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1. Introduction  

Chlamydia is the world’s most common sexually transmitted 

bacterial infection. The largely asymptomatic infection often leads 

to complications such as ectopic pregnancy, blindness, infertility, 

and pneumonia,1-4 particularly in areas where there is limited 

access to quality healthcare. The ever increasing global prevalence 

of this infection5 is a result (at least in part) of the inadequacies of 

present management options and necessitates the adoption of 

better strategies. Central to this need is the development of drugs 

with good resistance profiles. 

Chlamydia are obligate intracellular bacterial pathogens, and 

here we focus on Chlamydia (C.) trachomatis. The Chlamydia 

high temperature requirement A (CtHtrA) protease is a multimeric, 

multidomain serine protease that is crucial for the survival and 

virulence of the Chlamydia pathogen.6 Thus, it is an attractive 

target for small molecule therapeutics. JO146 [Boc-Val-Pro-

ValP(OPh)2], a mixture of two diastereomers with R-/S-Val at P1, 

was previously identified as a covalent inhibitor of CtHtrA (IC50 = 

12.5 µM) in a screen against a library of 1090 serine protease 

inhibitors. The N-terminal Boc group is retained as a hydrophobic 

P4 mimic and is necessary for activity. Further evaluation in 

different biological models revealed its selective toxicity against 

human and koala pathogenic Chlamydia species,6-7 presenting the 

molecule as a viable lead towards the development of anti-

chlamydial drugs with organism specificity and a different mode 

of action from current antibiotics. 

It is well known that diastereomers interact differently with 

biological systems and often produce different biological effects.8-

9 As a result, it has become mandatory to have diastereomers 
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properly investigated for potential therapeutic and toxicological 

variation in the course of drug development.10 In this study, we 

report the synthesis of JO146, 5, and the isolation and 

characterization of its two diastereomers JO146-D2, 6 and JO146-

D1, 7 (Figure 1). Of the diastereomers, JO146-D2 6 displayed the 

best inhibitory activity against human neutrophil elastase (HNE), 

and C. trachomatis cell culture, providing strong evidence that it 

is the diastereomer with the physiologically relevant valine 

residue. For peptidyl phosphonate compounds, the physiologically 

relevant L-amino acid at P1 has an R-configuration (instead of the 

usual S-configuration) due to a substitution of a phosphonate group 

for the carbonyl, causing a reversal of the direction in assignment 

priority. 1H NMR spectroscopic analysis of the change in chemical 

shift for protons of the P2-proline and P3-valine residue on 6 vs 7 

indicated shielding/deshielding effects that may enable 

differentiation of diastereomeric mixtures of α-

aminoalkylphosphonate diaryl/diphenyl esters in the future. 

 

 
Figure 1. Structures of JO146 5 and the isolated diastereomers 6 and 7. 

2. Results 

2.1. Synthesis 

The synthesis of JO146 5 was carried out over five steps 

(Scheme 1A and Scheme 1B). Boc-Val-Pro-OH 2 was synthesized 

via saponification of Boc-Val-Pro-OMe 1, which was formed by 

HBTU-promoted peptide coupling of Boc-Val-OH to Pro-OMe 

(Scheme 1A). Concurrently, racemic Val-phosphonate 4 (isolated 

as the HBr salt) was synthesized in two steps via an α-

amidoalkylation-type reaction, followed by deprotection of the 

benzylcarbamate (CBz) group (Scheme 1B). Finally, HBTU-

promoted coupling of 4 with 2 provided JO146 5 (Scheme 1B) as 

a mixture of JO146-D1:JO146-D2 (46:54, See Table S1). The two 

diastereomers were isolated via silica gel column chromatography 

JO146-D2 (R-P1-Val) 6 and JO146-D1 (S-P1-Val) 7, in sufficient 

amounts and purity (90%, Table S1 and HPLC traces in 

supporting information) for biological testing. The formation of 

the racemic CBz-protected Val-phosphonate 3 with R/S 

configuration at the residue, which becomes the P1-Val, occurs 

during the α-amidoalkylation-type reaction. The condensation of 

isobutyraldehyde with benzylcarbamate in acetic acid generates an 

imine intermediate that permits both frontside and backside attack 

by the incoming nucleophilic triphenyl phosphite (P(OPh)3),
11 

thereby generating an enantiomeric mixture (Scheme 1C). 

Analysis of 2D NMR experiments run on JO146 5 (see 

supporting information), allowed for the complete assignment of 

the P1 to P3 residue protons on 6 and 7 in their respective 1D NMR 

spectra. The doublet in the 13C NMR spectra centered at  51.3 and 

 51.1 for 6 and 7 respectively, had a 13C-31P coupling constant (J) 

of ~155 Hz, and was assigned as the P1-valine alpha () carbon. 

Using the chemical shift of the P1-valine  carbon and proton, we 

were able to assign the beta () and gamma () protons of the P1-

valine, and subsequently, the protons of the P3-valine. This was 

important, as it enabled us to establish the influence of 

stereochemistry at the P1-valine on the proton chemical shifts of 

the P2-proline and P3-valine residues (vide infra).  

Scheme 1. Synthesis of JO146 5 (A and B) and mechanism of racemate 

formation (C).a 

 
aReagents and conditions: (a) Proline methyl ester, HBTU, DIEA, DMF, 

25 °C, 20 h, 57%; (b) LiOH.H2O, THF, H2O, 25 °C, 2 h, 90%; (c) Benzyl 

carbamate, isobutyraldehyde, 80-90 °C, 2 h, 72%; (d) 33% HBr/AcOH, 25 

°C, 20 h, 75%; (e) 2, HBTU, DIEA, DMF, 25 °C, 20 h, 90%. 

 

2.2. Protease activity 

Next, a preliminary assessment of the bioactivity of the 

diastereomers 6 and 7 alongside JO146 5 was carried out. The 

initial protease inhibition assays were performed against human 

neutrophil elastase (HNE), a human serine protease with similar 

substrate specificity as CtHtrA, and one that has been well studied 

as a target for phosphonate inhibitors.12-14 The substrate specificity 

of HNE is largely dependent on the structural makeup of its S1 

substrate-binding pocket, and has been reported to consist mainly 

of hydrophobic residues15 that enable it to bind preferentially to 

substrates with small hydrophobic amino acids such as valine and 

alanine at P1.
16 The substrate specificity of CtHtrA is similar to this 

as it also preferentially cleaves substrates with small hydrophobic 

residues including Val, Pro, Ala and Ile at P1.
17-18 As a result, 

activity against HNE would normally provide a good prediction 

for potential anti-CtHtrA activity. We therefore used HNE as a 

frame of reference. An in vitro off-target assessment of the 

inhibitors was also conducted using the abundant digestive serine 

proteases trypsin and chymotrypsin. 

The results obtained from the HNE inhibition assay revealed 

JO146-D2 6 to be ~2.5 – fold more potent than JO146-D1 7 (Table 

1). No significant protease inhibition of trypsin or chymotrypsin 

was observed for either isomer (Table 1, IC50 > 500 M). Based 

on previous X-ray crystallography studies,19-21  and those reported 

by Winiarski et al.,14 which confirmed that the P1-(R)-

diastereomers of phosphonate inhibitors are better inactivators of 

HNE-type serine proteases, our HNE inhibition studies in 

conjunction with our molecular docking and cell-based C. 

trachomatis data (vide infra), suggest that JO146-D2 6 is the 

isomer containing the (R)-valine at P1.In an attempt to 

unequivocally confirm the stereochemical assignment of 6 and 7, 

2D-NOESY experiments were carried out (Figures S23 and S24). 

However, no distinct NOE correlations between the -proton of 
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the P1-valine and the neighbouring -proton on the P2-proline were 

observed. Any distinct NOE correlations between the - and -

protons of the P1-valine and the P2-P3 residues were not evident, 

and as a result, stereochemical differentiation of both 

diastereomers could not be achieved using this technique. 

However, a comparison of the 1H NMR spectra of 6, 7 and the N-

Boc protected tripeptide S,S,S-Boc-Val-Pro-Val-OMe 8 with a C-

terminal L-valine residue (Figures S14, S17 and S25), revealed 

close similarity between JO146-D2 6 and 8.  While peaks 

corresponding to the stereogenic P1-Val-αH, and P2-Pro-αH 

resonated at the same approximate frequency (δ 4.78 – 4.69) in 7, 

both peaks are clearly separated in 6 ( 4.77 – 4.69 and  4.46) and 

8 ( 4.64 – 4.54 and  4.42), suggesting similar stereochemistry at 

P1 for both of these structures. This further supports 6 as having 

the P1-levorotatory valine (R-configuration) isomer. 

Table 1. Protease Inhibition Dataa for Compounds 5, 6 & 7 

against Human Neutrophil Elastase (HNE), Trypsin and 

Chymotrypsin 

Compound HNE 

IC50 (µM) 

Chymotrypsin 

IC50 (µM) 

Trypsin 

IC50 (µM) 

5 0.83 ± 0.01 > 500 > 500 

6 0.67 ± 0.01 > 500 > 500 

7 1.65 ± 0.11 > 500 > 500 

aData are presented as the mean ± SEM of triplicate 

experiments.  

2.3. Molecular modelling 

To give an indication of the binding mode to CtHtrA which 

would be the desired target in the cell culture assays, diastereomers 

6 and 7 were docked (GOLD v5.2 

https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/gold/) into a homology model of CtHtrA 

based on the crystal structure of Escherichia coli DegP (PDB ID: 

3OTP).22-23 The ligands were prepared and docked as phosphonic 

acids without the aryl portion as formation of the covalent bond is 

accompanied by the loss of both phenoxy groups as observed in 

several crystal structures of phosphonate based inhibitors e.g. PDB 

IDs 4MVN, 3UFA, 1P12, 1CGH and 1MAX.24-27 The highest 

ranked binding mode and interactions for both diastereomers were 

viewed and analyzed. Similar interactions were observed in both 

cases (Figure 2); individual residues of the inhibitors occupy the 

corresponding enzyme S1-S4 sub-pockets. JO146-D2 6 was 

however found to be more stereochemically favored, interacting 

with the S1 specificity pocket by virtue of its (R)-configuration, 

which enables the isopropyl group of valine to make significant 

van der Waals interactions with I242 of the pocket.28 JO146-D1 7 

on the other hand had a weakened interaction at this point as the 

(S)-configuration orients the isopropyl group away from I242 

(Figure 2). This structural difference is thought to be responsible 

for the observed difference in in vitro potency against HNE.  

 
Figure 2. Binding poses of 7, JO146-D1 (A) and 6, JO146-D2 (B) docked 

into  a homology model of CtHtrA (solid surface) showing the different 

orientations of the respective P1 isopropyl group relative to the S1 pocket 

binding I242 residue (cyan). 

 

2.4. Cellular activity 

Based on our HNE inhibition data and the docking experiments, 

we hypothesized that the stereochemical difference between the 

diastereomers 6 and 7 would affect the cellular activity of the 

inhibitors against C. trachomatis. JO146 5 has been previously 

identified to be most effective when added to C. trachomatis cell 

culture at 16 h post infection (PI)6 which corresponds to the mid-

replicative phase of the C. trachomatis developmental cycle. 

When 10 μM of JO146 5 was added at this time point, it was highly 

effective against Chlamydia cells with about 1.5 log loss of 

infectious progeny (inclusion forming units; IFU/mL). In the 

present study, treatment of the cell culture with 50 µM 

concentration of 5, 6 and 7 at 16 h PI, resulted in appreciable loss 

of infectious progeny that ranged between 101 and 103 relative to 

the negative DMSO control (Figure 3). JO146-D2 6 was most 

effective with over 1000 – fold reduction in IFU/mL relative to 

DMSO, and approx. 100 – fold difference in activity compared to 

JO146-D1 7 and JO146 5 which had approximately 101 and 101.5 

reduction in IFU/mL, respectively. At a concentration of 10 μM, 7 

had no detectable anti-chlamydial activity while 6 still produced a 

significant 101 reduction in IFU/mL (Figure 3). 
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Figure 3. Inhibition of C. trachomatis by JO146 5 and its diastereomers 6 

and 7 during mid-replicative phase of the pathogen’s developmental cycle. 

Infectious yield counts (IFU/mL) were determined upon completion of 

developmental cycle. Black bars are JO146-D2 6, light gray bars are JO146-

D1 7 and dark gray bars are the JO146 5. Error bars indicate SEM obtained 

from experimental replicates (minimum of 5). ****P < 0.0001 

 

3. Discussion 

While peptidyl α-aminoalkylphosphonate diaryl/diphenyl 

esters have been extensively studied as serine protease inhibitors, 

the absolute configurations of isomers obtained in previous studies 

were determined by X-ray crystallography .19-20, 24 We did not 

obtain the absolute stereochemistry using these techniques, but our 

inhibition data, supported by previous HNE activity assays by 

Winiarski et al.14 in which they identified the P1-(R)-diastereomers 

for similar P1-substituted tripeptide phosphonates as better 

inactivators of HNE compared to their P1-(S)-counterparts, 

suggests that JO146-D2 6 and JO146-D1 7 contain the (R)-L-Val 

and (S)-D-Val at P1, respectively. The better inhibition of HNE and 

CtHtrA by 6 is also supported by our molecular docking study 

(Figure 2). Upon careful inspection of the 1H and 13C NMR spectra 

for JO146 5, 6, and 7, we identified some key differences in the 

respective chemical shifts for the P2-Pro and P3-Val residues 

(Table 2). The most notable change was for the protons on the P3-

Val residue, which were relatively more shielded in the 1H NMR 

spectrum of 7. Also of note, and to the best of our knowledge, the 
13C NMR spectra of small peptidyl α-aminoalkylphosphonate 

diaryl/diphenyl esters has not been fully reported. Interestingly, 

the 13C NMR for 6 and 7, both contain eight doublets in the 

aromatic region (due to 13C-31P coupling), indicating that the two 

phenyl groups are not in an identical chemical space; i.e. they are 

diastereotopic, and as a result magnetically non-equivalent. While 

preliminary, the interpretation of the 1H and 13C NMR spectra 

suggests that the bulky P1-valine residue and the P2-proline residue 

could be playing a role in the observed ΔδRS for P2-Pro and P3-Val 

on 6 and 7. The observed chemical shift differences provide spatial 

information that may be useful for determining the absolute 

configurations of both molecules. The general application of this 

phenomenon could be further investigated as a potential method 

for rapid stereochemical identification of future inhibitors in the 

diphenyl/diaryl phosphonate series. By substituting the proline 

residue at P2 with a non-cyclic amino acid and utilizing a less bulky 

P1-substituent (e.g. alanine), it  may be possible to determine if the 

shielding/deshielding effect at P3 is due to the conformational 

restriction imposed by the residues at P1 and P2. 

Table 2. Observed chemical shift () differences for protons 

on residues P2 and P3 of JO146-D2 6 and JO146-D1 7. 
Residue/Proton (R)-6 (ppm) (S)-7 (ppm) ΔδRS 

(ppm) 

P2-Pro-H 4.46 (dd) 4.74 (m)a -0.28 

P2-Pro-H 3.64 (m)a 

3.61(m)a 

3.71 (m)a  

3.48 (m)a 

-0.07 
+0.13 

P3-Val-H 4.30 (dd) 4.24 (dd) +0.06 

P3-Val-H 2.01 (m)a 1.82 (m)a +0.19 

2  P3-Val-H’s 0.99 (d) 

0.93 (d) 

0.86 (d) 

0.83 (d) 

+0.13 

+0.10 

aCentre of multiplet (and not range) reported. 

 

4. Conclusion 

In conclusion, significantly higher anti-chlamydial activity was 

observed for the P1-Val levorotatory JO146-D2 6 over the P1-Val 

dextrorotary JO146-D1 7. Therefore, future inhibition assays in 

the series should be conducted with phosphonates having the 

physiologically relevant (R)-stereochemistry at the P1 residue. Our 

data also suggest that phosphonate ester inhibitors have selectivity 

for HNE and the structurally related CtHtrA over abundantly 

available serine proteases (e.g. trypsin and chymotrypsin), an 

important feature as we develop our inhibitors for future in vivo 

pre-clinical studies. 

5. Experimental section 

5.1. General 

All solvents and reagents were of reagent grade and used 

without further purification except where stated. All reactions 

were conducted in standard glassware and in air or under nitrogen 

gas unless otherwise stated. Organic solvent extracts were dried 

with MgSO4 and subjected to rotary evaporation, and finally dried 

at 10-1 mbar using a high vacuum pump. 

Analytical thin layer chromatography (TLC) was performed on 

Merck TLC aluminium plates coated with 0.2 mm silica gel 60 

F254. Spots were generally detected by UV and/or permanganate 

staining. Flash column chromatography was performed using 

silica gel 60 (0.040 – 0.063 mm, 200 – 400 mesh) with all solvent 

systems expressed as volume to volume (v/v) ratios. Solids were 

recrystallized from a minimum amount of hot solvent and 

collected by vacuum filtration. 

High performance liquid chromatography (HPLC) was carried 

out on an Agilent HPLC. Samples of 20 μL volume were injected 

onto a Gemini 5 µm C18 110 Å column (250 by 4.6 mm, 

Phenomenex, New Zealand). The compounds were eluted using 

solvent A: 0.1% trifluoroacetic acid (TFA) in water and solvent B: 

0.1% TFA in acetonitrile (ACN) in a linear gradient manner. At a 

flow rate of 1.0 mL/min, compounds were detected at the 

wavelengths of 254/210 nm. 

Proton (1H) and carbon-13 (13C) nuclear magnetic resonance 

(NMR) spectra were acquired on Varian 400 or 500 MHz 

spectrometers. Samples were prepared in deuterated solvent, 

chloroform (δ 7.26, 77.16 ppm) with the respective 1H and 13C 

chemical shifts of the solvent shown in brackets. Chemical shifts 

(δ) are expressed in parts per million (ppm) and coupling constants 

(J) in Hertz (Hz), both measured against the internal standard. 
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Multiplicities are reported as either singlet (s), doublet (d), doublet 

of doublets (dd), triplet (t), quartet (q), multiplet (m) or broad 

signal (br). Compound 5 was fully characterized using two-

dimensional NMR experiments, Homonuclear Correlation 

Spectroscopy (COSY), Heteronuclear Single Quantum Coherence 

(HSQC) and Heteronuclear Multiple Bond Correlation (HMBC). 

High resolution mass spectra were recorded on a Brucker 

microTOF-Q spectrometer with an electrospray ionization (ESI) 

source. 

5.2. Synthetic Details 

5 .2 .1 .  Methy l (2S) -1-[(2S)-2 -{ [( ter t -
butoxy)carbonyl]amino} -3-
methylbutanoy l]pyrrol id ine -2 -carboxyla te  (1 )  

Compound 1 was synthesized using a modified literature 

procedure of solution-phase peptide coupling.29 L-Proline methyl 

ester hydrochloride (0.605 g, 3.65 mmol) was dissolved in 5 mL 

dimethylformamide (DMF). To this was added Boc-Val-OH 

(0.833 g, 3.84 mmol), O-(Benzotriazol-1-yl)-N,N,N’,N’-

tetramethyluronium hexafluoro-phosphate (HBTU) (1.662 g, 4.38 

mmol) and N,N-Diisopropylethylamine (DIEA) (1.3 mL, 7.30 

mmol). The reaction mixture was stirred under nitrogen overnight. 

The reaction was diluted with ethyl acetate (EtOAc; 30 mL) and 

an equal amount of sodium bicarbonate, washed with brine (6 × 30 

mL), dried (MgSO4) and concentrated. The crude product was 

chromatographed using flash silica gel column chromatography 

(Hexane/EtOAc, 7:3 v/v).  This yielded 1 on vacuum concentration 

as a light yellow oil (0.723 g, 57%), which was spectroscopically 

identical to that previously reported.29-30 1H NMR (400 MHz, 

CDCl3) δ 5.19 (d, J = 9.4 Hz, 1H, -NH), 4.54 – 4.48 (m, 1H, 1 × 

Pro-αH), 4.26 (dd, J = 9.3, 6.5 Hz, 1H, 1 × Val-αH), 3.80 – 3.73 

(m, 1H, 1 × Pro-δH), 3.72 (s, 3H, OCH3), 3.68 – 3.61 (m, 1H, 1 × 

Pro-δH), 2.25 – 2.14 (m, 1H, 1 × Pro-βH), 2.00 (m, 4H, 1 × Pro-

βH, 2 × Pro-γH and 1 × Val-βH), 1.41 (s, 9H, tButyl), 1.01 (dd, J 

= 6.8, 1.2 Hz, 3H, 3 × Val-γH), 0.92 (dd, J = 6.8, 1.2 Hz, 3H, 3 × 

Val-γH). 13C NMR (101 MHz, CDCl3) δ 172.4, 171.2, 155.8, 79.4, 

58.8, 56.8, 52.1, 47.1, 31.3, 29.0, 28.3, 25.0, 19.2, 17.3.  ESI-MS 

(m/z): calcd for C16H28N2NaO5 (M + Na) m/z 351.1896 found 

351.1877. 

5.2 .2 .  (2S) -1 -[(2S) -2-{ [( ter t -
butoxy)carbonyl]amino}-3-
methylbutanoy l]pyrrol id ine -2 -carboxyl ic  acid  (2 )  

Compound 2 was produced by alkaline hydrolysis of 1 using a 

modified literature procedure.31 1 (1.372 g, 4.18 mmol) was 

dissolved in a 3:1 mixture of tetrahydrofuran (THF) and water (60 

mL + 20 mL respectively). LiOH.H2O (0.878 g, 20.89 mmol) was 

added and the reaction mixture was stirred for 2 hours at room 

temperature. The reaction was quenched by acidification with 50 

mL 0.5 M HCl, and the mixture was extracted with EtOAc (4 × 60 

mL). The combined organic fraction was washed with brine (1 × 

100 mL), dried over anhydrous MgSO4 and the solvents 

evaporated under reduced pressure to yield a white solid (1.186 g, 

90%). 1H NMR (400 MHz, CDCl3) δ 9.37 (br s, 1H, carboxylic 

acid proton),  5.46 (d, J = 9.4 Hz, 1H, -NH), 4.55 (dd, J = 8.1, 4.8 

Hz, 1H, 1 × Pro-αH), 4.26 (dd, J = 9.4, 6.8 Hz, 1H, 1 × Val-αH), 

3.83 – 3.59 (m, 2H, 2 × Pro-δH), 2.25 – 1.86 (m, 5H, 2 × Pro-βH, 

2 × Pro-γH and 1 × Val-βH,), 1.40 (s, 9H, tButyl), 0.98 (d, J = 6.7 

Hz, 3H, 3 × Val-γH), 0.91 (d, J = 6.7 Hz, 3H, 3 × Val-γH). 13C 

NMR (101 MHz, CDCl3) δ 174.5, 172.4, 155.9, 79.6, 59.1, 57.0, 

47.5, 31.2, 28.5, 28.3, 24.8, 19.2, 17.6. ESI-MS (m/z): calcd for 

C15H26N2NaO5 (M + Na) m/z 337.1739 found 337.1734. 

5.2 .3 .  Diphenyl  [ (1R,1S)-1-[(benzyloxy)amino] -2 -
methylpropy l]phosphonate (3 )  

Carboxybenzyl (Cbz)-protected 1-Aminoalkyl-phosphonate 

diphenyl ester 3 was synthesized using a literature method.32 

Triphenyl phosphite (0.933 g, 3.007 mmol) was dissolved in 

glacial acetic acid (8 mL), and isobutyraldehyde (0.239 g, 3.308 

mmol) and benzyl carbamate (0.500 g, 3.308 mmol) were added. 

The mixture was heated for 2 hours at 80-90 °C, and the solvent 

evaporated. The crude product was subjected to column 

chromatography (Hexane/EtOAc, 5:1 v/v) This yielded 3 as a 

colorless oil (0.950 g, 72%). 1H NMR (400 MHz, CDCl3) δ 7.38 – 

6.98 (m, 15H, 10 × Phenoxy-H & 5 × phenyl-H), 5.22 (dd, J = 

10.9, 2.5 Hz, 1H, 1 × Val-NH), 5.15 – 5.01 (m, 2H, 2 × benzylic-

H), 4.45 – 4.34 (m, 1H, 1 × Val-αH), 2.39 (m, 1H, 1 × Val-βH), 

1.08 (dd, J = 6.8, 1.3 Hz, 6H, 6 × Val-γH). 13C NMR (101 MHz, 

CDCl3) δ 156.2 (d, JC-P = 7.1 Hz), 150.2 (d, JC-P = 10.1 Hz), 149.9 

(d, JC-P = 9.6 Hz), 136.0, 129.7, 129.6,  128.5, 128.2, 128.1, 125.3, 

125.1, 120.6 (d, JC-P = 4.1 Hz), 120.4 (d, JC-P = 4.1 Hz), 67.4, 53.3 

(d, JC-P = 161.6 Hz), 29.1 (d, JC-P = 5.3 Hz), 20.3 (d, JC-P = 14.1 

Hz), 17.6 (d, JC-P = 4.2 Hz). ESI-MS (m/z): calcd for 

C24H26NNaO5P (M + Na) m/z 462.1446 found 462.1400. 

5.2 .4 .  Diphenyl  [ (1R,1S) -1-amino-2-
methylpropy l]phosphonate (4 )  

Compound 4 was obtained by dissolving compound 3 (0.425 g, 

0.967 mmol) in 33% HBr/AcOH solution (3 mL). The reaction 

was carried out at room temperature for 2 hours. The volatile 

components of the mixture were removed under reduced pressure. 

The residue was dissolved in 1 mL methanol, and 80 mL ether was 

added. Compound 4 was left to crystallize at 4 °C to yield 0.28 g 

of the hydrobromide salt, a white solid. The amount of compound  

4 thus obtained was 0.221 g, 75%. No further recrystallization was 

necessary. 1H NMR (400 MHz, CDCl3) δ 9.07 (s, 2H, 2 × NH2), 

7.35 – 7.04 (m, 10H, 10 × Phenoxy-H), 3.82 (brd, J = 14.2 Hz, 1H, 

1 × Val-αH), 2.75 – 2.58 (m, 1H, Val-βH), 1.29 (dd, J = 6.8, 4.5 

Hz, 6H, 6 × Val-γH). 13C NMR (101 MHz, CDCl3) δ 149.42 (d, JC-

P = 9.6 Hz), 149.39 (d, JC-P = 9.9 Hz), 129.7, 125.6, 125.5, 120.9 

(d, JC-P = 4.3 Hz), 120.6 (d, JC-P = 4.5 Hz), 53.5 (d, JC-P = 155 Hz), 

28.4 (d, JC-P = 2.0 Hz), 19.9 (d, JC-P = 9.1 Hz), 19.1 (d, JC-P = 4.0 

Hz). ESI-MS (m/z): calcd for C16H20NNaO3P (M + Na) m/z 

328.1078 found 328.1045. 

5.2 .5 .  Tert -butylN-[(2S) -1 -[(2S) -2-{ [(1R,1S) -1 -
(d iphenoxyphosphory l) -2 -
methylpropy l]carbamoyl}pyrrol id in -1 -y l] -3 -methyl -
1-oxobutan -2-yl]carbamate (5 )  

Compound 2 (0.119 g, 0.570 mmol) was dissolved in 3 mL 

DMF. To this was added HBTU (0.173 g, 0.457 mmol) and DIEA 

(0.17 mL, 0.953 mmol) to generate the activated ester. After 10 

minutes, compound 4 (0.22 g, 0.721 mmol) was added and the 

reaction mixture was stirred under nitrogen overnight. The 

reaction was diluted with EtOAc (25 mL) and an equal amount of 

sodium bicarbonate, washed with brine (6 × 25 mL), dried 

(MgSO4) and concentrated in vacuo. The crude product was 

subjected to column chromatography (100% EtOAc). This yielded 

5 as a mixture of diastereomers, as a colorless solid (0.205 g, 90%) 

which formed a white solid foam under reduced pressure. >99% 

purity for diastereomers by HPLC (Gemini 5 µm C18 110 Å, 

gradient elution, 40% acetonitrile/water with 0.1% TFA to 85% 

acetonitrile in 45 minutes; Retention time (tr) = 33.690 and 34.713 

min). ESI-MS (m/z): calcd for C31H44N3NaO7P (M + Na) m/z 

624.2815 found 624.2772. Full NMR characterization of the pure 

diastereomers 6 and 7 is provided below. 

5.2 .6 .  Separat ion  o f  Dias tereomers .  

Single diastereomers of 5 were obtained by column 

chromatography on silica gel using CHCl3/EtOAc, 4:1 v/v. 

Compounds 6 and 7 were thus obtained. 
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5.2 .6 .1 .  Tert -butyl -N-[(2S) -1-[(2S)-2 -{ [(1R) -1-

(d iphenoxyphosphory l) -2 -
methylpropy l]carbamoyl}pyrrol id in -1 -y l] -3 -methyl -
1-oxobutan -2-yl]carbamate  (6 )  

A colorless solid (0.03 g) which formed a white solid foam 

under reduced pressure. 96% purity by HPLC, the second 

diastereomer accounts for the remaining 4% (Gemini 5 µm C18 

110 Å, gradient elution, 40% acetonitrile/water with 0.1% TFA to 

85% acetonitrile in 45 min; tr = 33.557 min), see full HPLC trace 

on page 17. Retention factor (Rf) = 0.34 (CHCl3/EtOAc, 4:1, v/v). 
1H NMR (400 MHz, CDCl3) δ 7.33-7.14 (m, 11H, 10  Phenoxy-

H and 1  P1-Val-NH), 5.24 (d, J = 9.2 Hz, 1H, 1  P3-Val-

carbamate-NH), 4.77 – 4.69 (m, 1H, 1  P1-Val-αH), 4.46 (dd, J = 

8.4, 3.2 Hz, 1H, 1  P2-Pro-αH), 4.30 (dd, J = 9.6, 6.4 Hz, 1H, 1  

P3-Val-αH), 3.77 – 3.51 (m, 1H, 1  P2-Pro-δH), 3.63-3.58 (m, 1H, 

1  P2-Pro-H), 2.44 – 2.34 (m, 1H, 1  P1-Val-βH), 2.24 – 2.09 

(m, 2H, 2  P2-Pro-H), 2.08 – 1.94 (m, 2H,  1  P3-Val-H and 1 

 P2-Pro-H), 1.88 – 1.79 (m, 1H, 1  P2-Pro-H), 1.43 (s, 9H, 

tButyl), 1.11 (d, J = 7.2 Hz, 3H, 3  P1-Val-γH), 1.04 (dd, J = 6.8, 

1.2 Hz, 3H, 3  P1-Val-γH), 0.99 (d, J = 6.4 Hz, 3H, 3  P3-Val-

γH), 0.93 (d, J = 6.8 Hz, 3H, 3  P3-Val-γH). 13C NMR (101 MHz, 

CDCl3) δ 172.6, 171.2 (d, JC-P = 6.1 Hz), 155.8, 150.4 (d, JC-P = 

10.1 Hz), 150.1 (d, JC-P = 10.1 Hz), 129.8 (d, JC-P = 1.0 Hz), 129.7 

(d, JC-P = 0.6 Hz), 125.3 (d, JC-P = 1.3 Hz), 125.1 (d, JC-P = 0.9 Hz), 

120.7 (d, JC-P = 4.1 Hz), 120.4 (d, JC-P = 4.4 Hz), 79.6, 60.0, 56.8, 

51.3 (d, JC-P = 154.2 Hz), 47.7, 31.4, 29.3 (d, JC-P = 3.9 Hz), 28.3, 

27.4, 25.3, 20.3 (d, JC-P = 13.6 Hz), 19.6, 18.0 (d, JC-P = 4.7 Hz), 

17.4. ESI-MS (m/z): calcd for C31H44N3NaO7P (M + Na) m/z 

624.2815 found 624.2763. 

5.2 .6 .2 .  Tert -butyl -N-[(2S) -1-[(2S)-2 -{ [(1S) -1 -
(d iphenoxyphosphory l) -2 -
methylpropy l]carbamoyl}pyrrol id in -1 -y l] -3 -methyl -
1-oxobutan -2-yl]carbamate (7 )  

A colorless solid (0.015 g) which formed a white solid foam 

under reduced pressure. 90% purity by HPLC, the second 

diastereomer accounts for the remaining 10%. (Gemini 5 µm C18 

110 Å, gradient elution, 40% acetonitrile/water with 0.1% TFA to 

85% acetonitrile in 45 min; tr = 34.496 min), see full HPLC trace 

on page 18. Rf =0.45 (CHCl3/EtOAc, 4:1 v/v). 1H NMR (400 MHz, 

CDCl3) δ 7.36 (brd, J = 10.1 Hz, 1H, 1  P1-Val-NH), 7.31 – 7.26 

(m, 5H, 5  Phenoxy-H), 7.18 – 7.14 (m, 5H, 5  Phenoxy-H), 5.17 

(d, J = 9.6 Hz, 1H, P3-Val-Carbamate-NH), 4.78 – 4.69 (m, 2H, 1 

 P1-Val-H and 1  P2-Pro-H), 4.24 (dd, J = 9.2, 6.0 Hz, 1H, 1 

 P3-Val-αH), 3.74 – 3.67 (m, 1H, 1  P2-Pro-H), 3.50 – 3.45 (m, 

1H, 1  P2-Pro-δH), 2.48-2.39 (m, 2H, 1× P1-Val-βH and 1 P2-

Pro-H), 2.00-1.91 (m, 3H, 1  P2-Pro-H and 2 x P2-Pro-γH), 

1.86 – 1.77 (m, 1H, 1  P3-Val-H), 1.42 (s, 9H, tButyl), 1.13 (d, J 

= 6.8 Hz, 3H, 3  P1-Val-γH), 1.07 (dd, J = 6.8 Hz, 1.6 Hz, 3H, 3 

 P1-Val-γH), 0.86 (d, J = 6.8 Hz, 3H, 3  P3-γH), 0.83 (d, J = 6.8 

Hz, 3H, 3  P3-Val-γH).13C NMR (101 MHz, CDCl3) δ 173.5, 

171.2 (d, JC-P = 6 Hz), 155.8, 150.3 (d, JC-P = 10.0 Hz), 150.0 (d, 

JC-P = 9.2 Hz), 129.7 (d, JC-P = 0.9 Hz), 129.6 (d, JC-P = 0.6 Hz), 

125.3 (d, JC-P = 1.1 Hz), 125.1 (d, JC-P = 0.8 Hz), 120.7 (d, JC-P = 

4.4 Hz), 120.4 (d, JC-P = 4.3 Hz), 79.7, 60.3, 56.8, 51.1 (d, JC-P = 

155.6 Hz), 47.7, 31.3, 29.3 (d, JC-P = 3.8 Hz), 28.3, 27.3, 25.0, 20.5 

(d, JC-P = 13.9 Hz), 19.6, 17.9 (d, JC-P = 4.3 Hz), 17.3. ESI-MS 

(m/z): calcd for C31H44N3NaO7P (M + Na) m/z 624.2815 found 

624.2764. 

5.2 .7 .  Methyl -(2S ) -2-{ [(2S)-1 -[(2S) -2 -{ [( ter t -
butoxy)carbonyl]amino} -3-
methylbutanoy l]pyrrol id in -2-yl] formamido} -3 -
methylbutanoate (8 )  

Compound 2 (0.450 g, 1.43 mmol) was dissolved in 4 mL 

DMF. To this was added HBTU (0.619 g, 1.63 mmol) and DIEA 

(0.48 mL, 2.73 mmol) to generate the activated ester. After 10 

minutes, L-Valine methyl ester hydrochloride (0.23 g, 1.37 mmol) 

was added and the reaction mixture was stirred under nitrogen 

overnight. The reaction was diluted with EtOAc (20 mL) and an 

equal amount of sodium bicarbonate, washed with brine (6 × 20 

mL), dried (MgSO4) and concentrated in vacuo. The crude product 

was subjected to column chromatography (Hexane/EtOAc, 2:3 

v/v) yielding 8 as a white solid (0.26 g, 45%). 1H NMR (400 MHz, 

CDCl3) δ 7.21 (d, J = 8.4 Hz, 1H, 1    P1-Val-NH), 5.25 (d, J = 

9.3 Hz, 1H, 1  P3-Val-carbamate-NH), 4.64 – 4.54 (m, 1H, 1  

P1-Val-αH), 4.42 (dd, J = 8.4, 5.1 Hz, 1H, 1  P2-Pro-αH), 4.29 

(dd, J = 9.4, 6.2 Hz, 1H, 1  P3-Val-αH), 3.72 (s, 3H, OCH3), 3.78 

– 3.66 (m, 1H, 1  P2-Pro-δH), 3.64 – 3.54 (m, 1H, 1  P2-Pro-δH), 

2.40 – 2.28 (m, 1H, 1  P1-Val-βH), 2.19 – 2.03 (m, 2H, 2  P2-

Pro-H), 2.01 – 1.91 (m, 2H,  1  P3-Val-H and 1  P2-Pro-H), 

1.88 – 1.75 (m, 1H, 1  P2-Pro-H), 1.42 (s, 9H, tButyl), 0.98 (d, J 

= 6.8 Hz, 3H, 3  P1-Val-γH), 0.94 – 0.87 (m, 9H, 3  P1-Val-γH 

and 6  P3-Val-γH). 13C NMR (101 MHz, CDCl3) δ 172.58, 

172.12, 170.92, 155.80, 79.56, 59.92, 57.54, 56.77, 52.04, 47.68, 

31.43, 31.09, 28.32, 27.20, 25.15, 19.55, 18.94, 17.86, 17.40. ESI-

MS (m/z): calcd for C21H37N3NaO6 (M + Na) m/z 450.2580 found 

450.2540. 

 

5.3. Protease Assays 

The inhibition of human neutrophil elastase (HNE), trypsin and 

chymotrypsin by compounds 5, 6 and 7 was also carried out. This 

was conducted by modifying an existing method.33 The activity of 

the enzymes was measured at 37 °C over a period of 5 min using 

AAPV-pNA (Sigma-Aldrich M4765), Nα-Benzoyl-DL-R-pNA 

(Sigma-Aldrich B4875) and Suc-AAPF-pNA (Sigma-Aldrich 

S7388) as HNE, trypsin and chymotrypsin substrates respectively. 

Absorbance readings were measured at 405 nm and monitored at 

15 sec intervals. The solubilization of the substrates which is 

critical for obtaining reliable results was achieved by dissolving 5 

mg in 50 µL of dimethyl sulphoxide (DMSO) and making up to 5 

mL with the assay buffer (0.10 M Tris-HCl, pH 8.1, 0.02 M 

CaCl2). For Nα-Benzoyl-DL-R-pNA, 100% DMSO was required. 

Inhibition by compounds 5, 6 and 7 was assessed by incubating 

50 µL of the enzyme solutions in the assay buffer with 1.5 µL of 

the inhibitors (dissolved in DMSO), all made up to 100 µL in the 

assay buffer. Incubation was carried out at 37 °C for 15 min before 

the addition of 50 µL of the substrate which initiated the reaction 

to give an intense yellow coloration for controls and wells without 

enzyme inhibition. 

All dilutions were in triplicate and inhibition was measured as 

the percentage of enzyme activity remaining. Data analysis was 

conducted using GraphPad prism. 

5.4. Cell-based Assays 

In vitro C. trachomatis cell culture assays were conducted 

based on a previously reported method.7 C. trachomatis D (D/UW-

3/Cx) was obtained from the ATCC and routinely cultured in 

McCoy B cells on DMEM, 10% fetal calf serum (FCS) at 37 °C, 

5% CO2, 0.1 mg/mL streptomycin, and 0.05 mg/ml gentamycin. 

Inhibitor experiments were routinely conducted in 96-well plates 

seeded with 20,000 host cells per well 24 h prior to the Chlamydia 

infection. Infections were routinely conducted at a Multiplicity of 

Infection (MOI) of 0.3. The Inclusion Forming Units (IFU) were 

determined from cultures harvested at the completion of the 

developmental cycle during which inhibitor treatment was 

conducted. Briefly, JO146 (5) at 50 µM dose, the diastereomers (6 



 7 
and 7) at 50 µM and 10 µM doses alongside a DMSO control 

(JO146 solvent), were added at 16 h post infection (PI) and left in 

the cultures until completion of the developmental cycle. 

Harvested cultures were lysed by vigorous pipetting and serially 

diluted onto fresh monolayers, fixed and stained for enumeration 

of IFU/ml. 
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Supplementary Material 

HPLC spectra for JO146 and its diastereomers and NMR spectra 

are available in the Supplementary Material. 

 
 

 

 


