchange membrane fuel cell. 

Taguchi method, generic 

numerical 

The optimal output power of the PEMFC model is larger 

than that of the unknown PEMFC ((Pmodel) max ≥ (Pr) 

max). 
[18] 

Determines the optimal operating parameters 

for PEMFC stack to obtain small variation and 

maximum electric power output. 

Taguchi method, neural 

network 

The PEMFC stack is operated at the current densities of 

0.4–0.8 A/cm2. Since the voltage shift is quite small, the 

efficiency would be higher. 
[19] 

Finding the best combination of operation 

conditions of a PEM fuel cell. 

Taguchi method The amount of maximum power of the optimal 

combination factor is 17.61 W. [45] 

561 
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Table 2 562 

Control factors and level settings for Taguchi method. 563 

Factor Control parameter 

Level 

1 2 3 4 

A Tube-to-IZ length ratio* 9.0 5.7 4.0 3.0 

B IZ width (mm) 14.0 15.0 16.0 17.0 

C Tube diameter (mm) 7.5 8.0 8.5 9.0 

IZ*: Intermediate zones. 564 

  565 
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Table 3 566 

Level combination of designed geometric dimensions in a L16 (4
3) orthogonal array. 567 

Case 

Factor 

A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 1 4 4 

5 2 1 2 

6 2 2 1 

7 2 3 4 

8 2 4 3 

9 3 1 3 

10 3 2 4 

11 3 3 1 

12 3 4 2 

13 4 1 4 

14 4 2 3 

15 4 3 2 

16 4 4 1 

  568 
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Table 4 569 

Analysis of variance for the three factors. 570 

Level 

Factor 

A B C 

1 0.458215 0.455746 0.382661 

2 0.456458 0.452346 0.427217 

3 0.447858 0.453059 0.479729 

4 0.448398 0.449779 0.521323 

Factor Si f 
Deviation from mean sum of 

squares 
F 

A SA=0.000346 3 0.000115 19.15 

B SB=0.000072 3 0.000024 4.00 

C SC=0.043978 3 0.014659 2434.73 

Error 0.000072 12 0.000006 - 

 571 

  572 
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Table 5 573 

Basis functions and corresponding equations of the MARS model. 574 

BFs Coefficient Equations 

BF1 0.3831 max(0, A-7) 

BF2 -0.0028 max(0, 7-A) 

BF3 0.1572 max(0, B-7.83) 

BF4 -0.0451 max(0, 7.83-B) 

BF5 -0.0047 BF1*max(0, C-14) 

BF6 0.0071 BF2*max(0, B-8.5) 

BF7 0.0125 BF2*max(0, 8.5-B) 

BF8 -0.0775 BF3*max(0, B-8.5) 

BF9 -0.0479 max(0, 5-A)*max(0, 7.83-B) 

  575 
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Table 6 576 

Comparison of pressure uniformity of three different methods 577 

Factor 
Method 

Taguchi Method NN MARS 

A 9.0 9.0 9.0 

B 14.0 14.0 14.0 

C 9.0 9.0 9.0 

Predicted uniformity - 0.520 0.549 

Simulated uniformity 0.529 0.529 0.529 

Relative error (%) - 1.62 3.89 

 578 

  579 
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(a) (b) 

 

 

 

(c) 

 

(b) 

  

Fig. 1. Schematics of (a) physical configuration system and (b) geometric size of the fuel cell, 580 

and (c) the end plate in the PEMFC and (d) the experiment configuration. 581 

582 
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 583 
Fig. 2. Comparisons of simulation and experimental data of both cases of single-cell and 10-cell 584 

stacks. 585 

586 

Inlet pressure (kPa)

V
o

lu
m

e
fl

o
w

ra
te

(L
m

in
-1
)

0 10 20 30
0

4

8

12

10 cells experimental data

10 cells simulation data

1 cell experimental data

1 cell simulation data



 31 

 587 

Fig. 3. Flow chart of NN training processes. 588 

589 
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 590 

Fig. 4. Profiles of (a) pressure uniformity in 16 cases, (b) S/N ratio and (c) mean S/N ratios of 591 

factors.  592 
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(a) Taguchi method 

 

(b) NN 

 

(c) MARS 

 

Fig. 5. Radar charts of effect of factors in (a) Taguchi method, (b) NN, and (c) MARS.  593 



 34 

(a) 

 

(b) 

 

(c) 

 
(d) 

 
Fig. 6. Velocity contours of (a) the optimal case and (b) Case 16, and pressure contours of (c) 594 

the optimal case and (d) Case 16. 595 
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 596 

Fig. 7. Profiles of (a) pressure and (b) mean velocity along the inlet and outlet channel with the 597 

optimal combination and Case 16. 598 
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(a) 

 

 

(b) 

 

 

Fig. 8. Visualization of streamline of inlet channel: (a) top view, (b) side view.  600 
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(a)  

 

 

(b) 

 

 

Fig. 9. Visualization of streamline of outlet channel: (a) top view, (b) side view. 601 
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(a) 

 

(b) 

 

Fig. 10. (a) Visualization structure and (b) profiles of error value between training and validation 603 

data in neural network. 604 
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 606 

Fig. 11. Regression analysis between predicted and real value in (a) NN and (b) MARS. 607 
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 609 

Fig. 12. Three-dimensional distributions of pressure uniformity in NN when the IZ width is fixed 610 

at (a) 14, (b) 15.5, and (c) 17 mm. 611 
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 613 

Fig. 13. Three-dimensional distributions of pressure uniformity in MARS when the IZ width is 614 

fixed at (a) 14, (b) 15.5, and (c) 17 mm. 615 
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