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Abstract
Depression is one of the most common mental health issues. (It affects more than 4% of the world’s population, according 
to recent estimates.) This article shows that the joint analysis of linguistic and acoustic aspects of speech allows one to 
discriminate between depressed and nondepressed speakers with an accuracy above 80%. The approach used in the work 
is based on networks designed for sequence modeling (bidirectional Long-Short Term Memory networks) and multimodal 
analysis methodologies (late fusion, joint representation and gated multimodal units). The experiments were performed over 
a corpus of 59 interviews (roughly 4 hours of material) involving 29 individuals diagnosed with depression and 30 control 
participants. In addition to an accuracy of 80%, the results show that multimodal approaches perform better than unimodal 
ones owing to people’s tendency to manifest their condition through one modality only, a source of diversity across unimodal 
approaches. In addition, the experiments show that it is possible to measure the “confidence” of the approach and automatically 
identify a subset of the test data in which the performance is above a predefined threshold. It is possible to effectively detect 
depression by using unobtrusive and inexpensive technologies based on the automatic analysis of speech and language.

Keywords Depression · Computational paralinguistics · Word embedding · Bidirectional long-short term memory 
networks · Joint representation · Late fusion

Introduction

Clinical depression is a pathology resulting from two 
main processes, namely “an increase in negative emotions 
and feelings and a reduction in positive emotions and 
feelings”  [1]. As a consequence, patients experience 
extended periods of “depressed mood, loss of interest 
or pleasure, decreased energy, feelings of guilt or 

low self-worth, disturbed sleep or appetite, and poor 
concentration” [2]. In terms of diffusion and impact on the 
quality of life of people, the World Health Organization 
estimates that depression affects 4.4% of the world’s 
population (approximately 300 million people in 2015), and 
it is the most common cause of disability (it accounts for 
7.5% of all years lived with disability in 2015) and suicide 
(close to 800,000 cases per year) [3]. Nevertheless, such 
figures might be an underestimate because multiple factors, 
including stigma and lack of available services, tend to 
discourage depressed individuals from seeking treatment, 
resulting in many undetected cases, especially in regard to 
“[...] developing countries, older cohorts, men, and cases 
with earlier ages of onset” [4].

The literature shows that artificial intelligence (AI) 
can contribute to addressing these problems through 
automatic technologies for depression detection (see 
Survey of Previous Work for a survey). In particular, the 
clinical practice of psychiatrists, based on the observation 
of patients’ behavior, lends itself to the application of 
methodologies for the inference of psychological phenomena 
from machine-detectable behavioral cues (e.g., social signal 
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processing [5], affective computing [6] or computational 
paralinguistics [7]). For this reason, this article proposes a 
multimodal approach designed to detect depression based on 
linguistic and acoustic aspects of speech. In particular, the 
article uses network architectures combining speech signals 
and their transcriptions through joint representations [8] and 
gated multimodal units [9] that take into account both what 
people say and how they say it.

The experiments were performed over a corpus of 59 
interviews, approximately 4 hours of material, collected 
in three mental health centers in Southern Italy. The total 
number of experiment participants was 59, including 29 
persons diagnosed with depression by a psychiatrist and 30 
who had never experienced mental health issues. The results 
show that the multimodal approaches performed better, to 
a statistically significant extent, than the unimodal ones. 
In particular, the best multimodal approach achieved an 
accuracy of 84.7% (F1 measure of 82.3%), indicating that it 
correctly distinguishes between depressed and nondepressed 
speakers approximately 4 times out of 5.

During the experiments, the approaches were applied 
to clauses, i.e., to manually extracted linguistic units that 
include a noun, a verb and a complement. Given that the 
average number of clauses per participant is 114, this allows, 
for every person, a large number of clause-level decisions. 
These can then be aggregated through a majority vote, 
which, despite being accurate less than 70% of the time, 
results in an accuracy of up to 84.7% in determining whether 
a person is depressed. This is important because it shows 
that it is possible to deal effectively with the limited amount 
of available data, a problem that is inherent to depression 
detection due to ethical and practical concerns in recruiting 
depression patients.

In addition to the above, the experiments showed that, 
unlike in other studies [10, 11], acoustic aspects of speech 
appear to be more effective than linguistic ones in conveying 
depression-relevant information (despite the clauses having 
been transcribed manually). One possible explanation is 
that approaches based on language have difficulty dealing 
with short linguistic units such as clauses (for which the 
average number of words is 3.9). However, another possible 
reason is that paralinguistics (how things are said) might 
be a more honest cue than lexical choice (what people say), 
at least in regard to the features used in this work. This 
is in line with the observation of social psychology that 
nonverbal behavior, because it is displayed outside conscious 
awareness, tends to convey more reliable information about 
the inner state of an individual [12].

To the best of our knowledge, this is one of the first 
depression detection works involving Italian speakers. This 
is important because it shows that depression detection 
technologies can be effective not only for English speakers, 
the most common cases in the literature, but also for people 

who belong to different cultures. Furthermore, in contrast to 
other studies (see Survey of Previous Work), the distinction 
between depressed and nondepressed participants has 
usually been made by psychiatrists and not through the 
administration of self-assessment questionnaires. This is an 
advantage because it increases the chances of the data being 
representative of the actual difference between depressed 
and nondepressed speakers. In other words, it ensures that 
the problem addressed in the work is depression detection 
and not an inference of the self-assessment scores. This is 
important because self-assessment questionnaires are subject 
to multiple biases [13]; furthermore, the data show that they 
can be filled out inconsistently, especially by people affected 
by depression (see The Data).

In addition to the above, the experiments showed that 
roughly one-third of the participants tended to manifest their 
condition through one modality or another. In particular, 
depressed participants tended to do so through the way they 
spoke (acoustic aspects), while control participants tended 
to do so through the words they used (linguistic aspects). 
To the best of our knowledge, such an observation has not 
previously been made in the literature, and it is important 
because it explains the diversity of the unimodal approaches 
(the tendency to make different mistakes over different 
samples) [14], which is probably the main reason for the 
effectiveness of the multimodal combination.

The rest of this article is organized as follows: Survey 
of Previous Work provides a survey of the literature, The 
Data  describes the data used in the experiments, The 
Approach describes the proposed approach, Experiments 
and Results reports on the experiments and results, and 
Discussion and Conclusions draws some conclusions.

Survey of Previous Work

Introduction shows that depression has a major impact not 
only on the lives of patients but also on society as a whole. 
Figure 1 shows that when the query “depression psychiatry” 
is submitted, IEEEXplore returns more hits than for any 
other mental health issue. In fact, depression has been the 
subject of at least four benchmarking campaigns organized 
in the last decade, including two based on a corpus that 
shows 292 people performing a human-computer interaction 
task [15, 16] and two based on a corpus of more than 200 
individuals interacting with an artificial agent [17, 18]. In 
all cases, the task is to infer the scores resulting from the 
administration of self-assessment questionnaires such as 
the Beck Depression Inventory II (BDI-II) [37] or different 
versions of the Patient Health Questionnaire (PHQ) [19].

While the works mentioned so far have focused on the 
inference of self-assessment scores, others have addressed 
the problem of professional psychiatrists detecting people 
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with depression (as this article does)  [20–24]. Such a 
task is performed with accuracy up to 90% of the time 
in  [21] with the use of electro-encephalograms (EEG); 
with 88% accuracy through the multimodal combination 
of paralinguistics, head pose and gaze in an approach 
presented in [20]); and with an F1 measure up to 80% by 
analyzing body movement in combination with head pose 
and facial expressions [23]. While these results are not being 
comparable (they were not obtained with the same data), 
they suggest that it is possible to replicate the judgment of 
professional psychiatrists approximately 4 times out of 5.

In regard to the modalities used in this article (linguistic 
and acoustic aspects of speech), several works have proposed 
experiments to investigate specific aspects of depression. 
In [25], the focus is on the use of short utterances collected 
through mobile phones (a setting typical of counseling 
services accessible through the phone). The results show 
that it is possible to detect people above the PHQ-9 threshold 
corresponding to depression with accuracy up to 72% of 
the time. The experiments proposed in [26] address the 
problem of adolescent voices, which, not being fully formed, 
are more challenging to process automatically. The results 
show that energy, accounting for how loudly people speak, 
is the best depression marker, especially when measured 
with the Teager operator [7]. Similarly, the results presented 
in [27] indicate that the main difference between depressed 
and nondepressed speakers is phonetic variability, with 
depressed people tending to be less variable.

In addition to the above, several works have addressed 
the problem of combining speech and its transcription (as 
this work does). While some works have suggested, based 
on experimental evidence, that linguistic and paralinguistic 
aspects of speech should always be modeled jointly [28], 
others have shown that this is not necessarily the case and 
that better results can be achieved, e.g., by using solely 
speech transcriptions [11]. Furthermore, other works have 
suggested that the multimodal combination of speech and 
its transcription improves over individual modalities only 
when taking into account when a sentence is uttered during 
an interaction [29] or by using models that include attention 
gates capable of identifying, for every sample, the modality 
most likely to produce the best results [10]. In other words, 

it is unclear whether depression-relevant information is 
transmitted more effectively by linguistic or acoustic aspects 
of speech.

Overall, the state-of-the-art summary presented in this 
section suggests that no form of behavioral evidence (speech, 
facial expressions, gestures, etc.) clearly outperforms the 
others. Furthermore, the use of similar approaches (e.g., 
the joint modeling of linguistic and acoustic aspects of 
speech [10, 28, 29]) over different data does not necessarily 
lead to the same conclusions about how effective the use of 
a certain modality is with respect to the others. One possible 
reason for such a state of affairs is that several works address 
the problem of identifying people diagnosed with depression 
not on the basis of a doctor’s evaluation but rather by 
inference from self-assessment scores. These are affected 
by different biases (see The Data) and, therefore, can lead 
to ambiguous results. Furthermore, depression is a complex 
phenomenon that involves a wide spectrum of factors (e.g., 
physiology, socioeconomic status, age and gender [1]) that 
result in individual differences in the way people manifest 
the pathology.

The Data

The experiments were performed over a corpus of 59 interviews 
recorded in three mental health centers in Southern Italy. Every 
interview involved a different participant, but the protocol 
was always the same. In particular, the interviewers always 
posed the same questions (e.g., “What did you do during the 
last week-end?”) and always in the same order. Out of the 
59 participants, 29 had been diagnosed with depression by a 
professional psychiatrist, while the remaining 30, referred to as 
control participants, had never experienced mental health issues. 
The interviewers were instructed to speak as little as possible, 
and on average, they spoke for 10.0% of the interview duration: 
5.1% with the depressed participants and 14.7% with the control 
participants. The difference is statistically significant ( p < 10−5 
according to a two-tailed t-test), and one possible explanation is 
that the control participants tended to involve the interviewers 
in the interaction, while the depressed ones simply tended to 
answer the questions.

Fig. 1  The chart shows the num-
ber of hits returned when sub-
mitting queries related to mental 
health issues to IEEEXplore 
(https ://ieeex plore .ieee.org/
Xplor e/home.jsp). The queries 
have been submitted with the 
constraint of returning material 
published after 2009
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Table  1 provides demographic information. The 
gender distribution was the same for both the depressed 
and control groups, with 2.47 times more females than 
males. This is in line with the observation that despite 
cultural and national differences  [30], women tend to 
develop depression roughly two times more frequently 
than men [31]. In terms of age, the range is roughly the 
same, and according to a two-tailed t-test, there is no 
statistically significant difference between the average 
ages (45.7 for the depressed group and 44.0 for the 
control group). The motivation behind the choice of the 
range was that depression tends to be less frequent among 
children  [32], adolescents  [33] and people older than 
65 [34]. In this respect, the experiment participants should 
be representative of the population most likely to develop 
depression. Finally, the table reports the distribution across 
the education levels of the Italian system, namely, Primary 
(up to 8 years of education) and Superior (between 13 
and 18 years of education). According to a two-tailed �2 
test, the difference between the two distributions is not 
statistically significant. Overall, the two groups differed in 
terms of mental health condition (depressed or control) but 

not in terms of other factors (gender, age and education). 
This should ensure that the approach proposed in this work 
detects depression and not other factors that might result 
in linguistic or acoustic differences in speech.

The upper chart of Fig. 2 shows how durations were 
distributed across the participants. On average, every 
interview lasted 242.2 seconds, but there was a statistically 
significant difference ( p < 0.05 according to a one-tailed 
t-test) when the depressed and control participants were 
considered separately (the averages were 216.5 and 267.1 
seconds, respectively). Every interview was manually 
transcribed and segmented into clauses, i.e., basic linguistic 
units that include a noun, a verb and a complement. The 
clauses were the analysis unit of the experiments, meaning 
that they were analyzed and recognized individually before 
a participant was classified as depressed or control (see 
Experiments and Results for more detail). For this reason, 
the lower chart of Fig. 2 shows the distribution of clauses 
and the average number of words they include. Overall, the 
average number of clauses is 114.0, but it is 100.8 and 126.8 
for the depressed and control participants, respectively (the 
difference is statistically significant, with p < 0.05 according 

Table 1  The table shows the demographic information available 
for the participants. According to a t-test, there was no difference 
between the depressed and control participants in terms of age. Simi-

larly, according to a �2 test, the distribution of gender and education 
level was the same for both groups

F M Avg. Age Age Range Primary Superior

Depressed 21 8 45.7 23-69 16 13
Control 21 9 44.0 23-68 12 18
Total 42 18 44.4 23-69 28 31

Fig. 2  The upper chart shows 
the interview durations for all 
participants, and the number 
at the top of each bar is the 
average duration (in seconds) 
of each clause. The lower chart 
shows the number of clauses 
for each participant, and the 
number at the top of each bar is 
the average number of tokens 
per clause (tokens are sequences 
of characters enclosed between 
two consecutive blank spaces 
and typically correspond to 
words). In both charts, the 
depressed and control partici-
pants are shown separately
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to a one-tailed t-test). However, there is no statistically 
significant difference in terms of the average number of 
words per participant (429.7 and 463.9 for the depressed 
and control participants, respectively), suggesting that the 
depressed participants tended to use more words per clause. 
The differences in duration and number of clauses are 
compatible with previous observations showing that people 
affected by depression tend to display lower involvement in 
conversations [35, 36].

Out of the 59 participants, 55 filled out the Beck 
Depression Inventory II (BDI-II)  [37], one of the self-
assessment questionnaires most commonly used to support 
the diagnosis of depression. The result of the questionnaire is 
a score that, on average, is proportional to the severity of the 
depression condition. Table 2 shows the distribution of the 
scores across the four conventional ranges used to interpret 
the BDI-II scores, namely, minimal (0-13), mild (14-19), 
moderate (20-28) and severe (29-63). The data show that 
on average, the scores accounted for the actual condition 
of the participants (the average scores were 21.7 and 9.7 
for the depressed and control participants, respectively). 
However, roughly one-third of the participants diagnosed 
with depression had scores that fell in the minimal and 

mild ranges, which are not considered pathological. This 
suggests that the BDI-II scores, at least in the data used for 
this work, cannot be considered fully reliable, especially in 
regard to depression patients. One possible explanation is 
that self-assessment questionnaires have been shown to be 
sensitive to multiple biases, and “[...] accuracy is not the 
only motive shaping self-perceptions [...] the other powerful 
motives are consistency seeking, self-enhancement, and self-
presentation” [13]. In other words, the data shown in Table 2 
suggest that several depressed participants were unable to 
fill out the questionnaire or possibly tried to conceal their 
condition, perhaps to avoid the stigma associated with 
mental health issues.

The Approach

Figure 3 shows the unimodal recognition approach used 
in the experiments. The feature extraction maps the 
clauses into sequences of feature vectors that are then 
fed to a bidirectional long short-term memory network 
(BLSTM) [38]. The BLSTM outputs a representation that 
is provided as input to a softmax layer that estimates the 
posterior probabilities of the two possible classes (control 
and depression). A clause is then assigned to the class with 
the highest a posteriori probability, and the classification 
outcomes corresponding to the N clauses uttered by a 
particular individual are aggregated through a majority vote. 
In other words, an individual is assigned to the class her or 
his clauses are most frequently assigned to.

Figure 3 shows the different strategies of multimodal 
recognition approaches. In particular, the unimodal 
representations output by the BLSTMs ( HX and HY in Fig. 4) 

Table 2  The table shows the distribution of scores across the four 
conventional ranges used to interpret the Beck Depression Inventory 
II scores, namely, minimal (0-13), mild (14-19), moderate (20-28), 
and severe (29-63)

Condition Minimal Mild Moderate Severe

Depressed 7 2 11 6
Control 24 2 1 2
Total 31 4 12 8
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Fig. 3  The figure shows the unimodal recognition approach. Speech 
signal and textual transcription corresponding to every clause k are 
converted into sequences of feature vectors (X and Y, respectively) 
that are fed to a BLSTM followed by a softmax layer. The output of 
the latter can be thought of as the a posteriori probability distribu-

tion of the classes (a clause is assigned to the class with the highest 
a posteriori probability). The classification outcomes of the individ-
ual clauses are aggregated through a majority vote (a participant is 
assigned to the class her or his clauses are most frequently assigned to

1589Cognitive Computation (2022) 14:1585–1598



1 3

are combined through the joint representation (JR) [38] and 
gated multimodal unit (GMU) [9] multimodal recognition 
approaches. In addition, the output of the unimodal classifiers 
serves as input to the sum rule [39] multimodal approach. 
The use of different combinations of approaches ensures that 
the conclusions of this work result from actual properties of 
the data and not from the use of a particular methodology.

The rest of this section provides more details about the 
feature extraction process (see Feature Extraction), unimodal 
recognition (see Unimodal Recognition) and multimodal 
recognition (see Multimodal Recognition).

Feature Extraction

For every clause, the data correspond to a speech signal and 
its manual transcription. Therefore, the feature extraction 
step processes speech and text separately and produces two 
different sequences of vectors, a format suitable for the use 
of BLSTMs (see Unimodal Recognition).

In the case of speech, the signal is segmented into 25 ms 
long analysis windows that start at regular time steps of 10 
ms and span the entire clause (two consecutive windows 
overlap by 15 ms). The values of both window length and 
step are standard in the literature, and no other values have 
been tested. After the segmentation, the signal interval 
enclosed in every window is mapped into a feature vector 
where the components are the first 39 mel frequency cepstral 
coefficients (MFCC) [7]. Such a representation, based on the 
physiology of hearing, is widely applied in the literature and 
accounts mainly for energy (how loudly someone speaks) 
and phonetic content (what sounds someone utters). The 
main motivation behind its use is that it has been effective 
in a wide spectrum of approaches aimed at inferring social 
and psychological phenomena from speech, including, e.g., 
emotions [40], personality [41] and depression (see Survey 
of Previous Work). As a result, every clause is converted 

into a sequence of vectors X = (�1, �2,… , �T ) , where �i is 
the vector extracted from the ith window and T is the total 
number of vectors.

In the case of the clause transcriptions, the text is 
converted into a sequence Y = (�1, �2,… , �N) of vectors, 
one for every word in the clause, through the application of 
Wikipedia2Vec [42], an extension of Word2vec that learns 
word embedding [43]. The key idea of such a methodology 
is to use a shallow network (only one hidden layer) to map 
every word in a text to the word that follows it [44]. If V is the 
dictionary (list of unique words taken into account), |V| its size 
and h the number of hidden neurons in the shallow network 
(with h << |V| ), the training results in a matrix W of weights 
connecting the input layer to the hidden layer ( h = 100 in 
the experiments of this work). In such a matrix, the element 
wij can be thought of as the jth component of the vector 
describing the ith word of the dictionary. During the training, 
input and output words are represented with a one-hot vector 
of dimension |V| (the kth word of the dictionary is represented 
with a vector where all elements are set to 0 except element k, 
which is set to 1). The experiments of this work are based on 
a version of Wikipedia2vec pretrained on a corpus of Italian 
texts, “itwiki”, including Wikipedia articles written in Italian.

While showing that Wikipedia2vec is effective in a 
wider range of applications, the literature proposes more 
sophisticated word-embedding methodologies that take 
into account the context and, in particular, represent the 
same word in different ways depending on the context 
in which the word appears (e.g., bidirectional encoder 
representations from transformers (BERT) [45]). However, 
in the experiments of this work, such methodologies did not 
result in any improvements. The main probable reason is that 
the clauses are short (the average length is 3.9 words), and 
therefore, the context might not carry sufficient information. 
For this reason, the experiments rely on the sole use of 
Wikipedia2vec.
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Fig. 4  The figure shows the three strategies for the multimodal com-
bination of linguistic and acoustic aspects of speech. The sum rule 
(or late fusion) makes use of the unimodal posteriors as a criterion 
for assigning a clause to a given class. Joint representation “fuses” 
the unimodal representations (see Unimodal Recognition) through a 

4-layer network that takes as input the concatenation of H
X
 and H

Y
 . 

Finally, the gated multimodal unit weights the unimodal representa-
tions according to how likely they are to lead to the correct classifica-
tion outcome
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Unimodal Recognition

The feature extraction step converts speech signals and the 
associated transcriptions into sequences of feature vectors 
(see previous section). Such a representation is suitable 
for the application of BLSTMs [38], models allowing the 
classification of sequential data. The main advantage of 
BLSTMs is that they take into account both past and future 
contexts of every element of an input sequence because of 
the presence of two hidden layers, not connected to each 
other and connected to the output layer, that have the same 
architecture as the hidden layer of a standard LSTM. One of 
the hidden layers processes the input sequences from the first 
element to the last, and, conversely, the other one processes 
it from the last sample to the first.

Unimodal recognition takes place by training two 
BLSTMs separately, one per modality, with a softmax output 
layer. In such a way, the network outcome corresponds 
to the a posteriori probability of sequences X and Y (see 
previous section) belonging to classes depressed or control. 
A sequence is then assigned to the class corresponding to 
the highest a posteriori probability.

Multimodal Recognition

Figure  4 shows the three strategies for the multimodal 
combination of linguistic and acoustic aspects of speech. 
Given that both unimodal clause recognition approaches 
output a-posteriori probabilities, the most straightforward 
approach to multimodal recognition is the application of the 
sum rule (see Fig. 4a), probably the most commonly applied 
technique for the combination of multiple classifiers [39]:

where ĉ is the class assigned to a clause, C is the set of all 
possible classes (control and depression in the experiments 
of this work), X is the sequence extracted from speech and 
Y is the sequence extracted from text (see above). Originally 
developed for combining different classifiers fed with the 
same input, the sum rule is often referred to as late fusion 
when used to combine the output of classifiers working on 
different modalities (as in the case of this work). While based 
on the unrealistic assumption that X and Y are statistically 
independent given the class, the approach has been shown 
to be effective in a wide range of problems.

The other typical approach for multimodal recognition 
is early fusion, i.e., the concatenation of feature vectors 
extracted at the same moment from multiple modalities. 
The problem is that in the experiments of this work, there is 
a significant difference in the rate at which the vectors are 
extracted from the data. In the case of speech signals, one 
vector is extracted every 10 ms, thus resulting in a rate of 

(1)ĉ = argmax
c∈C

{p(c|X) + p(c|Y)}

100 Hz, while in the case of texts, there is one vector per 
word, thus resulting in a rate of roughly 2 Hz (the average 
number of words per second). In such a situation, the 
application of the early fusion requires downsampling the 
sequence where the rate is greater and, as a consequence, 
discarding information. However, it is possible to avoid 
such a problem by obtaining a joint representation (JR) 
through the approach depicted in Fig. 4b. The unimodal 
representations are extracted from the last hidden state of 
BLSTM (H) from speech and its transcription. The key 
idea behind such an approach is to use the output of the 
hidden layer as a representation of the entire sequence. 
These representations are then concatenated and fed to a 
4-layer network that is expected to output a representation 
that better discriminates between the depressed and control 
participants.

Finally, a third multimodal approach corresponds to 
feeding the unimodal representations to a gated multimodal 
unit (GMU) [9], as shown in Fig. 4c. The GMU learns to 
weight the representations of the two modalities and, in 
particular, to increase the weight of the modality that appears 
to carry depression-relevant information. In the experiments 
of this work, the weights are scalar parameters wi that can 
be thought of as a measure of the impact that modality i has 
on the classification outcome.

Experiments and Results

The experiments were performed according to a k-fold 
experimental design. The participants were randomly split 
into k = 5 disjoint subsets, and the clauses uttered by all 
participants in the k − 1 groups were used as the training set. 
Correspondingly, the clauses uttered by the participants in 
the left-out subset were used for the test set. The process was 
repeated k times, and at each repetition, a different subset 
was left out. This made it possible to perform experiments 
over the whole corpus at disposition while still keeping 
separate training and test sets. Another advantage of the 
setup is that the experiments were person independent, 
meaning that the same participant was never represented in 
both the training and test sets. This excludes the possibility 
of the approach recognizing the identity of the participants 
and not their condition.

Training the models required the setting of five 
hyperparameters, namely, learning rate (a factor that 
influences the size of the parameter updates during training), 
number of neurons in the hidden layer, number of training 
epochs (the number of cycles through which the network 
is trained), batch size (number of training samples used 
at any training epoch) and padding (length of the vector 
sequences fed to the networks). In this work, such a task was 
performed through hyperparameter optimization, meaning 
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that the training set was split into two disjoint subsets with 
two-thirds and one-third of its samples, respectively (the 
smaller set is referred to as the validation set), and the 
automatic hyperparameter tuning approach with Bayesian 
optimization [46] was then applied to conduct a guided 
search for the best hyperparameters. The combination 
showing the highest accuracy over the validation set was 
retained and used to classify the samples of the test set.

During the experiments, the predefined sets used for the 
different hyperparameters were as follows: for the learning 
rate � , the values were 10−3 , 3 × 10−3 , 10−2 , and 10−1 . In 
the case of the hidden layers, the number of neurons was 
32, 64 or 128. The training epochs were 30, 50 or 80, and 
the batch sizes were 32, 64 or 128 samples. Finally, the 
padding values for speech were 40, 50, 60, 70, 80, 100 and 
120, while those for text were the integers between 9 and 14. 

In all cases, the main motivation behind the choice of the 
values was that they are considered standard in the literature. 
The only exception is padding, which depends on the type 

of data being used. The training was performed through 
backpropagation using the Adam optimizer and categorical 
cross-entropy as a loss function1.

Table 3 shows the depression detection results obtained 
with unimodal and multimodal approaches at the level of both 
clauses and participants. Given that the initialization of the 
network weights took place through a random process, every 
experiment was repeated 30 times, and the results are therefore 
reported in terms of average and standard deviation of the 
different performance metrics. The limited variance across the 
30 repetitions suggests that the models are sufficiently robust to 
changes in the initialization, and the averages can therefore be 
considered realistic estimates of the performance. According to 
a two-tailed t-test with Bonferroni correction, the accuracy is 
always better than chance to a statistically significant extent at 
the level of both clauses and participants.

Table 3  The table shows, at 
both the clause (C) and person 
(P) level, accuracy, precision, 
recall and F1 measure. Since 
all experiments were repeated 
30 times, the values are 
accompanied by their individual 
standard errors. JR and GMU 
stand for joint representation 
and gated multimodal unit, 
respectively

Modality Level Acc. (%) Prec. (%) Rec. (%) F1 (%)

Text C 60.4 ± 0.003 56.1 ± 0.005 46.5 ± 0.007 51.0 ± 0.005

Text P 72.9 ± 0.020 100.0 ± 0.000 44.8 ± 0.040 61.9 ± 0.040

Audio C 70.0 ± 0.006 65.1 ± 0.008 65.0 ± 0.008 65.0 ± 0.007

Audio P 74.6 ± 0.021 76.9 ± 0.032 69.0 ± 0.306 72.7 ± 0.021

Sum Rule C 66.4 ± 0.004 60.0 ± 0.006 54.3 ± 0.008 57.0 ± 0.005

Sum Rule P 83.0 ± 3.1 95.2 ± 0.032 69.0 ± 0.067 80.0 ± 0.049

JR C 64.0 ± 0.004 59.3 ± 0.006 55.2 ± 0.008 57.2 ± 0.005

JR P 84.7 ± 0.027 95.4 ± 0.030 72.4 ± 0.043 82.3 ± 0.027

GMU C 63.0 ± 0.004 58.1 ± 0.005 54.5 ± 0.010 56.2 ± 0.007

GMU P 83.0 ± 0.024 95.2 ± 0.024 69.0 ± 0.049 80.0 ± 0.032

Fig. 5  The figure shows, in 
descending order, the clause-
level accuracy per participant. 
The curves corresponding to 
the multimodal approaches 
intersect the 50% horizontal 
line later. This means that cor-
rectly classified clauses tend to 
be distributed across a greater 
number of participants, and as a 
consequence, there is a greater 
number of cases in which the 
majority vote leads to a correct 
person classification. JR and 
GMU stand for joint representa-
tion and gated multimodal unit, 
respectively

1 All models and training methodologies were implemented with 
TensorFlow.
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According to Table 3, multimodal approaches outperform 
unimodal ones in terms of person-level accuracy, the metric 
that matters from an application point of view. However, 
the speech-based unimodal approach shows the highest 
clause-level accuracy. Overall, this means that multimodal 
approaches benefit to a greater extent from the majority vote. 
Figure 5, showing the individual clause-level accuracies in 
descending order, provides a possible explanation of this 
observation. In particular, the figure shows that in the case of 
the multimodal approaches, correctly classified clauses tend 
to be more evenly distributed across participants. This leads 
to a greater number of cases in which the accuracy is above 
50% (the condition for the majority vote to work).

While providing a possible explanation of why the 
majority vote is more beneficial for certain approaches, the 
observations above do not show to what extent the benefit 
can be considered satisfactory. One way to do so is to 
consider the accuracy gain Δ�:

where � is the person-level accuracy actually observed 
after the majority vote, and �min and �max are the minimum 
and maximum person-level accuracy a majority vote can 
lead to. Person-level accuracy �min can be observed when 
all correctly classified clauses concentrate in the smallest 
possible number of participants. In contrast, the maximum 
value �max can be observed when the clause-level accuracy 
is the same for all participants. Given that the clause-level 
accuracy �c can be thought of as the probability of making 
the right decision about a clause, �max can be estimated as the 
probability of having more than half of the clauses classified 
correctly:

where M is the average number of clauses per participant 
(114 in the data of this work).

Table 4 shows the results of the different approaches; in 
particular, it shows that the multimodal ones tend to obtain 

(2)Δ� =
� − �min

�max − �min
,

(3)�max ≃

M∑

k=M∕2+1

(
M

k

)
�k
c
(1 − �c)

M−k,

higher accuracy gains. In other words, achieving high 
clause-level accuracy is not sufficient to correctly classify 
the participants. It is also necessary for the distribution of 
correctly classified clauses to allow a clause accuracy higher 
than 50% for the largest possible number of participants. 
This is important because the networks are trained to 
maximize the clause-level accuracy but not to perform 
uniformly across participants. Therefore, there is a possible 
misalignment between the way the models are trained and 
the actual goal of the approaches. The next section shows 
how and when the combination of multiple modalities can 
address, at least to a partial extent, such a problem.

Analysis of Multimodal Recognition

The previous section shows that the unimodal approaches 
tend to concentrate correctly classified clauses in a smaller 
number of participants. One possible explanation is that 
some of the participants tend to consistently manifest 
their condition through at least one of the modalities. In 
this way, they leave detectable traces of their condition in 
many clauses, and therefore, they make it easier to achieve 
high accuracy at the clause level. The participants who tend 
to do this through only one modality are likely to inject 
diversity [14], i.e., to lead the unimodal classifiers to make 
different mistakes over different participants. This can be 
an important advantage because a multimodal approach 
is beneficial mainly when unimodal approaches disagree; 
hence, one of these has a chance to compensate for the errors 
of the other.

Following up on the above, one possible way to measure 
the diversity is to compare Nd , the number of times the 
two unimodal approaches classify the same participant 
differently, with its upper bound, i.e., with the number 
Nmax of disagreements expected when the two unimodal 
approaches are statistically independent. According to the 
data, Nd = 21 , while Nmax can be estimated as follows (the 
accuracy can be thought of as the probability of making the 
right decision about a participant):

where �1 and �2 are the person-level accuracies of the two 
unimodal approaches and N = 59 is the total number of 
participants. Based on the results of Table 3, Nmax = 23 , 
meaning that Nd is 91.3% of its upper bound, and the 
unimodal approaches appear to be highly diverse.

These results suggest that a significant fraction of the 
participants ( Nd corresponds to 35.6% of the total) tend 
to manifest their condition either through one modality 
or through the other. In particular, Table 5 shows that the 
depressed participants tend to manifest their pathology 
rather clearly through the way they speak while doing so 

(4)Nmax = [�1(1 − �2) + �2(1 − �1)]N,

Table 4  The table shows the accuracy gain Δ� for the different 
approaches used in the experiments. The values �

min
 and �

max
 are the 

minimum and maximum accuracy that can result from the application 
of the majority vote, respectively

Modality �
min

 (%) �
max

 (%) Δ� (%)

Text 47.4 98.4 52.3
Audio 55.9 100 41.5
Sum Rule 49.1 99.5 63.5
JR 49.1 99.7 67.0
GMU 49.1 99.7 67.0
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more ambiguously through the words they use (hence the 
high recall of the audio-based unimodal approach). As a 
confirmation, the GMU weights of the depressed subjects 
are higher for audio than for text (58.9% vs 54.9%), and 
the converse is true for the control subjects (45.0% vs 
42.0%). The resulting diversity of the unimodal approaches 
is the probable reason why all multimodal systems show 
significantly higher person-level accuracy (see Table 3). In 
particular, the best multimodal approach performs better 
than the best unimodal system by 10.1 points. Furthermore, 
the person-level accuracy difference between multimodal 
and unimodal approaches is always statistically significant 
( p < 0.05 according to a two-tailed t-test).

The problem left open in the above is to what extent the 
improvement resulting from the application of multimodal 
approaches can be considered satisfactory. For this reason, 
it is possible to estimate how close the performance of 
the multimodal approaches is to �max , the upper bound 
of the accuracy, which can be estimated as follows (it 
is the probability of at least one of the two unimodal 
approaches making the right decisions and, hence, giving 
the combination a chance to make the right decision too):

where �1 and �2 are the person-level accuracies of the 
unimodal approaches. The value of �max is 93.2% and, 
therefore, the person-level accuracy of the multimodal 
approaches ranges between 89.0% and 90.9% of �max , the 
maximum that can be obtained with the two unimodal 
approaches at disposition. In particular, given that the best 
unimodal approach achieves an accuracy of 74.6%, the 
improvement by 10.1 points (see above) corresponds to 
54.3% of the maximum improvement that can be achieved. 
In other words, roughly half of the times when there is 
disagreement between the two modalities, the one leading 
to the correct classification compensates for the error of the 
other.

(5)�max = 1 − (1 − �1)(1 − �2),

Confidence Measures

The results presented so far suggest that the proposed 
approaches can make the right decision about an individual 
approximately 4 times out of 5, but it is unclear whether 
this proportion can be considered satisfactory. One possible 
benchmark for comparison is the performance of general 
practitioners (GPs), the doctors who are the first line of 
intervention against depression, especially in regard to 
convincing possible patients to seek treatment. According 
to a meta-analysis of the literature, the sensitivity2 and 
specificity3 of GPs are in the ranges of 41.3% to 59.0% and 
74.5% to 87.3%, respectively [47]. This corresponds to an 
accuracy between 57.9% and 73.1% for the data used in the 
experiments of this work.

According to the above, all approaches proposed in 
this work appear to perform comparably to an average 
GP, especially in terms of sensitivity (the name of recall 
in medical domains). Such a measure is particularly 
important because Type I errors (classifying a depressed 
person as nondepressed) are those that have the most 
negative consequences and, therefore, should be as limited 
as possible. This suggests that one possible approach to 
the application of depression detection technologies is to 
identify cases in which the outcome of a system can be 
trusted while leaving the others to medical attention. This 
appears to be in line with recent trends suggesting that 
AI-driven technologies should collaborate with users and 
not simply replace them [48].

One possible way to address the problem above is to 
consider only those participants for whom the two unimodal 
approaches agree with each other. The rationale is that 
agreement between multiple modalities might correspond 
to higher confidence and, correspondingly, to higher 
performance. In the experiments of this work, the unimodal 
approaches agree 38 times out of 59 (corresponding to 
64.4% of the total participants): 24 times for a control 
participant and 14 for a depressed one. In 33 of the 38 cases, 
both approaches are correct (corresponding to an accuracy 
of 86.8%). In the remaining 5 cases, the participants are 
always depressed, thus resulting in a recall of 64.3%. This 
means that filtering the participants according to agreement 
between modalities increases accuracy while keeping the 
sensitivity at the level of an average GP. As a consequence, 
at least in the experiments of this work, it is possible to 
automatically process roughly two-thirds of the participants 
while leaving only the remaining third to the doctors 
(without accuracy or sensitivity losses compared to the 
doctors considering all participants).

Table 5  The table considers the 21 cases (out of the total of 59) for 
which there is disagreement between the two unimodal approaches. 
When the audio-based approach is the correct one, the classified 
participant is always depressed. In contrast, when the text-based 
approach is correct, the distribution of the participants across the 
classes is roughly uniform. One possible explanation is that when 
depressed people tend to manifest their condition through only one 
modality, they tend to do so through audio, i.e., through the way they 
speak

Correct Modality Depressed Control

Audio 11 0
Text 4 6

2 Percentage of depressed individuals actually diagnosed as such 
(equivalent to recall).
3 Percentage of nondepressed individuals actually diagnosed as such.
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The main disadvantage of the approach above is that 
it can be applied only to the unimodal approaches that, 
according to Table  3, have the lowest performance. 
For this reason, it is necessary to define a confidence 
measure that is independent of the particular approach 
being used. One possibility is to consider the following:

where N is the total number of clauses a participant has 
uttered and nD is the number of clauses that, for a given 
participant, have been assigned to the depression class. The 
rationale behind the definition above is that the higher the 
fraction of clauses the approach assigns to a given class, the 
higher the confidence of the system.

The measure above allows one to rank the participants 
according to the value of c (from largest to smallest) and 
to consider the accuracy at position r. If higher values of c 
actually correspond to correct decisions, the accuracy should 
be high when taking into account only the top positions of the 
ranking. Figure 6 appears to confirm such an expectation, and 
in particular, it shows that the multimodal approaches have an 
accuracy higher than 90% when taking into account the 40 top-
ranking participants (roughly two-thirds of the total). In this 
respect, the approach appears to be able to discriminate between 
cases that are sufficiently clear to be processed automatically and 
cases that require medical attention, thus allowing the system 
to potentially reduce the workload of the medical personnel by 
two-thirds while still keeping the accuracy above 90%.

(6)c =
max(nD,N − nD)

N

Discussion and Conclusions

This article has presented depression detection experiments 
performed over a corpus of interviews involving 29 
depression patients and 30 persons who had never 
experienced mental health issues. The main limitation of 
the work is that the interview transcriptions were obtained 
manually, but this corresponds to a common practice in 
state-of-the-art depression detection (Survey of Previous 
Work shows that some of the most important benchmarks 
in the literature make use of manual transcriptions). 
However, the distinction between the depressed and control 
participants was made by professional psychiatrists and not 
through the administration of self-assessment questionnaires. 
This is an important advantage because it makes it more 
likely that the proposed approaches actually learned to detect 
depression. Furthermore, The Data shows that, at least in the 
case of this work, the BDI-II scores are not fully reliable, 
especially in regard to depression patients.

Overall, the results show that it is possible to achieve 
an accuracy of more than 80%, roughly corresponding to 4 
correct decisions out of 5. According to the literature [47], 
such a result corresponds to the average performance 
of a general practitioner, typically the first doctor to spot 
depression and possibly to stimulate potential patients 
to contact a psychiatrist. In this respect, the experiments 
illustrate several application scenarios where the proposed 
approaches use confidence measures that identify the cases 
most likely to be correctly classified. In this way, the systems 

Fig. 6  The plots show the accu-
racy when taking into account 
only the r persons with the 
highest confidence values. On 
average, multimodal approaches 
appear to have higher accuracy 
for every value of r, and in par-
ticular, they appear to have at 
least 90% accuracy when taking 
into account the 40 top-ranking 
participants. In other words, it is 
possible to automatically isolate 
two-thirds of the participants for 
whom the system decides cor-
rectly 9 times out of 10. JR and 
GMU stand for joint representa-
tion and gated multimodal unit, 
respectively
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can reduce the workload of doctors by up to two-thirds 
while still ensuring the desired level of performance. This is 
important because it can increase the efficiency of screening 
services and, correspondingly, reduce the costs associated 
with depression diagnosis.

The analysis of the performance shows that one of 
the main differences between unimodal and multimodal 
methodologies is that the latter tend to have more 
uniform clause-level accuracy across the participants (see 
Experiments and Results). This is important because it leads 
to higher person-level accuracy, the metric that actually 
matters from an application point of view (see Fig. 5). Such 
a result stems from the tendency of certain participants, 
in particular depressed ones, to manifest their condition 
either through what they say or through how they say it but 
not through both. To the best of our knowledge, such an 
observation has not previously been made in the literature, 
but it is an important aspect of this work. The reason is that 
it is a source of diversity across the unimodal approaches, 
and it is owing to such a property that these approaches 
disagree about a participant roughly one-third of the times. 
In this way, the correct unimodal approach has a chance to 
compensate for the error of the other, the key assumption 
underlying multimodal methodologies.

The observations above suggest that it is the behavior of 
the participants, at least to a certain extent, that determines 
the conditions under which the approaches will work. This 
is important because it might explain why state-of-the-art 
methods are uncertain in identifying the best way to detect 
depression (see Survey of Previous Work). In fact, the way 
people manifest depression can change significantly from 
one individual to another depending on a large number of 
social, psychological, economic and cultural factors [1]. As 
a result, none of the behaviors considered in the literature 
(facial expressions, paralinguistics, body movements, etc.) 
appear to clearly outperform the others. The main reason 
why this work focuses on linguistic and acoustic aspects of 
speech is that depression interferes with the neural processes 
underlying language and communication (see, e.g., [49, 50]), 
thus leaving detectable traces in both what people say and 
how they say it. In addition, the use of speech has several 
advantages from an application point of view, including the 
possibility of detecting depression via phone [25], typically 
the means through which people contact counseling services, 
or using ordinary laptop microphones in an informal setting, 
as was the case for the data used in this work.

According to the Gartner Group, one of the most 
important strategic consulting companies in the world, the 
detection of mental health issues is one of the most promising 
areas of Social and Emotion AI (www.gartn er.com/ 
smart erwit hgart ner/13-surpr ising -uses-for-emoti on-ai-
techn ology /), the AI areas concerned with the inference 
of affective phenomena from observable data. The main 

reason is the increasingly greater number of people affected 
by mental health issues [3] and the resulting pressure on 
healthcare services. In such a context, approaches such 
as those presented in this work can support the work of 
psychiatric and counseling services, possibly allowing 
doctors to concentrate on ambiguous and difficult cases 
while leaving machines to deal with the most evident ones. 
For these reasons, besides improving current methodologies 
and collecting more data, future work will focus on the 
development of strategies aimed at integrating technology 
into clinical practice, in line with observations showing that 
the best way to apply AI is to use it to support humans and 
not to replace them [48].

In addition to the above, future work will target the 
integration of the proposed approach into clinical practice. 
In this respect, a possible protocol includes the following 
steps:

– Step 1: Recording of the interviews;
– Step 2: Automatic analysis of the interview recordings;
– Step 3: Discussion of the analysis outcome among 

psychiatrists;
– Step 4: Acceptance or rejection of the automatic analysis 

outcome.

For Step 1, the main recommendation is to define a stable 
setting, meaning that the interviews should always take place 
in the same place and always with the same equipment. 
Furthermore, the position of the participants with respect to 
the computer and microphone used to record the interviews 
should not change from one person to another. For step 2, 
the suggestion is to implement the algorithms with publicly 
available libraries such as TensorFlow4 so that the results 
of the analysis will always be reproducible by third parties. 
In a similar vein, one further recommendation is to make 
the code publicly available so that potential flaws or errors 
can be identified by a potential community of users. Step 
3 corresponds to normal practice in psychiatric hospitals, 
where all cases are discussed collegially among doctors of 
the same department. Step 4 is important because it leaves 
to the doctors the responsibility of accepting or rejecting 
the outcome of the automatic analysis. This ensures that AI 
acts as a tool aimed to improve efficiency and effectiveness 
and not as a technology that replaces doctors. One possible 
recommendation for this step is to provide medical 
personnel with training in AI literacy, i.e., in developing 
a level of technical competence sufficient to integrate 
AI into professional practice. In particular, the training 
should stimulate awareness that the outcome of automatic 
approaches is subject to errors and should be considered 
competent advice rather than a fully accurate judgment.

4 https ://www.tenso rflow .org
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