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Ataxia is a kind of external characteristics when the human body has poor coordination
and balance disorder, it often indicates diseases in certain parts of the body.
Many internal factors may causing ataxia; currently, observed external characteristics,
combined with Doctor’s personal clinical experience play main roles in diagnosing ataxia.
In this situation, different kinds of diseases may be confused, leading to the delay
in treatment and recovery. Modern high precision medical instruments would provide
better accuracy but the economic cost is a non-negligible factor. In this paper, novel
non-contact sensing technique is used to detect and distinguish sensory ataxia and
cerebellar ataxia. Firstly, Romberg’s test and gait analysis data are collected by the
microwave sensing platform; then, after some preprocessing, some machine learning
approaches have been applied to train the models. For Romberg’s test, time domain
features are considered, the accuracy of all the three algorithms are higher than 96%; for
gait detection, Principal Component Analysis (PCA) is used for dimensionality reduction,
and the accuracies of Back Propagation (BP) neural Network, Support Vector Machine
(SVM), and Random Forest (RF) are 97.8, 98.9, and 91.1%, respectively.

Keywords: cerebellar ataxia, clinical recognition, microwave, sensory ataxia, wireless sensing technology

INTRODUCTION

“Ataxia” was initially used to describe various uncoordinated characteristics of different diseases,
such as gait, movement, heartbeat, etc. Now it is more specifically used to express the symptoms
of motor mismatching synchronization and balance disorder after the brain, cerebellum, deep
sensation (proprioception), vestibular and other systems are damaged (Bastian, 1997). Different
pathological locations often show different characteristics. Sensory ataxia is caused by the
impairment of somatosensory nerve, which leads to the interruption of sensory feedback signals
and therefore, the body incoordination is caused. For Cerebellar Ataxia patients, the Romberg’s
sign was positive, the typical symptoms include walking slowly, rolling, etc. Symptoms were
mild when eyes were open and aggravated when eyes were closed (Fadic et al., 1997; Donnelly,
2011). Cerebellar ataxia patients are more common, it is a loss of body muscle coordination
caused by cerebellar disease. Trunk ataxia often indicates cerebellar vermis lesions, and limb
ataxia often indicates cerebellar hemisphere lesions. The corresponding patients often have eye
tremor, low muscle tension, unclear speech, and other symptoms (Diener and Dichgans, 1992;
Bastian et al., 1996).
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In clinical testing, SA syndrome is very easy to be
misdiagnosed as CA syndrome, which leads to the inability
of patients with ataxia to get correct diagnosis and treatment
in time. At present, several international medical organizations
have formed to study ataxia (Klockgether and Paulson,
2011), and several ataxia assessment scales were developed,
such as “International Cooperative Ataxia Rating Scale for
pharmacological assessment of the cerebella syndrome (ICARS)”
(Trouillas et al., 1997), “Scale for the assessment and rating
of ataxia (SARA)” (Schmitz-Hübsch, 2006). Some scholars
have also done relevant research on the clinical detection and
differentiation of SA and CA symptoms, and given the clinical
diagnosis method (Chhetri et al., 2014). Both the assessment
scale and related research work have referred to two basic
indicators: Romberg’s sign and gait; which could be used for
Clinical detection and differentiation of SA and CA.

Romberg’s Sign
The maintenance of human balance mainly depends on
the coordination of vestibular system, visual system and
proprioceptive system (Maurer et al., 2001). In an upright
position, a normal person can stand steadily when the eyes
open and close; but when two or more systems are damaged,
the human body will not be able to maintain balance. For
example, when a patient is suffering from Sensory Ataxia, the
visual system can provide compensation information when the
eyes are open, so the patient can remain upright and stable;
Visual compensation would disappear when the eyes are closed,
patients will not be able to maintain upright stability. This is the
theoretical basis of Romberg’s sign has become an important part
of modern neurological clinical examination (Lanska, 2002).

In Romberg’s test, the patient’s feet are closed and arms are
placed on both sides of the body. Standing is divided into two
stages: opening eyes and closing eyes. Firstly, the patients are
allowed to open their eyes and stand for a certain time, then the
patients close the eyes and stand for a while, and the patients
are observed: whether their body have obvious shaking in two
stages. As long as there is a stage in which the patient shows
standing instability, the Romberg’s sign is positive (Pearce, 2005).
Before carrying out Romberg’s test, lower limb diseases or other
factors should be excluded. In order to prevent the patient from
falling down, protective pads should be laid around the patient’s
standing and medical staff should also take care of the patients.
During the experiment, normal people can keep their body stable
whether they open or close their eyes. Considering age, gender
and other factors, the normal performance of the minimum
standard should be that body balance can be maintained for 6 s
during eye closure (Hain and Cherchi, 2017). For sensory ataxia
and cerebellar ataxia, their Romberg’s signs are both positive, but
there are some differences. The patient can keep standing steady
during the eye-opening phase, and standing unsteadily, wobbling,
or even falling in the closed eye phase (Franchignoni et al., 1984),
as shown in Figure 1. The cerebellar ataxia patients were unstable
in the stage of closing eyes and opening eyes, and tend to tilt
toward the diseased side of cerebellum (Cazzato et al., 2016), as
shown in Figure 2. Romberg’s test is a simple and sensitive clinical
trial, the different performances of normal people, sensory ataxia

patients and cerebellar ataxia patients in the Romberg’s test are
given in Table 1.

Gait Detection
Abnormal gait can be caused by motor or sensory disturbance,
and its characteristics are related to the location of lesion. It
can be seen in many diseases in nervous and other systems;
some typical abnormal gaits have implications for certain diseases
(Thomann and Dul, 1996).

Sensory Ataxia Gait
When a normal person walks, the sensory nerve would be
stimulated when the sole of the foot touches the ground, then
the relevant information is transmitted to indicate the position
of the feet. Since the patients with sensory ataxia lose the input
of the stimulus, in order to know the time and place the feet
land, the patient would put his feet on the ground heavily. The
key to this gait is that when patients can’t see their feet (e.g., in
the dark), stepping will increase obviously. This gait is sometimes
referred to as stepping gait, because patients may lift their legs to
a very high position (Missaoui et al., 2013). The sensory ataxia
gait diagram is shown in Figure 3.

Cerebellar Ataxia Gait
This gait is common in cerebellar diseases and is often described
as a clumsy, tottering, and wide-base gait. Similar to the gait
after acute alcoholism, patients will not be able to walk straight.
Patients with greater trunk instability during walking are more
likely to have lesions in the midline vermis of the cerebellum
(Mochizuki and Ugawa, 2010). The cerebellar ataxia gait diagram
is shown in Figure 4.

At present, there are many related works on quantifying the
degree of swing in Romberg’s test.

One of the common ways is wearing facilities such as
pressure sensor, gravity acceleration sensor, etc. (Diener et al.,
1984; Lanska, 2002; Mcgough et al., 2018); other ways include
collecting videos via cameras (Havasi et al., 2007), etc.
Currently, many related works have been done for Romberg’s
test and gait detection purpose. Pressure sensors, gravity
acceleration sensors, videos, and some other approaches have
been applied in this domain (Diener et al., 1984; Lanska,
2002; Zongyi and Sarkar, 2006; Havasi et al., 2007; Afendi
et al., 2013; Umair Bin Altaf et al., 2015; Wang et al.,
2017; Mcgough et al., 2018). The methods in previous work
have their respective advantages; however, some issues like
self-consciousness enhancing, abnormal mood changes cannot
be ignored. Non-contact wireless sensing technology could
avoid these problems and by using omnidirectional antennas,
Romberg’s test and gait detection can be achieved.

The steps can be summarized as follows: firstly, the microwave
sensing system working at 4.8GHz was used to collect original
perception data; then, the data were preprocessed; finally, the
features are extracted and three machine learning algorithms
[Back Propagation (BP) Neural Network (Rumelhart et al.,
1995), Support Vector Machine (SVM) (Cortes and Vapnik,
1995) and Random Forest (RF) (Shi and Horvath, 2006)] were
applied to train the models. The experimental results show that
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FIGURE 1 | Comparison of different performance of patients with sensory
ataxia in Romberg’s test. (A) Eye opening stage and (B) eye closure stage.

FIGURE 2 | Comparison of different performance of patients with cerebellar
ataxia in Romberg’s test. (A) Eye opening stage and (B) eye closure stage.

TABLE 1 | Performance of different groups in Romberg’s test.

Groups Open eyes stage Close eyes stage

Normal Stable Stable

Sensory ataxia Stable Instable

Cerebellar ataxia Instable Instable

the accuracies of three algorithms are higher than 96% for
Roberg’s test and gait detection, demonstrating the feasibility and
effectiveness of the method.

The contribution of this paper can be summarized as follows:
(1) detection and distinguishing of sensory ataxia and cerebellar
ataxia can be achieved by using wireless sensing technology, and
the patients’ privacy can be protected; (2) Romberg’s test and gait
detection are validated, thus the accuracy of clinical diagnosis can
be improved; (3) various machine learning algorithms are used to
increase the stability and credibility of the results.

The rest of the paper is organized as follows: the principle
of wireless sensing is introduced in part II; in part III, the
experimental devices and scheme are described in detail; in part
IV, the data for Romberg’s test and gait detection are analyzed;
and the experimental results are discussed in part V; and in part
VI, the full paper is summarized.

FIGURE 3 | Sensory ataxia Gait.

FIGURE 4 | Cerebellar ataxia Gait.

PRINCIPLE OF C-BAND WIRELESS
SENSORY

In typical indoor environment, the wireless signal emitted by
the transmitter would be affected by the objects or the human
body; and the refraction, reflection and diffraction may cause
multipath effect. These homologous wireless signals in different
propagation paths show different physical characteristics at
the receiving end, such as the amplitude and phase of the
receiving signals, which contain rich information from the
external environment.

When the receiver detects that the signal changes, it indicates
that the external environment has been changed. By de-noising
the acquired data and further processing with classification
algorithm, we can reduce the environmental factors that
lead to the change of the received signal, so as to obtain
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the desirable information in the environment. In this work,
since the antennas were used for detection and monitoring
applications in a regular shape room, basic omnidirectional
monopole antennas were considered; for irregular shape space
and room, specially designed antennas would be necessary
to enhance the performance and accuracy of sensing. The
main differences between received signal strength and channel
state information are explained in Zhu and Zhang (2010) and
Zheng et al. (2013). CSI considers the number of antennas and
subcarriers, and can measure more fine-grained information,
the facility which confirms to the IEEE 802.11n standard was
used to collect the CSI data. The IEEE 802.11n standard
uses orthogonal frequency division multiplexing (OFDM) to
transmit a single data stream with 20 MHz bandwidth
through 56 orthogonal subcarriers, the signals transmitted
on each subcarrier have different signal strength and phase
(Lorincz and Begusic, 2006). The facility used in this paper
provides 30 available subcarriers to users. Next, we will further
explain the principle of C-Band wireless sensing measurement
from the formula.

It is known that the channel impulse response (CIR) is
generally used to describe the multipath effect in wireless
channels. Under linear time-invariant conditions, the CIR can be
expressed as follows,

h (τ) =

N∑
i=1

aie−jθiδ (τ− τi) (i = 1, 2, . . . ,N) (1)

In the formulas above, ai, θi and τi represent the attenuation
factor, phase shift, and time delay of the i-th path, respectively,
N is the total number of propagation paths, and δ (τ) is
Dirichlet pulse function.

Since the multipath propagation of signals can cause delay
and attenuation, we can also describe the channel by channel
frequency response (CFR), as shown in (2),

Y = HX + N(2) (2)

Where Y is the vector representation of receiving signal,
X is the vector representation of transmitting signal, N is the
noise matrix, H is the channel attenuation matrix and describes
the attenuation factor of signal on each transmission path, the
dimension of H can be expressed as:

DimH = RN × TN × SubN (3)

Where RN and TN are the number of receiving
antennas and transmitting antennas, respectively.SubN is
the number of subcarriers.

CSI is essentially a representation of the frequency response of
each subcarrier channel, as shown in (4),

h
(
fi , t

)
=
∣∣h
(
fi , t

) ∣∣× arg
(
h
(
fi , t

))
(i = 1, 2, . . . , 30) (4)

In (4),
∣∣h
(
fi , t

) ∣∣ , arg(h
(
fi , t

)
), and fi denote the amplitude,

phase, and central frequency of i-th subcarrier, respectively.

FIGURE 5 | Experiment scene for Romberg’s test and gait measurement. (A)
Romberg’s test measurement and (B) gait measurement.

Since the patient takes some time to perform Romberg’s test
and gait detection, we need continuous monitoring, and the
received CSI data can be expressed as:

D = [P1, P2, . . . , Pn] (5)

Where D represents the data stream received by the receiving
antenna, Pi (i = 1, 2..., n) represents packet. Each packet
contains 30 subcarriers, and n is the total number of received
packets. D constitutes the analysis data source for detecting
and distinguishing sensory ataxia and cerebellar ataxia. Since
the phase of subcarriers in each packet is random, this paper
will mainly use the amplitude information of subcarriers
(Yang et al., 2017).
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THE EXPERIMENT DESIGN

The experiment was carried out in an approximate ward room,
its size is 7 m× 5 m.

The experimental equipment includes two industrial
control computers equipped with facilities conforming to the
IEEE 802.11n standard. The transmitter is equipped with an
omnidirectional antenna, and the receiver is equipped with three
omnidirectional antennas. Since each antenna receives packets
containing 30 subcarriers, we will get 3× 30 subcarriers for each
packet at the receiving end, which greatly increases the data size.
The experimental scene is shown in Figure 5.

In the experiment, 10 subjects are considered; they are divided
into two groups with five people in each group. We set the
contract awarding frequency to 200 Hz. For Romberg’s test, we
collected a total of 12 s of data, including 6 s for the open eyes
stage and 6 s for the close eyes stage. For the gait detection
experiment, considering the site constraints and the walking
speed between different objects, we collected a total of 5 s of data,
the amount of data is enough to distinguish the abnormal gait.

For each subject, Romberg’s test and gait detection were
repeated 24 times. We collected three sets of data each day and
collected the complete data in about 1 week. There are 120 sets
of experimental data for each of the test items for sensory ataxia
and cerebellar ataxia. At the same time, we also collected 120
sets of Romberg’s test and gait detection data under normal
conditions as a reference.

THE DATA PROCESSING

Due to the noise in the environment, to ensure the credibility
and accuracy of the results, the data is processed considering the
following steps (Figure 6):

Data Preprocessing
Remove Outliers
In order to explain the method of removing outliers, we randomly
select a group of original experimental data from normal person
in Romberg’s test, and randomly select a subcarrier (No. 27). The
signal curve of the subcarrier is shown in Figure 7A. When a

FIGURE 6 | Data processing flow.

FIGURE 7 | Original signal and outliers for normal people in Romberg’s test.
(A) Original signal for normal people and (B) outliers for normal people.

normal person performs Romberg’s test, the body shake is within
a certain range, and the signal curve of subcarrier should be
relatively stable, but in Figure 7B, there are many burrs in the
signal curve and the volatility is large. We could also use the
Hampel function based on the Pauta criterion to complete the
removal of the outliers in the original signal (Li et al., 2016).

Signal Denoising
After removing the outliers from the original signal, the noise
contained in the original signal will be filtered out. Conventional
filters mainly include linear filters and nonlinear filters such
as mean filter and Wiener filter. The shortcoming of the
traditional denoising method is that the entropy after signal
transformation would increase, the non-stationary characteristics
of the signal cannot be characterized, and the correlation of the
signal cannot be obtained. To overcome these issues, the wavelet
transform is used.

Wavelet transform has the characteristics of low entropy,
multi-resolution, and flexible selection of wavelet basis functions.
In this paper, the wavelet soft threshold method is used
for signal denoising, which is simple to implement, and
very suitable for processing low SNR (Poornachandra, 2008).
We denoise the signal according to the following steps: (1)

Frontiers in Human Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 639871

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-639871 March 26, 2021 Time: 17:36 # 6

Zhang et al. Sensory Ataxia and Cerebellar Ataxia

FIGURE 8 | Wavelet transform filtering effect.

Wavelet decomposition; (2) Threshold quantization of high-
frequency coefficients of wavelet decomposition; and (3) Wavelet
reconstruction. The wavelet function selected in this work is
sym8, and the signal is decomposed into 5 layers. At the
same time, in step 2, the threshold is dynamically adjusted
according to the noise level of different decomposition layers. The
experimental results show that the wavelet transform has smooth
denoising effect, which is shown in Figure 8.

Feature Extraction
Select Subcarrier
Before feature extraction, it is necessary to pick out the
appropriate subcarriers. We know that when the variance of a set
of data is larger, more information will be contained. According
to the principle of maximum variance, for Romberg’s test, we
select the 10th subcarrier of the third antenna; and for the gait
detection experiment, we select the 26th subcarrier of the second
antenna. The experimental data of selected subcarriers are shown
in Figures 9, 10, respectively.

Extracting Feature of the Romberg’s Test Data
As seen in Figure 9C, in Romberg’s test, the normal person
can maintain balance even if he blinks or closes his eyes; slight
fluctuations might be caused by the breathing of the object
and the noise in the environment. Patients with sensory ataxia
can maintain body balance during the blinking phase, and the
body violently shakes during the closed eyes stage, resulting in
a waveform that is basically stable in the blinking phase and
unstable in the closed eyes phase, as shown in Figure 9A. For
patients with cerebellar ataxia, whether they are blinking or
closing their eyes, the body is shaking sharply, and the waveform
fluctuates sharply, as shown in Figure 9B.

Since different groups in the Romberg’s test have different
time domain waveforms, in order to improve the efficiency
of the classification model training, only the time domain
characteristics are extracted and are shown in Table 2.

The physical significance of each time domain feature is as
follows: the mean value describes the stable component of the
signal, the mean square value reflects the energy of the signal,

FIGURE 9 | Signal amplitudes for sensory ataxia subject, cerebellar ataxia
subject and normal person in Romberg’s test. (A) Signal amplitudes for
sensory ataxia subject, (B) signal amplitudes for cerebellar ataxia subject, and
(C) signal amplitudes for normal person.

the standard deviation can represent the degree of dispersion
between the signal sampling points, the kurtosis reflects the
impact characteristics in the signal, and the skewness reflects
the asymmetry of the signal. The peak-to-peak value reflects the
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TABLE 2 | The extracted time domain features of the Romberg’s test data.

Features Calculation formula

Mean value YMV =
1
N

N∑
i=1

xi

Standard deviation YSD =
2

√
1

N−1

N∑
i=1

(xi − YMv)2

Root mean square YRMS =
2

√
1
N

N∑
i=1

x2
i

Peak to peak value YPPV = max(xi)−min(xi)(i = 1, 2, . . . , N)

Kurtosis YK =
1
N
∑N

i=1(|xi |−YMV )4

YRMS
4

Skewness YS =
1
N
∑N

i=1(|xi |−YMV )3

YRMS
3

Peak factor YP =
max(xi)
YRMS

(i = 1, 2, . . . , N)

Waveform factor YW =
N∗YRMS∑N

i=1 |xi |
(i = 1, 2, . . . , N)

signal amplitude range. The peak factor can be used to detect
whether there is an impact in the signal. The physical meaning
of the waveform factor in the electronic field can be understood
as the ratio of the DC signal of the same power to the original AC
signal, and its value is greater than or equal to 1.

Extracting Feature of the Gait Detection Data
As it can be seen in Figure 10, the time domain waveforms of the
three gaits have little discrimination. To ensure the accuracy of
the results, Principal Component Analysis (PCA) (Wold et al.,
1987) is adopted to reduce the dimensionality of the original
data, and the cumulative contribution rate of each principal
component is shown in Figure 11.

In order to avoid information loss in the original data
and to eliminate redundant information, the first 64 principal
components are extracted as features.

Classification
After these steps, we have obtained the dataset of Romberg’s test
and gait detection. Each dataset contains 360 samples, including
normal, sensory ataxia and cerebellar ataxia. To increase the
credibility and accuracy of the results, we adopted a four-fold
cross-validation (Demsar, 2006) method to divide the training set
and test set, and adopted three classification algorithms including
BP Neural Network, SVM, and RF.

EXPERIMENTAL RESULTS AND
DISCUSSION

Experimental Results
The confusion matrix for the results are shown in Tables 3, 4, and
the accuracies of each algorithm is shown in Figures 12, 13.

FIGURE 10 | Signal amplitudes for sensory ataxia subject, cerebellar ataxia
subject and normal person in gait test. (A) Signal amplitudes for sensory
ataxia subject, (B) signal amplitudes for cerebellar ataxia subject, and (C)
signal amplitudes for normal person.

Discussion
It can be seen from Figures 12, 13 that for Romberg’s test, only the
time domain features are extracted, and all the three algorithms
can achieve an accuracy of more than 96%; for gait detection,
PCA is used for dimensionality reduction; the accuracies of
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FIGURE 11 | Principal component cumulative contribution rate curve.

TABLE 3 | Confusion matrix for Romberg’s test.

Classification
algorithm

Actual type (Each
test set contains
3*30 samples)

Predict type (Number of sample)

Normal Sensory
ataxia

Cerebellar
ataxia

BP Neural
Network

Normal 29 1 0

Sensory ataxia 2 28 0

Cerebellar ataxia 0 0 30

SVM Normal 29 1 0

Sensory ataxia 1 29 0

Cerebellar ataxia 0 0 30

RF Normal 29 1 0

Sensory ataxia 1 29 0

Cerebellar ataxia 0 0 30

TABLE 4 | Confusion matrix for gait detection.

Classification
algorithm

Actual type (Each
test set contains
3*30 samples)

Predict type (Number of sample)

Normal Sensory
ataxia

Cerebellar
ataxia

BP Neural
Network

Normal 30 0 0

Sensory ataxia 0 28 2

Cerebellar ataxia 0 0 30

SVM Normal 29 0 1

Sensory ataxia 0 30 0

Cerebellar ataxia 0 0 30

RF Normal 24 1 5

Sensory ataxia 0 30 0

Cerebellar ataxia 0 2 28

BP Neural Network and SVM algorithm are above 97%. From
Table 4, the source of error rate of RF algorithm is mainly
used to identify the normal person between sensory ataxia and

FIGURE 12 | Accuracy of three algorithms in Romberg’s test.

FIGURE 13 | Accuracy of three algorithms in gait detection.

cerebellar ataxia; for gait recognition, BP Neural Network and
SVM are considered; for Romberg’s test, all three classification
algorithms are suitable.

From Table 3, we can see that in Romberg’s test, very high
precision is achieved, and the error rate is mainly due to the
misjudgment of normal and sensory ataxia. The reason for
this is that in Romberg’s test, cerebellar ataxia subjects are not
stable whether they open or close their eyes, while sensory
ataxia subjects and normal subjects remained stable during eye
opening; the only difference between the two is that sensory
ataxia subjects shake after closing their eyes, and closing eyes
have no effect on normal people. The time domain waveform
from Figure 9 can also give the corresponding conclusion. The
ability to maintain body balance is related to the age, gender
and the length of time for standing of the individual. Normal
people may have slight shaking in the Romberg’s test, symptoms
of patients with sensory ataxia may be mild, which may cause
confusion. It is worth mentioning that it’s difficult to distinguish
normal subjects from sensory ataxia subjects completely in
Romberg’s test, but cerebellar ataxia can be detected. In order
to ensure the experimental results more reliable, gait detection
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experiments are also performed, and the two experiments
confirmed reliability of the system.

CONCLUSION

Sensory Ataxia and Cerebellar Ataxia are neurological diseases
which affect the patients’ quality of life seriously; therefore, their
detection at early stage are very important and necessary. In
this paper, non-contact wireless sensing technology has been
proposed to discriminate symptoms between the two diseases.
The advantages include improvement of comfort, overcoming
self-consciousness enhancing, etc. The main merit of the system
lies in its convenience and price cost advantage. We firstly
preprocess the data by removing outliers, wavelet transform
filtering, then data features are extracted, finally, we use BP
Neural Network, SVM, RF machine learning algorithms to train
the model. The experimental results show that most of the
algorithms can achieve more than 96% prediction accuracy,
which can effectively discriminate between sensory ataxia and
cerebellar ataxia, and prove that the technical scheme described
in this paper is effective. Next, we will further explore the
application of C-Band wireless sensing technology in healthcare,
and propose more clinical application programs to make clinical
detection more accurate, reliable and smarter, so as to reduce the
burden on clinicians and patients.
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