
lable at ScienceDirect

Defence Technology 18 (2022) 1330e1339
Contents lists avai
Defence Technology

journal homepage: www.keaipubl ishing.com/en/ journals /defence-technology
Machine learning enabled identification and real-time prediction of
living plants’ stress using terahertz waves

Adnan Zahid a, b, Kia Dashtipour b, Hasan T. Abbas b, Ismail Ben Mabrouk c,
Muath Al-Hasan c, Aifeng Ren d, Muhammad A. Imran b, Akram Alomainy e,
Qammer H. Abbasi b, *

a School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, EH144AS, UK
b James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK
c College of Engineering, Al-Ain University, Abu Dhabi, United Arab Emirates
d School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, China
e School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
a r t i c l e i n f o

Article history:
Received 6 December 2021
Received in revised form
24 December 2021
Accepted 4 January 2022
Available online 7 January 2022

Keywords:
Terahertz sensing
Plants health
Machine learning
* Corresponding author.
E-mail address: qammer.abbasi@glasgow.ac.uk (Q.
Peer review under responsibility of China Ordnan

https://doi.org/10.1016/j.dt.2022.01.003
2214-9147/© 2022 China Ordnance Society. Publishing
ND license (http://creativecommons.org/licenses/by-n
a b s t r a c t

Considering the ongoing climate transformations, the appropriate and reliable phenotyping information
of plant leaves is quite significant for early detection of disease, yield improvement. In real-life digital
agricultural environment, the real-time prediction and identification of living plants leaves has
immensely grown in recent years. Hence, cost-effective and automated and timely detection of plans
species is vital for sustainable agriculture. This paper presents a novel, non-invasive method aiming to
establish a feasible, and viable technique for the precise identification and observation of altering
behaviour of plants species at cellular level for four consecutive days by integrating machine learning
(ML) and THz with a swissto12 materials characterization kit (MCK) in the frequency range of 0.75 to
1.1 THz. For this purpose, measurements observations data of seven various living plants leaves were
determined and incorporate three different ML algorithms such as random forest (RF), support vector
machine, (SVM), and K-nearest neighbour (KNN). The results demonstrated that RF exhibited higher
accuracy of 98.87% followed by KNN and SVM with an accuracy of 94.64% and 89.67%, respectively, for
precise detection of different leaves by observing their morphological features. In addition, RF out-
performed other classifiers for determination of water-stressed leaves and having an accuracy of 99.42%.
It is envisioned that proposed study can be proven beneficial and vital in digital agriculture technology
for the timely detection of plants species to significantly help in mitigate yield and economic losses and
improve crops quality.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

In recent times, unceasing expansion of population has posed
enormous challenges and received strong impetus to researchers
and scientists in the modern agriculture discipline [1]. This
mounting pressure and startling environment demands not only
real-time, autonomous and non-destructive technique in perpetual
plants’ health monitoring at a cellular level, but also an accurate
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and precise assessment of climate changes on plants leaves [2]. This
significant issue driven numerous researchers and gained consid-
erable attention of plant physiologists at all levels to establish
proactive and feasible techniques for the identification of complex
architecture of leaves to circumvent any unforeseen circumstances
that could result in a substantial drop in crops production and
economic loss in the agriculture sector. In this regard, the initial
trend followed by researchers to have profoundly focused on
observing the complex biological traits and microscopic behaviour
of various plants leaves [3].

As envisaged, this laboratory-based technique were recognized
as an ineffective, time-consuming and require manual intervention
for testing and processing large number of samples [3]. Upon the
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initial setbacks, researchers and scientists from the plant science
discipline were highly motivated to suggest viable methods [4e9]
to observe the morphological features of leaves at cellular level for
distinct identification purpose. These techniques include fluores-
cence, multi-spectral or hyper-spectral imaging, magnetic reso-
nance imaging (MRI), nuclear magnetic resonance (NMR), visible/
multiband spectroscopy, and near-infrared spectroscopy (NIRS)
[10e12]. Although these advanced techniques revealed distinct leaf
characteristics and nutrient deficiencies in various leaves, but each
technique appeared to have some limitations. For example, MRI
offered high resolution but transpired as inefficient and inadequate
for long-term plant physiology research due to disparaging nature.
Relying on the infrared, they lacked the sensitivity to discover the
spatial variability of leaves [11,12].

Hence, the researchers interest in the plant's science discipline
were directed to use terahertz time-domain (THz-TDS) spectros-
copy technology due to its high sensitivity, unique spectral char-
acteristics and non-destructive nature. Initially, compared to other
non-destructive technique, this approach proven to be more
effective and reliable, yet again, this too were marred by some
limitations and considered to be expensive, and required complex
configuration of setup [12,13]. Conversely, this technology offered
new opportunities in many diverse disciplines and achieved sig-
nificant contributions due to its non-ionizing and less preservation
radiation properties [13] as shown in Fig. 1. Several applications
where THz achieved significant contributions such as security im-
aging of unseen hazard items, medical imaging for non-intrusive
dental and skin-care treatment, quality control of food, contact-
less imaging for conservation of sculptures and manuscripts, ma-
terial characterization and telecommunications [13e15]. Despite its
extensive utility and notable contributions to the aforementioned
diverse applications, researchers believed its potential in modern
agriculture technology has yet to be fully explored [13].

These undermine facts and prevailing challenges have capti-
vated researchers from different disciplines and markedly stipulate
an automated real-time, proactive and pragmatic technique
approach for different plants species identification [16e18]. Unlike
fruits and flowers, leaves are accessible all year around. As a result,
effective plant species identification is critical for ensuring sus-
tainable cultivation and large-scale crops production by closely
monitoring the species populations and assessing the impact of
Fig. 1. Observing the morphological characteristics of leaves using THz sensing at
cellular level on different days.
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climate change on species distribution. Moreover, it is seemed to be
highly beneficial to accelerate the recognition process of distinct
feature of leaves, making it consumable by non-specialists, espe-
cially when considering the incessant damage of plant biodiversity
[16e18].

This paper presents an innovative, real-time and non-invasive
technique for instant identification, lifespan of plant species at
cellular level using THz waves enabled by machine learning (ML)
approach in an automated fashion. Up till now machine learning
applications have attained substantial contributions in numerous
scientific domains, including health management and safety, food
utilization, security, weather forecasting, pharmaceutical drugs,
and financial sector [16,19]. Evidence from multi-disciplinary dis-
ciplines and researchers suggest that it has the potential to revo-
lutionize the modern agriculture system by raising crops
productivity and optimize the financial gains in agriculture sector.
Furthermore, the amalgamation of ML with THz technology can
unravel and discover innovative possibilities for various species
identification, as well as comprehend the intensive data processing
in agricultural environment [19].

In this study, the underlying aim is to develop a simple and rapid
framework to recognize the correct species in conjunction with
lifespan of plant leaves using THz waves.

For this purpose, we obtained transmission response S21 of
seven living plants leaves for four days, applied feature extraction
and selection technique to remove the undesired data, and finally
performed the supervised ML classification for species identifica-
tion and plant’s stress detection at cellular level. It is strongly
envisioned that findings of this study will benefit growers, culti-
vators and consider it as versatile, extensible, and provide accurate
phenotyping information to researchers and plant biologists. The
remainder of the paper is organized as follows: “Methodology”
includes the description of setup and sample details. Section 2
outlines the compilation and pre-processing of data. Section 2 de-
scribes feature extraction procedure. Section 3 demonstrates the
classification technique and optimal feature selection process.
Finally section 4 presents the results analysis and discussions, fol-
lowed by conclusion in section 5.

2. Methodology

2.1. System setup

In this study, scattering parameters of seven living plants were
determined by usingMaterial Characterization Kit (MCK) swissto12
that operated in the frequency region of 0.75e1.1 THz [20]. The
MCK was attached to a Keysight Technologies N5224A microwave
network analyzer (NA). Prior to measurements, short-open-load-
thru (SOLT) calibration technique, which is two-port, was used to
lessen any undesired noise in system setup. Considering the
structural integration and morphological characteristics of leaves,
Polytetrafluoro-ethylene (PTFE) caps were mounted internally to
the waveguide that could provide appropriate compression and
stability to the specimens as shown in Fig. 2.

2.2. Preparation of samples

This work includes the measurements of seven various kinds of
plants namely as basil, coriander, parsley, baby-leaf, coffee, pea-
shoot, and babyspinach. All these various plants leaves were fully
grown and nurtured in Rouken Glen Farm, East Renfrewshire,
Glasgow. As per the status of these plants leaves, aforementioned
leaves were properly cultivated and nurtured, and showed no signs
of damage after proper examination of farmers. Theywere properly
placed under the environment temperature of 18 ± 0.1 �C, in order



Fig. 2. Snapshot of setup showing a Swissto12 System operates in a frequency range
from 0.75 to 1.1 THz.
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to maintain their healthy status for measurements. Moreover, in
this study, the weight and thickness were continually observed for
four consecutive days after every 2 h using precision electronic
scale and vernier calliper. Over the span of four days, spectral var-
iations appeared that demonstrated the reduction of weight and
thickness in them. These eaves were closely examined at three
different locations and at every location, four distinct orientations
were taken to observe any irregularity in the epidermis of leaves
that could show any disparity in the scattering response of leaves.
2.3. Data collection and pre-processing procedure

In this study, seven fresh living plants leaves, namely as baby-
leaf, basil, coriander, coffee-arabica, parsley, pea-shoot and baby-
spinach were considered for performing measurements. All mea-
surements were conducted in Terahertz Frequency Laboratory (TFL)
at the University of Glasgow for four consecutive days. In this study,
the key idea and focus was to observe the transmission coefficients
(S12, S21) and reflection (S11, S22) by placing all distinct leaves be-
tween the two wave-guides as shown in Fig. 2. In this study, only
transmission response of leaves was considered for the real-time
identification and detection of various living plant leaves’ stress
as shown in Fig. 2. This process continued for four days and in this
period, all specimens were examined after a span of every 3 h to
ensure that maximum information could be obtained in order to
closely and warily observe any transformations of leaves at cellular
level. A key challengewhilst acquiring the data collection of distinct
leaves, was to determine the same location for examining the in-
ternal morphological composition of leaves. As a result, special care
was taken to ensure that the significant information and diminutive
variations in complex biological traits of leaves could be captured.

From Fig. 3, it is depicted that leaves showed distinctive char-
acteristics depending on the existence of water content WC in tis-
sue on day 1 and as days passed by, as anticipated, distinguished
response of leaves is obtained reflecting the variations occurred at
cellular level detected by THz waves. distinguished from unusual
response of leaves. These observations reflect the presence of WC
perceived over the course of four days measurements. Table 1 il-
lustrates the observations of different leaves obtained using MCK,
reflecting the existence of WC in leaves.

By observing the leaves’ transmission response over the course
of four days, it is evident each leaf has shown distinctive charac-
teristics and behaviour that appeared to be occurred at cellular
level and is markedly visible in THz region. From Fig. 3, it is also
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believed that all leaves exhibited a decay in WC that eventually
enhanced the transmission response leaves. In addition, detection
of distinct leaves is relatively more challenging in the range of
0.75e0.85 THz due to overlapping of response. Hence, it is estab-
lished that distinguished response of leaves was obtained as the
frequency increases, reflecting the composition and variance
presence of nutrients in the leaves.

2.4. Feature extraction technique

For the feature extraction procedure, three domain features
including time-frequency, time and frequency domain features
were considered [21]. While taking the measurements of leaves
using Swissto12 (MCK), it was noticed that observations collected
in the region of 0.75e0.83 THz exhibited superfluous behaviour.
The outcome of this unwanted and erratic behaviour could have
produced spurious classification results for different classifiers,
resulting in forge detection and identification of correct species of
plant leaves. Moreover, this could lead inaccurate information to
growers and cultivators to determine which species demands how
much of nutrients andWC in leaves tomaintain their healthy status
and sustain crops productivity. As a result, it was significant to
determine the sensitive response region (SRR) so that maximum
meaningful observations could be obtained for the classification
model as shown in Fig. 5. Since the MCK operated in the frequency
domain, therefore observations obtained fromMCKwere converted
into time and time-frequency domain to obtain features extraction
technique that could be useful for classifiers performance. In the
next section, both domain features are discussed in detail.

2.5. Frequency domain features

Since the observations were collected in frequency domain us-
ing MCK therefore, these observations could be used to extract the
relevant features from the SRR region as shown in Fig. 4. SRR
assisted in the accurate identification of plant species as well as
water-stressed leaves because various leaves exhibited distinct
characteristics, which were examined for feature extraction pro-
cess. Thus, for all four days, five window bins with a width of 20
were considered for feature extraction, beginning from the fre-
quency range of 0.80e1.07 THz. To reach this objective, both Power
and Cross spectral densities were studied and is given as 1 and 2
[15,22]:

VarðZmmðbÞ¼ 1
w
EðZuv ðbÞ* , Zuv ðbÞÞÞ (1)

maxðZmmðbÞ¼max
1
w
EKðbÞ* , Zuv ðbÞÞÞ (2)

2.6. Time domain features

The primary objective of studying statistical characteristics was
to investigate the spectral features of time series of THz pulses
related to the existence of WC and modifications in morphological
features of leaves at cellular level over the course of four days. In
order to acquire statistical features, it was therefore, essential to
translate observations obtained in frequency into time domain to
profoundly study the significant and meaningful THz pulse of
distinct leaves. The statistical features including standard deviation,
skewness, kurtosis median, absolute deviation, Interquartile Range
(IQR), 75th percentile (Q3), 25th percentile (Q1) and Pearson cor-
relation coefficient (PCC) [23e25]. Wherein, mean and standard



Fig. 3. Transmission response of seven living plants leaves for all different days.

Table 1
Number of Observations of different leaves for four successive days.

Leaves No. of observations

Baby-leaf 108
Basil 108
Coriander_ 108
Coffea arabica 108
Parsley 108
Pea-shoot 108
Baby Spinach_ 108

Fig. 4. Recognition of sensitive region to consider only desired and meaningful fea-
tures for the feature extraction.
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deviation were notably suitable for providing valuable details on
distribution of the data. Skewness yielded relevant and useful data
about the inconsistencies of the inspected region and its dissemi-
nation around its mean scale region [23e25]. Furthermore, kurtosis
indicated a uniform distribution of data. Q1 and Q3 described the
dispersion of observed data on both sides of the median. PCC was
used to establish the linear correlation between the reference
signal and time-domain waveforms of sample [16]. All these sta-
tistical features played a vital role in identifying the correct and
relevant features which ultimately reduced the computational time
for overall classification process.
3. Classification and selection of optimal parameters

In order to achieve the classification accuracy, three classifiers
namely Random Forest (RF), support vector machine (SVM), and K-
nearest neighbour (KNN) were employed to determine character-
istics behaviour of leaves for four successive days. In addition, the
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performance of three aforementioned classifiers were also tested
for the precise identification of leaves by observing their physio-
logical and biological characteristics over the span of four consec-
utive days. The performance of three classifiers were tested and
analysed by selecting appropriate parameters to yield optimum
results in relation to accurate recognition of leaves and as well as
water stressed leaves. In this regard, for SVM, two parameters were



Fig. 5. The methodological approach of proposed algorithm implementation process.
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examined, namely as the optimum parameters of cost (C) and
kernel width parameter g to obtain the optimized SVM algorithm.
For this purpose, random values were gauged and ultimately ‘1.5’
considered to be appropriate value for ‘C’ and “0.36” was selected
for g [16,26,27].

The tuning of a k-sample parameter played an important role in
achieving the ultimate efficiency of KNN classifier. Hence, set of
values was tested and finally, nearest number of k and distance
metric was set to 5 after analysing the range of k (1:10) [26,27].
Furthermore, observations data was divided into 70% and 30%
training and testing data, respectively. All three suggested classi-
fiers were trained by using a 10-fold cross validation to achieve the
validation accuracy for the precise recognition of species by ana-
lysing their physiological and morphological characteristics. Owing
to the loss of WC and other nutrients in leaves, variations evidently
appeared in the physiological and sensory characteristics in four
days assessments.
3.1. Feature selection

In this study, the core idea was to eliminate any superfluous or
undesired features with the usage of feature selection technique.
This action would ultimately reduce the computational load and
result in substantial improvement in classification accuracy in
shorter time frame. For this purpose, three feature selection algo-
rithms such as sequential backward selection (SBS), sequential
forward selection (SFS), and Relief based selection algorithm (Re-
lief-F) were considered to be most suitable since they have been
widely used to execute the feature selection process [28e30]. SFS is
one such method, which begins with an empty set of features and
append them by incorporating the relevant and noticeable features,
leading to an improvement in overall accuracy. On the other hand,
SBS functions in reverse order as it commences with totally filled
features and get rid of unparalleled features in every level by
introducing standard condition until the pre-specified features are
permitted [28e30].
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3.2. Classifier performance evaluation using metrics

In this work, the purpose of study was to examine the efficiency
of classifiers and also to detect any potential mis-classification that
could have produced inaccurate information about the detection of
leaves. In addition, it was also aimed to determine whether the
plants’ leaves were supplied with adequate amount of WC and
nutrients to ensure and maintain their physiological growth.
Furthermore, in this section, the performance of all proposed
classifiers was also evaluated by using three commonly metrices
such as, precision, recall (also known as true positive), and F1-score
[31] as shown in Table 2. Here, precisionmetrices were employed to
evaluate the precision of the classifications relative to all other
classifications. In addition, recall or sensitivity values showed the
possibility of occurring accurate classification of categorised classes
from the remaining classes. Finally, F1-score was used to obtain the
average between the Precision and Recall metrices [31]. In this
study, the key objective of using these commonly agreed metrices
was to detect any potential mis-classification, resulting in inaccu-
rate details about the presence of WC and nutrients in leaves.
4. Results and discussions

4.1. Classifiers performance for accurate detection of leaves

The performance of three proposed algorithms including RF,
KNN and SVMwas assessed in this section by employing commonly
quality metrices for the automated identification of different leaves
possessing distinctive characteristics and features with an amal-
gamation of ML and THz. The purpose of employing commonly
accepted quality metrices was also to detect any mis-classification
that could take place, resulting in erroneous information about
characteristics and identification of leaves. From Tables 2e4, it can
be noticed RF substantially outperformed other classifiers in terms
of accurate detection of all seven leaves by observing their internal
morphological characteristics using THz for four days, revealing the
fresh moistness and moldiness of leaf.

Furthermore, these outcomes also revealed that for SVM, it was



Table 2
Classification accuracy of RF for the accurate recognition of leaves by applying Ten-fold cross validation.

Classification performance by applying tenfold cross validation

Sample Quality metrics Accuracy/%

Precision Recall F1-score

Coffee 0.97 0.96 0.97

98.87

Pea-shoot 0.97 0.96 0.96
Spinach 0.97 0.96 0.96
Coriander 0.97 0.96 0.95
Basil-leaf 0.97 0.96 0.96
Baby-leaf 0.97 0.96 0.96
Parsley 0.97 0.96 0.97

Table 3
Classification accuracy of SVM for the accurate recognition of leaves by applying Ten-fold cross validation.

Classification performance by applying tenfold cross validation

Sample Quality metrics Accuracy/%

Precision Recall F1-score

Coffee 0.89 0.98 0.93

89.67

Pea-shoot 0.91 0.78 0.84
Spinach 0.89 0.86 0.88
Coriander 0.9 0.98 0.94
Basil-leaf 0.86 0.92 0.89
Baby-leaf 0.89 0.8 0.84
Parsley 0.93 0.96 0.95

Table 4
Classification accuracy of KNN for the accurate recognition of leaves by applying Ten-fold cross validation.

Classification performance by applying tenfold cross validation

Sample Quality metrics Accuracy/%

Precision Recall F1-score

Coffee 0.96 0.99 0.97

94.64

Pea-shoot 0.94 0.89 0.92
Spinach 0.94 0.95 0.94
Coriander 0.98 0.99 0.98
Basil-leaf 0.93 0.95 0.94
Baby-leaf 0.93 0.88 0.9
Parsley 0.96 0.97 0.96
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slightly challenging to identify various leaves due to the similar
sensory characteristics and somewhat identical appearance such as
coriander, parsley. However, as observed in the results, KNN dis-
played considerable performance relative to SVM, given the phys-
iological and biological characteristics of leaves. Moreover, the
results also depicted that all three classifiers considered only
notable and desired features which inevitably reduced the
computation time for the execution of classifiers. Hence, by
selecting the desired and relevant features not only reduced the
estimation time for execution but also enhanced the performance
of all three classifiers.
4.2. Classifiers performance for observing characteristics on
different days

The purpose of this research was to minutely observe the
behaviour and physiological traits of all seven living plants leaves
over the course of four days. In this regard, an algorithm was pro-
posed for three different classifiers and their performance was also
assessed by quality metrices. From Table 5, it can be seen that for
coffee, RF outperformed other classifiers to achieve performance of
different days classification, revealing the precise estimation of WC
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in coffee leaf. Both KNN and SVM displayed relatively less accuracy
in precise estimation of WC in coffee as depicted in Table 5.
Moreover, the assessment of all proposed classifiers model showed
a noticeable performance by depicting accuracy of 90% for all
classifiers from day 1 to day 4, clearly revealing the freshness and
staleness of a leaf. For both spinach and peashoot leaves as shown
in Tables 6 and 7, RF exhibited distinctive performance compare to
KNN and SVM for the presence of WC in leaf. It was also perceived
that in both KNN and SVM, variability of detecting the WC on both
day 2 and 3 found in the range of 0.55e0.86 THz, resulting in low
precision, while RF displayed considerable accuracy, clearly indi-
cating a high and low amount of WC in leaves on days 1 and 4.

As shown in Table 10, the performance of all classifiers can be
assessed for observing diminutive changes in cellular level in
coriander leaf, which is due to the WC evaporation as compared to
other leaves.This also revealed that parameters selected for all
three classifiers evidently exhibited a meaningful accuracy ranging
from 94.34% to 99.97%, identifying the presence of WC in leaf for
different days. Upon a close analysis of both baby and basil leaf as
presented in Tables 9 and 11, it can be seen that performance of all
three classifiers for the detection of WC was not satisfactory. In
comparison to KNN and SVM, RF showed distinguished



Table 5
Performance of all three classifiers for observing the WC variations in coffee leaf for four days.

Classification performance by applying tenfold cross validation coffee

Classifier Days Quality metrics Accuracy/%

Precision Recall F1-score

Random forest Day 1 1 1 1

93.09
Day 2 0.89 0.89 0.89
Day 3 0.86 0.86 0.86
Day 4 0.97 0.97 0.97

KNN Day 1 1 1 1

91.77
Day 2 0.88 0.87 0.87
Day 3 0.83 0.84 0.84
Day 4 0.96 0.96 0.96

SVM Day 1 1 1 1

92.72
Day 2 0.93 0.85 0.89
Day 3 0.83 0.89 0.86
Day 4 0.96 0.96 0.96

Table 6
Performance of all three classifiers for observing the WC variations in spinach leaf for four days.

Classification performance by applying tenfold cross validation spinach

Classifier Quality metrics Accuracy/%

Algorithm Days Precision Recall F1-score

Random forest Day 1 1 1 1

93.90
Day 2 0.91 1 0.95
Day 3 0.91 0.88 0.9
Day 4 0.93 0.88 0.91

KNN Day 1 1 1 1

77.96
Day 2 0.83 0.9 0.86
Day 3 0.63 0.59 0.61
Day 4 0.64 0.63 0.64

SVM Day 1 1 0.99 1

73.75
Day 2 0.78 0.84 0.81
Day 3 0.71 0.75 0.73
Day 4 0.55 0.87 0.67

Table 7
Performance of all three classifiers for observing the WC variations in peashoot for four days.

Classification performance by applying tenfold cross validation peashoot

Classifier Quality metrics Accuracy/%

Algorithm Days Precision Recall F1-score

Random forest Day 1 1 1 1

90.97
Day 2 0.99 0.95 0.97
Day 3 0.85 0.83 0.84
Day 4 0.81 0.87 0.84

KNN Day 1 0.98 1 0.99

77.20
Day 2 0.95 0.93 0.94
Day 3 0.59 0.57 0.58
Day 4 0.78 0.6 0.58

SVM Day 1 1 0.98 0.99

71.91
Day 2 0.96 0.93 0.94
Day 3 0.63 0.62 0.63
Day 4 0.62 0.66 0.63
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classification accuracy for the precise estimation of WC in both
baby and basil leaves.

Considering the internal morphological configuration of both
baby and basil leaves, it was observed that the performance of
classifiers on both days 2 and 3 was reduced than to day 1 and day
4. On closer observation, this might be attributed to the biological
variations that occurred in tissue of leaves due to the presence of
water in the range of 30%e50%. In this case, the factors that have
influenced the classification accuracy in terms of precisely detect-
ing the presence of WC due to the internal physiological and
1336
biological characteristics which have progressively changed over
the course of days, resulting in precipitous evaporation of WC from
leaves.

Lastly, by observing the water status in parsley leaf for four
consecutive days, it was established from Table 8 that RF once again
demonstrated 100%performance producing 100% as compared to
SVM and KNN, yielding 79.66% and 97.89%, respectively. The sig-
nificant performance of RF also suggested that both sensory char-
acteristics and biological traits that occurred in parsley leaf at
cellular level were discernibly recognized due to the evaporation of



Table 8
Performance of all three classifiers for observing the WC variations in parsley leaf for four days.

Classification performance by applying tenfold cross validation parsley

Classifier Quality metrices Accuracy/%

Algorithm Days Precision Recall F1-score

Random forest Day 1 1 1 1

100
Day 2 1 1 1
Day 3 1 1 1
Day 4 1 1 1

KNN Day 1 1 0.91 0.96

97.89
Day 2 0.93 0.94 1
Day 3 1 1 1
Day 4 1 1 1

SVM Day 1 1 1 1

79.66
Day 2 0.91 0.93 0.92
Day 3 0.63 0.67 0.65
Day 4 0.64 0.79 0.72

Table 9
Performance of all three classifiers for observing the WC variations in baby leaf for four days.

Classification performance by applying tenfold cross validation baby

Classifier Quality metrics Accuracy/%

Algorithm Days Precision Recall F1-score

Random forest Day 1 1 1 1

79.70
Day 2 0.99 1 0.99
Day 3 0.59 0.65 0.62
Day 4 0.6 0.54 0.57

KNN Day 1 1 1 1

80.18
Day 2 1 1 1
Day 3 0.61 0.59 0.6
Day 4 0.6 0.62 0.61

SVM Day 1 1 0.56 0.72

76.18
Day 2 0.99 0.91 0.95
Day 3 0.71 0.82 0.76
Day 4 0.66 0.65 0.76

Table 10
Performance of all three classifiers for observing the WC variations in coriander leaf for four days.

Classification performance by applying tenfold cross validation coriander

Classifier Quality metrics Accuracy/%

Algorithm Days Precision Recall F1-score

Random forest Day 1 1 1 1

99.89
Day 2 1 1 1
Day 3 1 1 1
Day 4 1 1 1

KNN Day 1 1 1 1

99.97
Day 2 1 1 1
Day 3 1 1 1
Day 4 1 1 1

SVM Day 1 1 1 1

94.34
Day 2 1 0.78 0.88
Day 3 0.9 1 0.95
Day 4 0.89 1 0.94
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WC for four days, showing 100% classification accuracy. In addition,
KNN also illustrated a strong capability to determine the leaf water
status in drought stress for all four days. On the contrary, SVM
exhibited a lower accuracy due to the variations occurred on day 3
and 4, respectively.

In the current environment, availability of fertile land is limited
due to extreme climate transformations, therefore, it is strongly
envisioned that the proposed classification methodology for plants
specimen identification and continuous real-time observation of
water-stressed leaves can be significant in the implementation of
1337
digital agricultural system to improve crops productivity by pro-
active monitoring of health status of leaves. Moreover, the avail-
ability of suggested study can be seen beneficial, meaningful, and as
promising candidate in providing proactive early alerts of plants
drought stresses at an early stage while ensuring adequate use of
water usage in the field of plant biology. This will also encourage
cultivators, horticulturists, to take effective and satisfactory mea-
sures to maintain the healthy status of plants by timely monitoring
their demand of water distribution and nutrients.



Table 11
Performance of all three classifiers for observing the WC variations in basil leaf for four days.

Classification performance by applying tenfold cross validation basil leaf

Classifier Quality metrices Accuracy/%

Algorithm Days Precision Recall F1-score

Random Forest Day 1 0.85 0.71 0.77

89.03
Day 2 0.75 0.88 0.81
Day 3 1 0.98 0.99
Day 4 0.98 1 0.99

KNN Day 1 0.64 0.59 0.61

78.94
Day 2 0.62 0.67 0.64
Day 3 1 0.9 0.95
Day 4 0.91 1 0.95

SVM Day 1 0.6 0.58 0.59

70.60
Day 2 0.6 0.62 0.61
Day 3 0.77 0.89 0.83
Day 4 0.87 0.73 0.79
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5. Conclusions

This paper highlights the emergence of terahertz (THz) tech-
nology enabled by machine learning (ML) non-invasive approach
for the precise and real-time identification of various plants spec-
imen in an automated fashion. For this purpose, transmission
response of seven distinct plant leaves were measured for four
consecutive days. To perform the classification, useful and mean-
ingful features were selected by performing feature selection
technique in order to enhance the classification accuracy for the
prediction of accurate species of plant leaves. The results drastically
showed improvement after identifying the important features,
yielded significant information about the water-stressed leaves by
determining cross-validation methodology. In addition, the
computation time was also improved that ultimately enhanced the
execution time of all three classifiers. It was noticed that for real-
time prediction and identification of different leaves, RF exhibited
higher accuracy of 98.87% followed by KNN and SVM with an ac-
curacy of 94.64% and 89.67%, respectively, by observing their
morphological characteristics at cellular level. In addition, RF out-
performed other classifiers with precision accuracy of 99.42% for
determination of water-stressed leaves.

In an environment, where climate transformations is growing
and limited availability of fertile land, the proposed study has the
strong potential to provide valuable recommendations and obser-
vations to horticulturists and botanists to develop a smart, sus-
tainable digital agricultural technology by providing appropriate
phenotyping information of plant leaves in an automated fashion,
which is of great significant to improve the productivity of crops.

Author contributions

Conceptualization, A. Z., K. D., H. T. A., and Q. H. A.; software, A.
Z., K. D, and A. R.; resources, A. Z., Q. H. A,; writing-original draft
preparation, A. Z. and K. D.; writing-review and editing, H.T.A, I.B.
M., M. H., A. R., A. A., and Q. H. A.; supervision, Q. H. A. and M. A. I.;
project administration, Q. H. A.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This research was funded under EPSRC DTA studentship which
1338
is awarded to A. Z. for his PhD. Research Council (DTG EP/N509668/
1 Eng).

References

[1] Roberts CJ. An integrated approach to function annotation in the histidine
phosphatase superfamily. 2015.

[2] Lowe A, Harrison N, French AP. Hyperspectral image analysis techniques for
the detection and classification of the early onset of plant disease and stress.
Plant Methods 2017;13(1):80.

[3] Fari~nas MD, Jimenez-Carretero D, Sancho-Knapik D, PegueroPina JJ, Gil-
Pelegr0ın E, Alvarez-Arenas TG. Instantaneous and non-0 destructive relative
water content estimation from deep learning applied to resonant ultrasonic
spectra of plant leaves. Plant Methods 2019;15(1):1e10.

[4] Afsharinejad A, Davy A, Naftaly M. Variability of terahertz transmission
measured in live plant leaves. Geosci Rem Sens Lett IEEE 2017;14(5):636e8.

[5] Born N, Behringer D, Liepelt S, Beyer S, Schwerdtfeger M, Ziegenhagen B,
Koch M. Monitoring plant drought stress response using terahertz time-
domain spectroscopy. Plant Physiol 2014;164(4):1571e7.

[6] Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D. Thz
imaging and sensing for security applicationsdexplosives, weapons and
drugs. Semicond Sci Technol 2005;20(7):S266.

[7] Naftaly M, Miles RE. Terahertz time-domain spectroscopy for material char-
acterization. Proc IEEE 2007;95(8):1658e65.

[8] Jordens C, Scheller M, Breitenstein B, Selmar D, Koch M. Evaluation of leaf
water status by means of permittivity at terahertz frequencies. J Biol Phys
2009;35(3):255e64.

[9] Liew OW, Chong PCJ, Li B, Asundi AK. Signature optical cues: emerging
technologies for monitoring plant health. Sensors 2008;8(5):3205e39.

[10] Torres V, Palacios I, Iriarte JC, Liberal I, Santesteban LG, Miranda C, Royo JB,
Gonzalo R. Monitoring water status of grapevine by means of thz waves.
J Infrared, Millim Terahertz Waves 2016;37(5):507e13.

[11] Santesteban LG, Palacios I, Miranda C, Iriarte JC, Royo JB, Gonzalo R. Terahertz
time domain spectroscopy allows contactless monitoring of grapevine water
status. Front Plant Sci 2015;6:404.

[12] Song Z, Yan S, Zang Z, Fu Y, Wei D, Cui H-L, Lai P. Temporal and spatial
variability of water status in plant leaves by terahertz imaging. IEEE Trans
Terahertz Sci Technol 2018;8(5):520e7.

[13] Zahid A, T Abbas H, Imran MA, Qaraqe KA, Alomainy A, Cumming DR,
Abbasi QH. Characterization and water content estimation method of living
plant leaves using terahertz waves. Appl Sci 2019;9(14):2781.

[14] Zahid A, Abbas HT, Sheikh F, Kaiser T, Zoha A, Imran M, Abbasi QH. Monitoring
health status and quality assessment of leaves using terahertz frequency. In:
2019 IEEE international symposium on antennas and propagation and USNC-
ursi radio science meeting. IEEE; 2019. p. 379e80.

[15] Zahid A, Abbas HT, Ren A, Zoha A, Heidari H, Shah SA, Imran MA, Alomainy A,
Abbasi QH. Machine learning driven non-invasive approach of water content
estimation in living plant leaves using terahertz waves. Plant Methods
2019;15(1):138.

[16] Ren A, Zahid A, Zoha A, Shah SA, Imran MA, Alomainy A, Abbasi QH. Machine
learning driven approach towards the quality assessment of fresh fruits using
non-invasive sensing. IEEE Sensor J 2019;20(4):2075e83.

[17] Huang Y, Ren Z, Li D, Liu X. Phenotypic techniques and applications in fruit
trees: a review. Plant Methods 2020;16(1):1e22.

[18] Rzanny M, Seeland M, W€aldchen J, M€ader P. Acquiring and preprocessing leaf
images for automated plant identification: understanding the tradeoff be-
tween effort and information gain. Plant Methods 2017;13(1):1e11.

[19] Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in
agriculture: a review. Sensors 2018;18(8):2674.

[20] Swissto12 URL. http://www.swissto12.com.

http://refhub.elsevier.com/S2214-9147(22)00003-4/sref1
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref1
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref2
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref2
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref2
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref3
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref4
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref4
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref4
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref5
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref5
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref5
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref5
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref6
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref6
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref6
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref6
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref7
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref7
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref7
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref8
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref8
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref8
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref8
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref9
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref9
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref9
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref10
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref10
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref10
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref10
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref11
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref11
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref11
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref12
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref12
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref12
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref12
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref13
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref13
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref13
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref14
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref14
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref14
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref14
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref14
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref15
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref15
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref15
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref15
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref16
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref16
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref16
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref16
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref17
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref17
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref17
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref18
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref19
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref19
http://www.swissto12.com


A. Zahid, K. Dashtipour, H.T. Abbas et al. Defence Technology 18 (2022) 1330e1339
[21] Li H, Yuan D, Wang Y, Cui D, Cao L. Arrhythmia classification based on multi-
domain feature extraction for an ecg recognition system. Sensors
2016;16(10):1744.

[22] Von Storch H, Zwiers FW. Statistical analysis in climate research. Cambridge
university press; 2001.

[23] Chen H, Chen X, Ma S, Wu X, Yang W, Zhang W, Li X. Quantify glucose level in
freshly diabetic's blood by terahertz time-domain spectroscopy. J Infrared,
Millim Terahertz Waves 2018;39(4):399e408.

[24] Yin X, Hadjiloucas S, Zhang Y, et al. Classification of thz pulse signals using
two-dimensional cross-correlation feature extraction and non-linear classi-
fiers. Comput Methods Progr Biomed 2016;127:64e82.

[25] Dutta S, Chatterjee A, Munshi S. Correlation technique and least square sup-
port vector machine combine for frequency domain based ecg beat classifi-
cation. Med Eng Phys 2010;32(10):1161e9.

[26] Li C, Wang J, Wang L, Hu L, Gong P. Comparison of classification algorithms
and training sample sizes in urban land classification with landsat thematic
1339
mapper imagery. Rem Sens 2014;6(2):964e83.
[27] Thanh Noi P, Kappas M. Comparison of random forest, k-nearest neighbor,

and support vector machine classifiers for land cover classification using
sentinel-2 imagery. Sensors 2018;18(1):18.

[28] Gürbüz SZ, Erol B, Ca�glıyan B, Tekeli B. Operational assessment and adaptive
selection of micro-Doppler features, IET Radar. Sonar Navig 2015;9(9):
1196e204.

[29] Pohjalainen J, R€as€anen O, Kadioglu S. Feature selection methods and their
combinations in high-dimensional classification of speaker likability, intelli-
gibility and personality traits. Comput Speech Lang 2015;29(1):145e71.

[30] Feizi-Derakhshi M-R, Ghaemi M. Classifying different feature selection algo-
rithms based on the search strategies. In: International conference on ma-
chine learning. electrical and mechanical engineering; 2014. p. 17e21.

[31] Gibson RM, Amira A, Ramzan N, Casaseca-de-la Higuera P, Pervez Z. Multiple
comparator classifier framework for accelerometer-based fall detection and
diagnostic. Appl Soft Comput 2016;39:94e103.

http://refhub.elsevier.com/S2214-9147(22)00003-4/sref21
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref21
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref21
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref22
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref22
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref23
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref23
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref23
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref23
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref24
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref24
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref24
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref24
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref25
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref25
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref25
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref25
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref26
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref26
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref26
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref26
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref27
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref27
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref27
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref28
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref29
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref30
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref30
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref30
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref30
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref31
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref31
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref31
http://refhub.elsevier.com/S2214-9147(22)00003-4/sref31

	Machine learning enabled identification and real-time prediction of living plants’ stress using terahertz waves
	1. Introduction
	2. Methodology
	2.1. System setup
	2.2. Preparation of samples
	2.3. Data collection and pre-processing procedure
	2.4. Feature extraction technique
	2.5. Frequency domain features
	2.6. Time domain features

	3. Classification and selection of optimal parameters
	3.1. Feature selection
	3.2. Classifier performance evaluation using metrics

	4. Results and discussions
	4.1. Classifiers performance for accurate detection of leaves
	4.2. Classifiers performance for observing characteristics on different days

	5. Conclusions
	Author contributions
	Declaration of competing interest
	Acknowledgements
	References


