
RESEARCH ARTICLE

Accurate prediction of clinical stroke scales

and improved biomarkers of motor

impairment from robotic measurements

Dimitris K. AgrafiotisID
1,2*, Eric Yang1,2, Gary S. Littman3, Geert Byttebier4,

Laura Dipietro5, Allitia DiBernardo1, Juan C. Chavez6, Avrielle Rykman7, Kate McArthur8,

Karim Hajjar8,9, Kennedy R. Lees8, Bruce T. VolpeID
10, Michael Krams1, Hermano

I. Krebs5*

1 Janssen Research & Development, Titusville, New Jersey, United States of America, 2 Novartis Institutes

for BioMedical Research, Cambridge, Massachusetts, United States of America, 3 GSL Statistical

Consulting, Ardmore, Pennsylvania, United States of America, 4 Bioconstat Bvba, Gent, Belgium,

5 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts, United States of America, 6 Biogen-Idec, Cambridge, Massachusetts, United States of

America, 7 Burke Medical Research Institute, White Plains, New York, United States of America, 8 Institute

of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom, 9 Department of

Neurology, University of Duisburg-Essen, Essen, Germany, 10 Feinstein Institute for Medical Research,

Manhasset, New York, United States of America

* dimitris.agrafiotis@gmail.com (DKA); hikrebs@mit.edu (HIK)

Abstract

Objective

One of the greatest challenges in clinical trial design is dealing with the subjectivity and vari-

ability introduced by human raters when measuring clinical end-points. We hypothesized

that robotic measures that capture the kinematics of human movements collected longitudi-

nally in patients after stroke would bear a significant relationship to the ordinal clinical scales

and potentially lead to the development of more sensitive motor biomarkers that could

improve the efficiency and cost of clinical trials.

Materials and methods

We used clinical scales and a robotic assay to measure arm movement in 208 patients 7,

14, 21, 30 and 90 days after acute ischemic stroke at two separate clinical sites. The robots

are low impedance and low friction interactive devices that precisely measure speed, posi-

tion and force, so that even a hemiparetic patient can generate a complete measurement

profile. These profiles were used to develop predictive models of the clinical assessments

employing a combination of artificial ant colonies and neural network ensembles.

Results

The resulting models replicated commonly used clinical scales to a cross-validated R2 of

0.73, 0.75, 0.63 and 0.60 for the Fugl-Meyer, Motor Power, NIH stroke and modified Rankin

scales, respectively. Moreover, when suitably scaled and combined, the robotic measures
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demonstrated a significant increase in effect size from day 7 to 90 over historical data (1.47

versus 0.67).

Discussion and conclusion

These results suggest that it is possible to derive surrogate biomarkers that can significantly

reduce the sample size required to power future stroke clinical trials.

Introduction

Stroke is the leading cause of permanent disability in the United States [1]. With the demo-

graphic profiles of most developed countries shifting towards older individuals, disability due

to stroke is projected to increase significantly in future years. As such, there is great interest in

finding pharmacological agents to promote neuro-protection and neuro-recovery as well as in

reducing the cost of clinical trials [2]. We chose to investigate the use of robotic systems

because of their growing adoption in stroke wards to deliver therapy. However, many robotic

devices, such as the InMotion Arm [3], afford not only the possibility to promote faster and

better rehabilitation, but also the potential to track an individual’s progress [4–6].

An important potential advantage of robotic devices over “traditional” clinical instruments

is that the measurement variability due to the skills and expertise of the rater can be removed

from the assessment process. It has been shown repeatedly that standard clinical scales, such as

the Fugl-Meyer assessment (FM) [7], show a high degree of variability among different raters

[8], ultimately leading to larger sample sizes being required to demonstrate the value of a par-

ticular intervention [9]. Thus, the ability to remove inter- and intra-rater variability as well as

conduct the assessments more efficiently would enable faster and less costly clinical trials [10].

However, the correlation between robotic assays and established clinical scales—such as the

NIH stroke scale (NIH) [11], the modified Rankin scale (MR) [12, 13], or the FM—remains an

open question. Although these scales have some important shortcomings, their use has been

widespread and there are a large number of legacy trials that have recorded one or all of them.

To properly leverage the information captured in these historical trials, we need a method for

mapping the results from the robotic measurements to these conventional clinical assessments.

Furthermore, because robotic assays have not been approved for use as clinical endpoints by

the FDA, it must, at a minimum, be demonstrated that they capture information similar to

that of the currently approved instruments. Prior work has shown that robotic measures corre-

lated well with the FM [14]. However, those were derived from chronic stroke during a period

when most pharmacological interventions ceased. Additionally, that work employed linear

combinations of different robotic measurements [14–18]. Although the correlations were

good, they suggested the potential to construct a much improved and more accurate predictor

using non-linear techniques specifically neural networks. The central goal of this work was to

demonstrate that we can use the same metrics to reconstruct existing clinical scales as well as

derive composites that are more sensitive the change over time as patients recover from stroke.

Given the limitations of existing stroke scales [19, 20], we believe that with the advent of new

digital biomarkers, we can do better.

Here, we provide methods and modeling details of a longitudinal study involving 208

patients who had suffered severe to moderate acute ischemic stroke and were assessed with

four commonly used clinical instruments [21]–NIH stroke scale (NIH), Fugl-Meyer assess-

ment (FM), Motor Power (MP) [22, 23] and modified Rankin scale (MR)–as well as with a
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robotic assay to measure arm movement 7, 14, 21, 30, and 90 days after the stroke onset. We

hypothesized that by utilizing nonlinear models obtained through a rigorous feature selection

algorithm, we could improve our prediction of the standard clinical scales. We hypothesized

that the different clinical scales are in part functions of gross motor movements that are non-

linear combinations of individual movement components that are being recorded by the

robotic apparatus [24]. Thus, for any effective reconstruction of these clinical scales, a nonlin-

ear modeling strategy must be adopted. Here, we utilize artificial ant colonies and neural net-

work ensembles to reconstruct the clinical scores with a high degree of accuracy that is

comparable to the level of agreement among different expert raters (cross-validated R2 of 0.75,

0.73, 0.63 and 0.60 for MP, FM, NIH and MR, respectively). Further, we demonstrate that the

robotic measurements, due to the use of systematic and objective measurements, are able to

reduce variability even in the case of a single highly trained rater.

Methods

Study population

In this study, 208 patients who had suffered acute stroke (defined as patients with a baseline

NIH of 7–20 recorded at day 7 days since stroke onset) were enrolled and were given a battery

of standard clinical assessments including the NIH, FM, MR and MP [25] measured only on

the affected side as per standard practice. Of these four, two clinical scales are of prime interest

to us, the NIH and the FM. These patients were evaluated on days 7, 14, 21, 30, and 90 after the

initial stroke. The subjects were distributed between two sites: the Burke Rehabilitation Center

in New York (145 patients) and the Western Infirmary in Glasgow, Scotland (63 patients). To

minimize inter-rater variability, the patients were assessed by a single highly trained clinician

at Burke and two highly trained clinicians at Glasgow. In addition to the clinical scales, each of

the patients was also evaluated with the InMotion robot [3], a commercial version of the MIT-

Manus robot, to obtain a battery of robot-measured kinematic and kinetic (RMK) variables.

For the RMK battery, each patient was evaluated twice, once on the side of the body affected

by the stroke and once on the unaffected side, in order to explore any potential relationships

between them. The RMK measurements for each patient took approximately 60 minutes to

complete (40 minutes for the affected side, which for severe patients required assistance with

each move, and 20 minutes on the unaffected side), whereas the standard clinical assessments

took as long as 90 minutes.

Robot measured kinematics and kinetics

The RMK battery consists of several metrics derived from various directed unassisted reaching

tasks, circle drawing, resistance to external forces, and shoulder strength measurement. These

metrics are listed in Table 1. The directed reaching tasks are broken down into 8 macro-met-

rics and 6 micro-metrics [26]. The macro-metrics involve metrics such as the deviation from a

straight line when reaching for different targets (“Deviation”), aim to the targets (“Aim”),

movement average (Mean Speed), peak speed (“Peak Speed”) and duration (“Duration”) of

movement, and three different smoothness metrics which involve the movement mean speed

divided by the peak speed (“Smooth M/P”), a jerk metric which corresponds to the magnitude

of jerk divided by the peak speed (“Smooth J1”–best for discrete movements), and a jerk metric

which corresponds to the root mean square of the jerk normalized by the duration of the

movement (“Smooth J2”–best for rhythmic movements). It has been demonstrated that

unconstrained discrete and rhythmic reaching movements of healthy subjects minimize jerk

[27, 28].
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The same reaching tasks are broken down further into sub-movements as described by

Novak et al [29]. There are then decomposed into various micro-metrics such as the number

of sub-movements (“Numb Subm”), duration of sub-movement (“Dur Subm”), degree of sub-

movement overlap (“Overlap Subm”), sub-movement peak (“Max Subm”), inter-peak interval

(“Dist Subm”), and sub-movement skewness (“Sigma Subm”). The circle drawing task yields a

metric relating the ability to coordinate the shoulder and elbow independently, characterized

by the ratio of the major to the minor axis of an ellipse fitted to the attempted circle drawing

(“Ellipse”). Finally, the movement against resistance evaluates the ability of the subject to move

the actuator against a particular level of robotic resistance (“Rnd Dyn Mean Dist Measure”) as

well as the ability to keep the robotic actuator still while the robot attempts to move the actua-

tor (“Plbck Mean”). This leads to a total of 17 individual metrics being tracked by the RMK

system. Given that the RMK metrics are evaluated for both the affected and unaffected sides,

this leads to a total of 34 robotic variables that are captured for each patient. This set is com-

pleted by one final kinetic variable called Mean Z (“Mean Z”), which measures the mean

shoulder strength (Z force) for flexion, extension, abduction, and adduction. Because of the

sensor’s range and the fact that most patients would hit the instrument ceiling on their unaf-

fected arm, Mean Z was measured only on the affected side.

Since the RMK endpoints used a variety of units and the assessments fell across widely

divergent ranges, each endpoint was linearly normalized from 0 to 1 using the formula:

x0ðr; p; tÞ ¼
�
xðr; p; tÞ � min

p;t
xðr; p; tÞ

�
=
�
max
p;t
xðr; p; tÞ � min

p;t
xðr; p; tÞ

�
ð1Þ

where x(r, p, t) represents the measurement of the r-th RMK variable for the p-th patient at the

t-th time point, and min(.) and max(.) run across all patients and time points for that variable.

Table 1. Overall description of the different RMK metrics.

Measurement Metrics Abbreviation Additional Description

Primary Motion Aim Aim

Deviation of Path Deviation Maximum distance between straight-line path vs. patient motion

Average Speed Mean Speed

Peak Speed Peak Speed

Movement Duration Duration Time To Reach Target

Jerk Metric Smooth M/P Mean Speed/Peak Speed

Jerk Metric 1 Smooth J1 Jerk Metric Normalized by Peak Speed

Jerk Metric 2 Smooth J2 Jerk Metric Normalized by Duration

Circle Drawing Ellipse Difference between major and minor axis for a drawn circle

Sub-Movements Number of Sub-movements Numb Subm Number of sub-movements

Duration of Sub-movements Dur Subm Average Width of sub-movement velocity profile

Sub Movement Overlap Overlap Subm Degree of Overlap between sub-movements

Sub Movement Peak Max Subm Maximum Height of the sub-movements

Sub Movement Skewness Sigma Subm Statistical Skewness of sub-movements

Sub Movement Intervals Dist Subm Interpeak Interval of sub-movements

Power Static Resistance Plbck Resistance against force generated by robot

Dynamic Resistance Rnd Dyn Average distance moved vs. Set Resistance Level

Shoulder Strength Mean Z Resistance against force generated by robot in the vertical direction

https://doi.org/10.1371/journal.pone.0245874.t001
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Feature selection

As mentioned earlier, our working assumption is that the different clinical scales are functions

of gross motor movements which are implicitly captured by the various RMK variables

recorded by the robotic apparatus. To test this hypothesis, we used a machine learning

approach aimed at predicting the clinical scores of a given patient on a given day from the

RMK variables measured for that patient on that same day. Models were derived indepen-

dently for each clinical scale, as different scales may capture different aspects of motor move-

ment and thus require a different subset of RMK variables for effective reconstruction. Each

patient contributed at most 6 records to the training set, one for each day for which an RMK

and clinical assessment were made (days 7, 14, 21, 30 and 90 plus some patients were also eval-

uated at day 3). If either the clinical score or any of the RMK variables were missing, that

record was excluded from the data set. (The day on which the measurement was made was not

included as an independent variable.).

To build robust models, one must guard against over-fitting. Over-fitting arises when the

number of features or adjustable parameters in the model substantially exceeds the number of

training samples. The presence of excessive features can cause the learning algorithm to focus

attention on the idiosyncrasies of the individual samples and lose sight of the broad picture

that is essential for generalization beyond the training set. A common solution to this problem

is to employ a feature selection algorithm to identify a subset of relevant features and use only

them to construct the actual model [30]. An exhaustive search is usually impractical since it

involves 2N possible combinations where N is the total number of available features, or N!

ðN� KÞ!K!

combinations if the desired number of features K is prescribed. Several feature selection algo-

rithms have been devised ranging from simple greedy approaches, such as forward selection or

backward elimination, to more elaborate methodologies, such as simulated annealing, evolu-

tionary programming and genetic algorithms [31].

In the present work, we use a feature selection algorithm based on artificial ant colonies

that was originally designed to model the biological properties of chemical compounds [32,

33]. Algorithms based on artificial ant systems are inspired by the fact that real ants, using

deposits of pheromone as a communication agent, are able to find the shortest path between a

food source and their nest [34]. A moving ant marks its path by depositing pheromone on the

ground. Although each individual ant moves at random, it can detect pheromone trails and

follow one of them with a probability proportional to the amount of pheromone on the trail.

By adding its own pheromone deposits, the ant reinforces the trail and makes it more attractive

to the other ants. While all paths are initially equally probable, the shorter ones encounter

more ants making round trips to the food source per time unit and, therefore, receive more

pheromone. Thus, short paths become increasingly more attractive to the ants, and eventually

all ants follow the shortest trail.

For feature selection, we consider the selection of a variable as a step of the real ant’s path;

therefore, the whole path represents a choice of a particular subset of K variables out of all N
variables. Each variable k, k = 1. . .N, is assigned a weight wk that is used to calculate the proba-

bility pk with which the variable is randomly selected by an ant. Initially, the weights (and prob-

abilities) for all variables are equal, (wk = w0 for all k). After the first ant has selected a subset of

K variables, a model is built using those variables and the quality of that model is used to com-

pute the “length” L of the ant’s path (the better the quality of the model, the shorter the path).

The path length L is derived from the model’s training R2 using Eq 2:

L R2ð Þ ¼
105 � 1

105R2

� 1
ð2Þ
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which increases 10-fold as R2 decreases by 0.2 up to a R2 value of ~0.2, and thus provides ade-

quate differentiation between feature subsets, while more severely penalizing solutions with R2

values lower than 0.2 (Fig 1). This formula was derived empirically and has worked well in

other similar contexts [30, 31].

After L has been calculated, the weights corresponding to the selected variables are updated

according to the following rule:

wk t þ 1ð Þ ¼ 1 � rð Þwk tð Þ þ
Dw
L

ð3Þ

where t is the ant’s number, ρ is the evaporation coefficient that simulates the evaporation of

the pheromone from the real ants’ paths, and Δw is a constant factor. The next ant calculates

the probabilities pk using the updated weights according to Eq 3:

pk ¼
wkP
kwk

ð4Þ

The process is repeated for the specified number of ants, and the best selection found is

reported. Variables that contribute to good solutions (small L, high R2) end up with larger

weights. Thus, these variables tend to be selected more often, and the overall quality of solu-

tions increases as the simulation progresses.

Fig 1. Dependence of the length of the ant’s path L (log scale) on the value of R2. As can be seen from this plot, L increases 10-fold as R2

decreases by 0.2 units up to a R2 value of ~0.2, and at a much greater rate for R2 values lower than 0.2.

https://doi.org/10.1371/journal.pone.0245874.g001
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In this work, we used 3,000 ants, and set the initial weights wk(0) to 0.01 and the weight

increment Δw to 0.1. Because of its stochastic nature, this process was repeated 10 times to

minimize the likelihood of accidental convergence to a poor local minimum. The features

identified by each run were used in a subsequent step to construct an ensemble of 10 neural

networks, and each ensemble was cross-validated 10 times (see below).

Neural networks

For each candidate set of K features, a model was derived using three-layer, fully connected

feed-forward artificial neural networks comprised of K inputs, one output, and one hidden

layer, and trained using the standard error back-propagation algorithm [35]. The logistic

transfer function f(x) = 1/(1 + e−x) was used for both hidden and output layers. Each network

was trained for 100 epochs, using a linearly decreasing learning rate from 1.0 to 0.01 and a

momentum of 0.8. During each epoch, the training patterns were presented to the network in

a randomized order.

Neural networks were chosen because of their ability to capture complex nonlinear rela-

tionships. However, neural networks are inherently unstable in that small changes in the train-

ing set and/or training parameters can lead to large changes in their generalization

performance. A proven way to improve the accuracy of unstable predictors is to create multi-

ple instances of them and aggregate their predictions [35]. So-called ensemble techniques,

such as bagging [36], boosting [37], and stacking [38, 39], combine multiple models to achieve

better predictive performance than could be obtained from any of the constituent models.

Obviously, combining the output of multiple predictors is useful only if there is disagreement

between them. Model diversity can be introduced by combining different learning algorithms,

varying the input features, randomizing the training procedure, adding noise to the response

value, or manipulating the training set.

In the present work, each subset of features identified by the artificial ant algorithm was

used to construct 10 independent neural network models using exactly the same network

topology and training parameters but a different random seed number (and thus different ini-

tial synaptic parameters and presentation sequence of the training samples). The predictions

of these 10 models were averaged to produce the aggregate prediction of the ensemble, as illus-

trated in Fig 2. We have found that this approach often outperforms alternative ensemble

methods [40]. We employed this approach for every single run of the feature selection

algorithm.

Cross-validation

Following common practice, the quality of the models was assessed using 10-fold (leave-10%-

out) cross-validation, and quantified using the cross-validated correlation coefficient, R2CV,

which measures the correlation between the actual and the predicted clinical scores. R2CV was

obtained using the jackknife approach, i.e., by dividing the training data into 10 disjoint sub-

sets each containing 10% of the patterns, systematically removing each subset from the train-

ing set, building a model with the remaining patterns, and predicting the clinical scores of the

removed patterns using the optimized network parameters. Once all 10 subsets were processed

in this manner, the resulting predictions were compared to the original clinical scores to deter-

mine their degree of agreement (R2CV). Since cross-validation is itself susceptible to the partic-

ular partitioning of the data samples, each model was cross-validated independently 10 times

using a different random shuffling of the training patterns in order to establish a better esti-

mate of its generalization ability. The same cross-validation procedure was used for both indi-

vidual networks and network ensembles.
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Computational details

Feature selection, neural network modeling and cross-validation were implemented in the C+

+ and C# programming languages and are part of the DirectedDiversity1 [41] and Third

Dimension Explorer [42] software suites. Linear models were built in the R statistical program-

ming environment [43].

Ethics statement

The specific study from which the data has been collected has been expressly approved by the

MIT Committee on the Use of Humans as Experimental Subjects (COUHES), the Burke Reha-

bilitation Hospital IRB, and the NHS National Patient Safety Agency / Gardiner Institute

Western Infirmary of Glasgow University IRB. All participants provided written consent to

participate in this study, and copies of their signed consent forms have been archived. This

consent procedure was approved by all the aforementioned ethics committees/IRBs.

Results and discussion

Descriptive statistics and normalization

Our trial had two primary goals: 1) test whether the RMK metrics can predict the clinical scales

with sufficient accuracy to serve as their surrogates for measuring impairment and recovery in

a non-variable and objective manner, and 2) test whether it is possible to design a more sensi-

tive RMK-based endpoint to measure effect size and thus reduce the sample size of future clini-

cal trials. Endpoint sensitivity was assessed using the standardized paired effect size, defined as

the mean divided by the standard deviation of the day 7 to day 90 changes, aggregated over all

patients.

To enable these analyses, we identified two complementary patient populations: 1) those

with complete data (i.e., no missing values) for days 7 and 90 for all 35 RMK variables and all

four clinical scales (87 patients, 67 from Burke and 20 from Glasgow, hereafter referred to as

Fig 2. Schematic illustration of the ensemble neural network models used to predict the clinical scales from the

RMK variables. Each subset of features identified by the artificial ant algorithm was used to construct 10 independent

neural network models using exactly the same network topology and training parameters but a different random seed

number (and thus different initial synaptic parameters and presentation sequence of the training samples). The

predictions of these 10 models were averaged to produce the aggregate prediction of the ensemble.

https://doi.org/10.1371/journal.pone.0245874.g002
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completers); and 2) those who did not meet these criteria (121 patients, 79 from Burke and 42

from Glasgow, referred to as non-completers). Descriptive statistics of the two subpopulations

are provided in Table 2. All four clinical scales show a statistically significant difference in the

distribution of the completer and non-completer populations when aggregated over the entire

course of the trial, with the former showing a greater degree of impairment. By contrast, no

statistically significant difference was observed in the NIH scores upon admission or the FM,

MP and NIH scores at baseline (day 7), though the completers appear slightly more impaired

on average. In general, different variables showed different directional movement and rates of

progression over time, with substantial variability from patient to patient.

We were well aware that in a relatively large group of patients 7 days post stroke the FM

might include an occasional patient who showed a ceiling effect for the measurement [20],

especially as the accession conditions did not include a damage severity assessment or a mini-

mum motor impairment score. The fact that 5 out of 208 patients had an FM score of 66 by

day 7 strengthens the point of this study because the goal was to establish a biomarker that

would cover the full spectrum of stroke patients and we were concerned that a study con-

ducted exclusively in the US would be limited to patients with very severe to moderate stroke.

The US hospital used in this study is an independent rehabilitation facility admitting referrals

from acute hospitals with severe to moderate strokes, whereas the UK hospital is an integrated

facility that cares for patients with both acute and chronic stroke. This is reflected in our results

which show that the highest FM patient score admitted in our study in the US was 46 (max 66)

at day 7, while the mean score of patients admitted to the UK facility was 39.

Correlation analysis

An intuitive way to visualize the correlation structure of the RMK data set is to embed the 35

robotic and four clinical variables into a two-dimensional nonlinear map in a way that pre-

serves as much as possible the pairwise correlations between them. The map shown in Fig 3

contains a point for each RMK and clinical metric and was constructed using stochastic prox-

imity embedding (SPE) [44–46] so that the distances of the points on the map match as closely

as possible the correlation distances of the corresponding features, defined as dij = 1 –abs(Rij),
where Rij is the Pearson correlation coefficient between the i-th and j-th features computed

over all patients and time points. Thus, correlated (and anti-correlated) features appear close

to each other on the map, whereas uncorrelated ones appear further apart (note that the actual

distance between two points is a function of not only the correlation between these two fea-

tures alone, but to all the other features as well–the map reproduces all pairwise distances in a

least-squares sense).

Several observations emerge from this map. First, the four clinical scales (highlighted in

red) show a substantial degree of correlation to each other as compared to the majority of the

RMK variables, with FM and MP exhibiting very similar correlation profiles and being highly

correlated themselves (R = 0.933). This is consistent with the findings of Bosecker et al [14]. on

chronic stroke patients (111 patients, R = 0.785) as well as previous studies of subacute stroke

by Ferraro et al. [47] (12 patients, R = 0.981) and Krebs et al. [8] (56 patients, R = 0.981), and

shows the tight coupling of strength (MP) and isolated joint movement (FM).

Second, the RMK variables on the affected side (in blue) exhibit substantially greater corre-

lation to the clinical scales compared to the non-affected side (in green). Among all the RMK

metrics, Rnd Dyn Mean Dist, Aim, Deviation, Smooth J1, Plbck Mean, and Ellipse exhibit the

highest correlation to the clinical scores both on the affected and the unaffected sides, but sub-

stantially more so on the affected side. Finally, the map reveals distinct clusters of correlated

variables which are preserved on both the affected and unaffected sides (outlined by green and
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Table 2. Descriptive statistics.

Completers Non-Completers Total

Count Min Max Mean StdDev Median Count Min Max Mean StdDev Median Count p-value

Demographics Age 87 29 96 70.552 13.860 73 121 22 97 73.521 13.522 76 208 1.3E-01

Sex | Male 43 63 106

Sex | Female 44 58 102

Ethnicity | Caucasian 66 98 164

Ethnicity | Hispanic 6 8 14

Ethnicity | Asian 1 2 3

Ethnicity | African American 14 13 27

Handedness | Right 58 80 138

Handedness | Left 8 10 18

Handedness | Left / Right Writing 0 1 1

Handedness | Unknown 21 30 51

Affected Side | Right Body 32 40 72

Affected Side | Left Body 35 51 86

Affected Side | Unknown 20 30 50

Site | Burke 67 79 146

Site | Glasgow 20 42 62

Clinical Scales NIH Admission 51 1 27 10.860 6.470 11 77 1 27 10.390 5.910 9 128 6.8E-01

FM Day 7 87 4 66 40.250 21.650 45 91 4 66 38.490 21.930 41 178 5.9E-01

MP Day 7 87 2 70 45.490 20.140 50 73 0 70 39.290 21.710 43 160 6.5E-02

NIH Day 7 87 0 24 5.750 4.270 5 93 0 21 6.490 4.860 6 180 2.8E-01

FM 403 4 66 48.790 20.030 58 391 0 66 44.430 22.600 54 794 4.2E-03

MP 402 2 70 52.270 17.830 56 314 0 70 45.360 21.500 53 716 5.2E-06

NIH 404 0 24 3.540 3.720 2 408 0 21 4.590 4.500 3 812 3.1E-04

MR 165 0 5 2.350 1.280 2 129 0 5 2.820 1.250 3 294 1.7E-03

RMK Metrics Aim Aff 404 0.003 1 0.176 0.122 0.144 377 0 0.79 0.210 0.144 0.172 781 4.1E-04

Aim NonAff 404 0 0.931 0.245 0.138 0.215 380 0.031 1 0.272 0.151 0.245 784 9.3E-03

Deviation Aff 402 0.005 0.848 0.093 0.106 0.06 381 0 1 0.128 0.164 0.072 783 4.5E-04

Deviation NonAff 404 0 1 0.092 0.101 0.067 377 0.001 0.873 0.122 0.141 0.078 781 7.2E-04

Dist Subm Aff 404 0.01 1 0.364 0.126 0.358 368 0 0.754 0.374 0.135 0.369 772 2.9E-01

Dist Subm NonAff 404 0.036 1 0.344 0.129 0.334 381 0 0.749 0.376 0.137 0.369 785 8.0E-04

Dur Subm Aff 404 0.173 1 0.493 0.134 0.491 369 0 0.831 0.479 0.140 0.486 773 1.6E-01

Dur Subm NonAff 404 0.262 1 0.600 0.134 0.589 381 0 0.977 0.612 0.130 0.613 785 2.0E-01

Duration Aff 404 0.044 1 0.234 0.134 0.201 380 0 0.894 0.266 0.162 0.226 784 2.8E-03

Duration NonAff 404 0.035 0.855 0.207 0.126 0.175 381 0 1 0.257 0.149 0.227 785 5.2E-07

Ellipse Aff 403 0.999 1 1.000 0.000 1 379 0 1 0.992 0.089 1 782 8.1E-02

Ellipse NonAff 404 0.002 1 0.755 0.183 0.818 380 0 0.988 0.734 0.188 0.793 784 1.1E-01

Max Subm Aff 404 0.031 0.77 0.339 0.133 0.323 369 0 1 0.319 0.156 0.292 773 5.7E-02

Max Subm NonAff 404 0.018 0.775 0.321 0.152 0.303 381 0 1 0.283 0.160 0.258 785 6.9E-04

Mean Speed Aff 404 0.007 0.689 0.299 0.111 0.29 380 0 1 0.281 0.138 0.267 784 4.5E-02

Mean Speed NonAff 404 0.008 1 0.318 0.136 0.313 377 0 0.814 0.279 0.146 0.269 781 1.3E-04

Mean Z Aff 404 0.816 1 0.849 0.029 0.842 328 0 0.914 0.829 0.094 0.835 732 2.2E-04

Numb Subm Aff 404 0 0.858 0.181 0.128 0.156 369 0.008 1 0.218 0.156 0.185 773 3.6E-04

Numb Subm NonAff 404 0 1 0.161 0.133 0.124 381 0.006 0.922 0.213 0.152 0.179 785 4.5E-07

Overlap Subm Aff 404 0.056 1 0.453 0.128 0.443 367 0 0.761 0.432 0.125 0.434 771 2.2E-02

Overlap Subm NonAff 404 0.16 1 0.491 0.149 0.482 379 0 0.93 0.482 0.130 0.48 783 3.7E-01

Peak Speed Aff 404 0.05 0.833 0.397 0.133 0.377 380 0 1 0.379 0.152 0.36 784 7.9E-02

Peak Speed NonAff 404 0.057 0.801 0.359 0.150 0.343 377 0 1 0.318 0.155 0.306 781 1.9E-04

Plbck Mean Aff 404 0 0.961 0.170 0.171 0.098 377 0.003 1 0.212 0.188 0.147 781 1.2E-03

Plbck Mean NonAff 403 0.003 0.823 0.139 0.170 0.063 383 0 1 0.164 0.167 0.089 786 3.8E-02

Rnd Dyn Mean Dist Aff 404 0.017 0.975 0.728 0.258 0.866 380 0 1 0.670 0.300 0.86 784 3.9E-03

Rnd Dyn Mean Dist NonAff 404 0 0.982 0.770 0.120 0.797 381 0.106 1 0.752 0.148 0.796 785 6.3E-02

Sigma Subm Aff 404 0.165 1 0.456 0.124 0.46 369 0 0.801 0.436 0.124 0.447 773 2.5E-02

Sigma Subm NonAff 404 0.212 1 0.553 0.132 0.546 381 0 0.905 0.550 0.117 0.55 785 7.4E-01

Smooth J1 Aff 404 0.029 0.942 0.170 0.101 0.143 375 0 1 0.192 0.128 0.154 779 8.2E-03

Smooth J1 NonAff 404 0 0.466 0.123 0.059 0.114 381 0.005 1 0.128 0.091 0.109 785 3.6E-01

Smooth J2 Aff 404 0 0.588 0.114 0.075 0.096 378 0.003 1 0.121 0.118 0.086 782 3.3E-01

Smooth J2 NonAff 404 0 0.39 0.084 0.055 0.074 380 0 1 0.076 0.077 0.059 784 9.6E-02

Smooth M/P Aff 404 0 0.967 0.579 0.129 0.601 380 0.111 1 0.550 0.150 0.562 784 3.9E-03

Smooth M/P NonAff 404 0 1 0.500 0.135 0.524 377 0.017 0.848 0.470 0.147 0.484 781 3.1E-03

RMK metrics are normalized across all patients and assessment points. Statistics for clinical scales and RMK metrics are based on total number of patient assessments.

p-values that indicate a statistically significant difference between completers and non-completers are highlighted in red.

https://doi.org/10.1371/journal.pone.0245874.t002
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blue ellipses, respectively). These clusters include: 1) Overlap Subm, Sigma Subm and Dur
Subm; 2) Rnd Dyn Mean, Aim, and Deviation; 3) Peak Speed,Mean Speed,Max Subm, Dist
Subm, and Smooth J2; and 4) Numb Subm,Duration, and Smooth M/P. While we only mea-

sured FM and MP on the ipsilesional side, these results seem to suggest that motor effects cas-

cade to the contralesional side as well.

Given the degree of redundancy among the RMK metrics, we used principal component

analysis (PCA) to estimate the number of underlying independent variables and thus the

intrinsic dimensionality of the RMK data. The first 3 PCs account for 59% of the total variance

in the data, while 10, 14 and 22 PCs are required to reach the 90%, 95% and 99% levels, respec-

tively. (Note that the limited size of our data set precluded the use of more elaborate geodesic

approaches for detecting nonlinear manifolds, such as isometric SPE [45], isomap [48], or

locally linear embedding [49]. In general, PCA tends to overestimate the true dimensionality

of a data sample.).

Fig 3. SPE map of the correlation distances of the clinical and RMK parameters for the completers cohort. The

map was derived by computing the pairwise Pearson correlation coefficients (R) for all pairs of features, converting

them to correlation distances (1-abs(R)), and embedding the resulting matrix into 2 dimensions in such a way that the

distances of the points on the map approximate as closely as possible the correlation distances of the respective

features. The clinical parameters are highlighted in red, the RMK parameters on the affected side in blue, and the RMK

parameters on the unaffected side in green. The map also shows distinct clusters of correlated variables which are

preserved on both the affected and unaffected sides (outlined by green and blue ellipses, respectively).

https://doi.org/10.1371/journal.pone.0245874.g003
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Prediction of clinical scales

Models were derived independently for each clinical scale, using the completer population for

training and cross-validation, and the non-completer population for external validation. Since

the number of optimal features is not known a priori and the generalization error is largely

determined by the ratio of training samples to adjustable parameters in the model, feature

selection was run with varying numbers of input features k (2, 4, 6, 8, 10, 12, 14) and hidden

units h (1, 2, 3). The artificial ant algorithm was run five times for each combination of k and

h, and the features identified in each run were, in turn, used to derive ensemble models com-

prising 10 individual predictors. Finally, each resulting ensemble (along with its constituent

individual networks) was cross-validated 10 times using 10-fold cross-validation. This entire

process was repeated separately for each of the four clinical scales. Thus, our modeling effort

involved the generation and training of 4 × 7 × 3 × 5 × 10 × (10+1) × 10 = 462,000 individual

neural networks (where 10+1 accounts for the 1 training and 10 cross-validation runs for each

network).

The models with two hidden units were slightly better than those with one and virtually

identical to those with three, so the remaining discussion is based on the models with two hid-

den units. Similarly, other training parameters, such as momentum, initial synaptic weights

and number of training epochs, had minimal impact on the generalization error and were set

to the values outlined in the Methods section. Although, as we discuss later, there were distinct

differences among clinical scales, all models showed good predictive power, with the cross-val-

idated R2s ranging from 0.48 to 0.73 for individual networks, and 0.50 to 0.75 for network

ensembles. Model aggregation improved the results in all cases, both in terms of predictive

ability (the R2
CVs of the ensembles were on average 0.02 units greater than those of the corre-

sponding individual predictors) as well as robustness (standard deviation was reduced by a fac-

tor of two to three). The training R2’s were on average 0.05 units higher than the cross-

validated R2’s.

The results are summarized in Fig 4. The solid lines represent the average ensemble cross-

validated R2 of the best model for each clinical scale as a function of the number of input fea-

tures, aggregated over all cross-validation runs. This plot reveals several trends. First, model

performance exhibits an asymptotic behavior with respect to the number of features, reaching

the point of diminishing return at approximately 8 features for all four clinical scales. Second,

the models for the FM and MP display comparable predictive power, which is not surprising

given the strong correlation between them. Further, performance was not uniform across the

four clinical scales. The FM and MP models are more predictive than those for NIH and MR,

with the latter showing substantial deficits both in terms of predictiveness (mean) and robust-

ness (standard deviation). It should be noted, however, that the MR models were derived from

substantially fewer training samples, as we only had data available for days 30 and 90. At the

optimal 6–10 feature range, the R2
CV for NIH and MR are 0.1–0.13 units lower than that of

FM and MP, which suggests that the NIH and MR scales encode additional elements of patient

function that are not captured by the robotic assay or are inherently more noisy.

More importantly, the ensemble models retain much of their predictive power on the non-

completer population, as illustrated by the dotted lines in Fig 4. These are patients who were

not ‘seen’ by the model during training, and represent an excellent external validation set. The

R2 of the best 8-feature models for FM, MP and MR are 0.60, 0.59 and 0.58, respectively, while

that of NIH is 0.42. Although these values are lower than those obtained from cross-validation,

the models are still highly predictive. Again, for most of the clinical scales, performance pla-

teaus at around 8 features with the exception of NIH where there is a spike in predictive power

for 6 features.
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Our models are markedly better than those derived by Bosecker et al. on patients with

chronic stroke [14]. To reduce the number of dimensions, in that work we used PCA on all

kinematic and kinetic metrics as a filter prior to regression, and used multi-linear regression

to derive the actual models. The observed differences in predictive power could be due to a

number of factors, including the type and number of patients employed in the two studies, the

use of neural networks as opposed to multi-linear regression (MLR), and/or the use of a more

elaborate feature selection algorithm. To directly compare the two methods, we used the same

PCA technique to select the 8 most important features, and derived new multi-linear regres-

sion models using our new training set (the same completer population). The 8 features identi-

fied by PCA were all on the affected side and included Aim, Deviation,Mean Speed, Peak
Speed, Smooth J1, Ellipse, Rnd Dyn Mean Dist, andMean Z. In addition, to further distinguish

the effects of feature selection and linearity, the 8 features that produced the best neural net-

work ensembles by cross-validated R2 for each clinical scale were used to construct equivalent

linear models by MLR. All of these models were cross-validated using the same 10-fold cross-

validation procedure described in the Methods session, so that their generalization ability

could be directly compared.

As can be seen in Fig 5, the use of neural networks coupled with the artificial ant algorithm

afford significant benefits, improving the R2 by 0.09 for FM, 0.04 for MP, 0.08 for NIH, and a

dramatic 0.17 for MR. Most of these gains appear to stem from the use of nonlinear modeling;

the difference in the R2 between ANTS-MLR and PCA-MLR for FM, MP and MR is only

~0.01, except for NIH where the features selected by the artificial ants are markedly better even

in a linear context. These differences are only partly explained by the use of ensembles, which

accounts for only a ~0.02 improvement of R2 compared to individual networks. (Note that

MLR is a stable predictor that does not benefit from this particular form of aggregation.).

Fig 4. Cross-validated R2 of the best models derived from the completers (solid lines) and validated with the non-

completers (dashed lines) for each of the four clinical scales, using 2, 4, 6, 8, 10, 12 and 14 robot-derived RMK

features. The figure shows the ability of the robot-derived RMK models to predict the clinical scales with an increasing

number of features. The model performance exhibits an asymptotic behavior with respect to the number of RMK

features, reaching the point of diminishing returns at approximately 8 features for all four clinical scales. Note the small

variance in the prediction of the trained data as shown by the small “whiskers,” which for the most part, are not visible

in the figure.

https://doi.org/10.1371/journal.pone.0245874.g004
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Importance of individual features

One of the goals of our analysis was to gain a more quantitative understanding of what each of

the clinical instruments is trying to measure, how they differ from each other, where they fall

short, and how we can design alternative scales with greater sensitivity and ability to detect

finer differences in motor function.

Given the complex correlation structure of the RMK metrics, the features that are selected

by the feature selection algorithm are not necessarily the only ones that can produce a high

quality model. The SPE map in Fig 3 shows clusters of highly correlated RMK metrics which

could, in theory, be interchangeable in the models. Further, there may be features that can be

replaced by a small group of other features as opposed to a single one and still yield a model of

comparable predictive power.

To assess the importance of each feature in predicting the various clinical scales, we system-

atically removed each feature from our training sample and repeated the feature selection,

aggregation and cross-validation procedure for each derived data set. Given the computation-

ally intensive nature of this exercise and our previous observations regarding the optimal num-

ber of features and hidden units, this process was only tested with models with 8 input and 2

hidden units. The results are summarized in Fig 6.

The left-most data point and the horizontal solid line on the top part of the plot represent

the cross-validated R2 of the best model with all features included, averaged over all 10 cross-

validation runs (standard deviations shown as error bars). Each subsequent point shows the R2

of the corresponding apomodel, i.e., the model derived by omitting the feature shown on the x

axis. The individual markers at the bottom part of the plot indicate a statistically significant

Fig 5. Cross-validated R2 of the best 8-feature models derived using three different approaches for feature

selection and model building: 1) features selected by artificial ants with neural networks, model derived with

neural networks (dark blue); 2) features selected by artificial ants with neural networks, model derived with

multi-linear regression (light blue); and 3) features selected by PCA, model derived with multi-linear regression

(red). Every model was cross-validated using the same 10-fold cross-validation procedure described in the Methods

session.

https://doi.org/10.1371/journal.pone.0245874.g005
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difference between the R2 distributions of the all-feature and the respective apomodels (the

presence of a marker indicates that the difference between the two distributions is statistically

significant, and the absence that it is not).

For FM and MP, the most critical feature is Rnd Dyn Mean Dist Aff, and its omission results

in a 0.04 and 0.07 drop in R2 for FM and MP, respectively. Deviation Aff and Dist Subm Aff
also appear important for both scales, but the effect is small (0.01 on the R2 scale) and could be

an artifact of the small sample size (only 10 cross-validation runs). This confirms that both the

FM and MP scales are motor impairment-based scales and can rely on the ability of a patient

to exert force in a coordinated manner, which can be captured reliably by a robotic device.

A number of features appear significant for NIH, including Rnd Dyn Mean Dist Aff, Plbck
Mean Aff, Peak Speed Aff, Smooth M/P Aff, Deviation Aff and Deviation NonAff. This suggests

that the NIH stroke scale has a more global and coarser nature Finally, for the MR scale, Aim
Aff emerges as the most important feature, followed by Rnd Dyn Mean Dist Aff, Plbck Mean
Aff,Mean Speed NonAff, Dist Subm Aff, and Dist Subm NonAff. The large number of relevant

features suggests that the MR scale is coarser than the three other clinical scales, which is not

surprising given the low correlation between them (Fig 4).

Rnd Dyn Mean Dist Aff is the only feature that is important for all four clinical scales, and

its effect eclipses that of any other RMK variable (except Aim Aff for MR). This finding, along

Fig 6. Importance of individual RMK features in predicting the four clinical scales, obtained by systematically removing each feature from the

training sample and repeating the feature selection, aggregation and cross-validation procedure for each derived data set. Only models with 8

input and 2 hidden units are shown. The left-most data point and the horizontal solid line on the top part of the plot represent the cross-validated

R2 of the best model with all features included, averaged over all 10 cross-validation runs (standard deviations shown as error bars). Each

subsequent point shows the R2 of the corresponding apo model, i.e., the model derived by omitting the feature shown on the x axis (the model still

includes 8 features, just not the one shown on the x axis). The individual markers at the bottom part of the plot indicate whether there is a

statistically significant difference between the R2 distributions of the all-feature and the respective apo models (the presence of a marker indicates

that the difference between the two distributions is statistically significant, and the absence that it is not).

https://doi.org/10.1371/journal.pone.0245874.g006
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with the high generalization ability of all the models, suggests that these clinical instruments

depends heavily on a person’s motor impairment measurement and as such can be easily

replaced with an objective device. It also means that other potentially other relevant aspects of

stroke recovery may be missed by these scales, e.g. depression level. While it is not surprising

that the features that emerge as most critical in deriving nonlinear models are also among

those most correlated to the clinical scales (see Fig 4), it is also clear that the importance of a

feature cannot be deduced solely from correlation or in isolation from other feature combina-

tions. Most features can be replaced by other features or groups of features, and many configu-

rations exist that can yield equally predictive models.

Maximizing effect size with novel composites

At this point, we have demonstrated that a small number of RMK invariants can predict the

clinical scales with sufficient accuracy to serve as a proxy for measuring impairment in an

objective and unbiased manner. As seen in Fig 7, minimizing the inter-rater variability leads to

a significant increase in the effect size vs. the historical average. However, if we simply repli-

cated a scale in which there are significant floor or ceiling effects we would not be taking full

advantage of the InMotion apparatus. For instance, in this trial, there are individuals with a

FM score of 66, which is well within the normal range. These individuals had a stroke that was

mild enough, such that it would be difficult to assess improvement over time with the tradi-

tional scales.

Thus, our second goal was to determine whether we could improve the sensitivity of the

clinical endpoints by means of a novel RMK-based composite that could be used to measure

effect size in future clinical trials. We have already seen that motor impairment play a domi-

nant role in all clinical scales, but the relative weight of each of these components differs from

one scale to another. We hypothesized that by rebalancing these weights we could detect finer

improvements in a patient’s condition over a short period of time. Therefore we sought to

Fig 7. Optimization of effect size for robot-derived RMK metrics. The horizontal lines show the day 7 to day 90

effect size for comparable patients of the historical VISTA data for the NIH, as well as the effect sizes for the NIH, FM

and MP assessment scales for our completers cohort. The figure also shows the performance of the robot-derived RMK

composites optimized for effect size for the trained (solid lines) and cross-validated sets (dashed lines). Note the

increase of over 20% in cross-validated effect size for the RMK composites over the clinical scales with 4-features for

this study (and over 70% over the historical data).

https://doi.org/10.1371/journal.pone.0245874.g007
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create a composite scale made exclusively of RMK metrics and determine whether it could

improve our ability to distinguish patient improvement from day 7 to day 90. While no treat-

ment was administered, our assumption was that there would be some natural recovery during

the acute and sub-acute stroke phase.

Effect size was assessed using Cohen’s d for paired observations, defined as the mean

divided by the standard deviation of the day 7 to day 90 changes over the entire completer pop-

ulation. The composite itself is defined as a linear combination of RMK features:

cðjÞ ¼
X35

i¼1

wðiÞ � rmk2ði; jÞ ð5Þ

where RMK(i, j) represents the ith feature of the jth patient, and w(i) represents the weight of

that feature. Eq 5 implicitly assumes that w(i) will be non-zero for only a specific number of

features. To ensure clinical relevance, we set the maximum number of features with non-zero

coefficients to 8, and limited the choice to only the features found by the neural networks (we

examined separately the three groups of 8 features found in the best models of the three clinical

scales). Thus, given a particular set of 8 features, the challenge was to identify the subset of fea-

tures and corresponding weights that maximized Eq 5. (Unlike the fitting of clinical scales,

maximizing the effect size using a nonlinear model would make the problem ill-posed [50].

With prediction, there is a cap on how well a model can perform: a perfect prediction. There is

no such intrinsic upper bound on the standard effect size, which can, in theory, be driven to

infinity with the use of higher order terms.).

We solved this problem using a greedy forward selection algorithm. Briefly, the algorithm

constructed composites by adding one feature at a time until all 8 preselected RMK endpoints

were included. The process started by identifying the feature that yielded the maximum effect

size and assigning to it a weight of 1. Each remaining feature was then examined in turn, and

the one that yielded the largest effect size in combination with the previously selected feature

was added to the composite. The algorithm continued in this fashion progressively building

larger composites until all 8 features were included. At each step, each candidate feature was

evaluated using 18 discrete weights ranging from -1 to +1 in increments of 0.1, while keeping

the coefficients of the already selected features at their previously optimized values. Once the

feature was selected, the weights of all the features in the current composite were refined in an

iterative fashion until the effect size no longer improved. (An alternative backward elimination

algorithm was also employed but produced inferior results. That method started by including

every preselected RMK endpoint in the composite and optimizing their coefficients using the

Newton-Raphson gradient minimization procedure. The feature with the smallest weight was

then identified and removed from the composite, the weights of the remaining features were

re-optimized, and the process continued in the same fashion until a single feature remained.).

As with the prediction of clinical scales, cross-validation is necessary to ensure that the

resulting composites are meaningful beyond the training set. Thus, for each of the three groups

of 8 features used in the most predictive models of MP, FM, and NIH, respectively, the forward

selection algorithm was repeated 100 times, each time using a different, randomly chosen 80%

of the patients to build up the composites and reserving the remaining 20% for testing.

The results are summarized in Fig 7, which plots the average effect size for the training and

validation sets as a function of the number of features included in the composite (each point

represents the average of 100 cross-validation runs). The blue, green and red solid horizontal

lines represent the effect sizes of the FM, MP and NIH clinical scales, and serve as reference

points for evaluating the sensitivity of the RMK composites. Overall, the NIH stroke scale is
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the most effective in assessing change from baseline (effect size of 1.07), followed by Motor

Power (1.03) and Fugl-Meyer (0.97).

For the RMK measurements, no single feature performs as well as the clinical scales, which

is not surprising given that the latter encapsulate multiple RMK measures, as demonstrated

earlier. The effect size increases sharply as additional features are added, exceeds the clinical

scales by as much as 30% for the training and 20% for the validation set with only four features,

and then plateaus offering little additional improvement. As expected, the effect size is signifi-

cantly lower for the validation than for the training set and is also more variable.

In order to test the sensitivity of these robot-assisted surrogate markers against historical

data, we selected a subset of 2,937 patients from the Virtual International Stroke Trials Archive

(VISTA) [51, 52] with a comparable degree of stroke severity as measured by the NIH at day 7.

These historical patients were chosen at random so as to match the frequency distribution of

NIH scores at day 7 of our current study population, which ranged from 0 to 24. More specifi-

cally, for each one of our current study patients, nearly 14 subjects were selected at random

from the VISTA registry with the same NIH score measured at day 7. This process yielded a

cohort that had the same proportion of patients within each NIH point. This group of 2,937

patients had a day 7 mean NIH score of 5.7 ± 4.1 that improved by 2.1 ± 3.1 points at day 90,

giving a standardized effect size of 0.67 for the changes from day 7 to day 90 (illustrated by the

red dashed line in Fig 7).

As seen in Fig 7, optimized RMK composites with as few as four features increased the

effect size over the historical VISTA level by as much as 107% for the training and 83% for the

validation set. This result is highly significant and cannot be attributed to motor learning, as

we demonstrated the stability of the RMK measurements on both persons with chronic stroke

and age-matched controls. An increase of 83% in effect size compared to the validated set

would result in a 70% reduction in the number of patients required to achieve the typical 80%

statistical power in a clinical trial. It is worth pointing out that the increase in effect size seen in

this natural history trial is not the effect size that one would expect to see in a conventional

clinical trial, which is designed to compare the effect of therapy over placebo. It must also be

noted that clinical scales represent the best case scenario of relying on a handful of highly

trained clinical raters, whereas the composite ought to be highly consistent across multiple

sites due to the lack of subjectivity in the assessment.

While the underlying RMK metrics were identical to those used to reconstruct the NIH

stroke scale, our modeling effort reweighted each of the individual components, enhancing

our ability to detect smaller improvements in our patient population. One surprising aspect of

our modeling was that sub-movements do not seem to play a significant role in the new com-

posites. We speculate that sub-movements features might be less important when dealing with

coarse aspects of motor abilities and the clinical scales generally employed to measure them.

As illustrated in Fig 8, the composites obtained with the greedy algorithm are correlated

with all three clinical scales, with the R2s ranging from 0.34 to 0.45. On the basis of these

results, we would recommend the composite derived from the 8 features identified by the best

NIH neural network model, since it offers the largest effect size for both the training and the

validation set, and shows the most consistent correlation with all three clinical scales (0.37,

0.38 and 0.39 for MP, FM, and NIH, respectively).

These results strongly suggest that robotic measurement of motor function may be a viable

and improved method for capturing clinical outcomes over traditional clinician-rated mea-

sures, and can greatly reduce the sample size required for future clinical trials, thus improving

study cost and efficiency. The computational methodology described in this work is not lim-

ited only to stroke, but can be applied also to a broad range of problems in medical diagnostics

and remote monitoring. While the general clinical findings were described in our earlier
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publication, the present paper offers greater insights into the relative significance of strength

and coordination, and the importance of each robotic feature in capturing different aspects of

stroke recovery.

Future work

In this work, we have established that we are able to accurately replicate the traditional stroke

evaluation scales from robotic measurements with a high degree of accuracy, and that a

straightforward re-weighting of the features needed to reconstruct the traditional scales can

yield a novel composite that is significantly more sensitive than the traditional scales for mea-

suring improvement over time. This has allowed us to establish that, for a fixed time interval,

we can greatly reduce the number of patients needed to power a clinical trial.

Our current work has established a composite that works well over the 90 day assessment

window. However, given sufficient amounts of data, it would be possible to tune the composite

for a patient’s individual level of impairment. The reason for this is that stroke recovery may

not progress in a consistent fashion, and initial recovery to stoke may be more sensitive on

some metrics vs others. Being able to identify and pre-specify sensitive composites over a spe-

cific range of severities would allow us to better tune it towards a patient population and fur-

ther shrink the number of patients needed for a given clinical trial. Given the design of this

trial and the confounding issue of patient improvement over time, it was not possible for us to

assess the inherent variability in human performance. Answering this question could provide

valuable insights into determining how long a trial needs to run for patients to stand a good

chance of showing functional improvement to their physical well-being.

Conclusions

The results described above are extremely promising but must be interpreted with appropriate

caution. The population enrolled in our study was highly selected, with a day 7 mean NIH

score of 5.7 ± 4.1. Clearly, any gains in statistical power will need to be balanced against lower

enrollment rates imposed by the selection criteria and against potential failure to complete fol-

low-up or to comply with the RMK measurements. Additionally, while the RMK lends itself to

Fig 8. Correlation (expressed as R2) of the FM, MP and NIH original scales with the corresponding optimized

8-feature composites obtained with the greedy algorithm.

https://doi.org/10.1371/journal.pone.0245874.g008

PLOS ONE Accurate prediction of clinical stroke scales from robotic measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0245874 January 29, 2021 19 / 23

https://doi.org/10.1371/journal.pone.0245874.g008
https://doi.org/10.1371/journal.pone.0245874


repeated assessments to produce averaged measurements, the same might be true if we employ

ordinal analysis, central adjudication by multiple raters, and global testing procedures that

combine complementary scales across clinical domains and across time (albeit at much greater

expense). Finally, there was substantially greater improvement in the NIH scores achieved by

our current pool of completers compared to historical patients with comparable variability

(VISTA). The pool of 2,937 patients selected in the VISTA registry to match the distribution of

our pool of 208 patients at day 7 had an improvement of 2.1 ± 3.1 by day 90, while our comple-
ters had an improvement of 3.7 ± 3.3. This difference must be interpreted with appropriate

caution given that the historical patient data was obtained at a different time and in different

institutions, a factor that inevitably introduces some bias.

Despite the generally limited penetration of robotic technologies in the post-stroke neuror-

ehabilitation arena (only 200 InMotion Arm robots have been produced so far), taken

together, our results suggest that robotic measurements may enable early decision making in

clinical testing, reduce required sample sizes, and offer a more reliable method to track longi-

tudinal change in patients affected by stroke than using current clinical instruments. More

importantly, this study marks a novel beginning for technology-enabled measurement of out-

comes, and offers a proof-of-principle for other robotic and wearable devices potentially

affording further improvements and efficiencies.
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