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Simple Summary: Through time we have optimized drug combinations to treat cancer. Today we
count with a better arsenal of cancer drugs acting on specific genes, known as targeted cancer
therapies. Targeted therapies were promising as single drugs, avoiding the inevitable side effects of
drug combinations. Here we determine whether that promise have been fulfilled. We collected data
from thousand clinical trials testing the response of cancer drugs, either one drug at the time, or as
part of a combination of drugs. We find that targeted therapies are better for the treatment of cancer
when used in combination with previous cancer drugs that do not target specific genes. We conclude
that drug combinations should continue as the standard of care for cancer therapy.

Abstract: Background: Drug combinations are the standard of care in cancer treatment. Identifying
effective cancer drug combinations has become more challenging because of the increasing number
of drugs. However, a substantial number of cancer drugs stumble at Phase III clinical trials despite
exhibiting favourable efficacy in the earlier Phase. Methods: We analysed recent Phase II cancer
trials comprising 2165 response rates to uncover trends in cancer therapies and used a null model
of non-interacting agents to infer synergistic and antagonistic drug combinations. We compared
our latest efficacy dataset with a previous dataset to assess the progress of cancer therapy. Results:
Targeted therapies reach higher response rates when used in combination with cytotoxic drugs.
We identify four synergistic and 10 antagonistic combinations based on the observed and expected
response rates. We demonstrate that recent targeted agents have not significantly increased the
response rates. Conclusions: We conclude that either we are not making progress or response rate
measured by tumour shrinkage is not a reliable surrogate endpoint for the targeted agents.

Keywords: cancer; overall response rate; clinical trials; Phase II; drug combinations

1. Introduction

Cancer treatment benefits from early detection as 90% of all cancer deaths occur at
an advanced/metastatic stage [1]. The high mortality in advanced/metastatic disease is
because of the unsatisfactory efficacy of currently available treatments, including targeted
therapies. However, little progress has been made to inhibit metastasis owing to the poor
understanding of the underlying metastatic process, infrequent use of preclinical metastatic
models for drug screening and the complex tumour microenvironment [2]. Cancer metas-
tasis follows a series of multicellular events involving interactions of neoplastic cells with
non-cancerous stromal and immune cells of the tumour microenvironment [3]. These im-
mune cells driven by the microenvironment modulate immune responses following cancer
immunotherapy [4] and partly regulate chemotherapy sensitivity, and combinatorial treat-
ment blocking tumour-associated macrophages has shown to enhance chemotherapy
efficacy and restrict metastatic spread in transgenic breast cancer mouse models [5,6].
The rational integration of new targeted agents with cytotoxic drugs targeting the tumour
and its microenvironment together could reduce cancer deaths significantly.
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The influx of novel anticancer drugs along with existing chemotherapies poses a major
challenge to the selection of effective drug combinations. The number of FDA-approved
targeted therapies has increased five-fold compared to cytotoxic drugs [7]. Moreover,
63 distinct anticancer drugs were released on the market by the FDA between 2006 and
2016 [8], which would generate at least 39,000 different 3-agent combinations with an
exponential growth. Unfortunately, the trend of trials testing combinatorial cancer therapies
has lately decreased significantly relative to all oncology trials [9].

One important aspect of monitoring the trends of new cancer therapies is to minimise
the high attrition rate of cancer drugs in Phase III trials. A recent comparative study
reports that the success rate of cancer drugs is only 3.4%, whereas the overall success rate
excluding oncology drugs is 20.9% [10]. Moreover, a few cancer drugs that pass-through
Phase III trials do not always confer clinical benefit in the wider population. For instance,
only one-third (45/133) of the single-arm trials supported by FDA-approval and 13 out
of 37 released cancer drugs were translated to “meaningful clinical benefit” (MCB) ac-
cording to the American Society of Clinical Oncology (ASCO) scales [8,11]. In addition,
a combined analysis from two independent studies [12,13] investigating 243 randomised
controlled trials (RCTs) of predominant cancers revealed that 36% (87/243) of the RCTs
reached the minimum threshold of the MCB scale of the European Society for Medical
Oncology (ESMO).

Post-market studies also point towards the incoherent performance of new cancer
drugs between approval time and afterwards. Davis et al. [14] analysed 48 EMA-approved
anticancer drugs and they found that most of the drugs did not extend survival or improve
quality of life for a minimum of 3.3 years after market approval, although 35% of the indi-
cated cancers were associated with significant survival benefits at approval-time. Likewise,
Grössmann et al. [15] argue that approval status of a cancer drug does not represent MCB as
most of the EMA-approved drugs between 2011–2016 had not reached ESMO’s MCB scale.
Altogether, these discrepant post-approval performances of new cancer drugs in larger
populations provide evidence towards the necessity to monitor trends and combination
patterns of new cancer drugs before reaching Phase III trials.

The varying degrees of performances of targeted cancer agents in Phase III trials have
been rendering the trends more difficult to study. This is possibly due to the surrogate
endpoints, overall response rate (ORR) and progression-free survival (PFS), used in earlier
trials that are not sufficient to predict the overall survival (OS). In concordance with this,
several analyses [16–21] highlight that improved ORR or longer PFS do not always correlate
to survival benefit, and there are often little or unknown correlations between surrogate
endpoints and OS. Undoubtedly, targeted cancer therapies have impacted the treatment
outcome profoundly, although effective only in a small cancer subpopulation with specific
biomarkers, while chemotherapy has made a modest difference across all the stages of
disease in all population [22].

The question regarding the superiority of the targeted agents over chemotherapies
is disputable. This dichotomy has resurfaced from the failure of the targeted agents to
deliver a survival benefit even in biomarker-specific subset of population. For instance,
Camidge emphasised that the majority number of Phase III studies of tyrosine kinase
inhibitors (TKIs) testing EGFR-mutated non-small cell lung cancer (NSCLC) patients could
not demonstrate OS superiority over chemotherapy regardless of the significant ORR
and PFS improvement [22]. However, multiple Phase II and III studies [23–29] of HER2+
metastatic breast cancer proved that rational combinations of chemotherapies to targeted
agents are more safe and effective. In retrospect, owing to all incongruent results of targeted
agents, it is one of the clinical unmet needs to understand how novel cancer drugs are
performing in Phase II trials and analyse them in large numbers to detect small differences
and recognise the pattern of synergy/antagonism for prospective Phase III trials.

Combinatorial therapy in metastatic disease can deliver key advantages over monother-
apy given the complex interactions of the tumour immune microenvironment [6]. It allows
combination of multiple biologically distinct drugs to gain superior activity over monother-
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apy by enhancing pharmacodynamic activity through synergy, overcoming the resistance
problem, reducing the required concentrations of each combined agent, and minimising
the dose-dependent toxicity [30–33]. Furthermore, it is well known that combination
chemotherapy results in better efficacy and response rate compared to monotherapy, al-
though as explained above for targeted therapies, the role of combination therapy on
overall survival remains ambiguous [34].

In the search for effective cancer drug combinations, a balanced approach is to analyse
a large number of Phase II trial data to monitor trends of new cancer drugs and understand
the response pattern and interactions, thus identify potential synergistic and antagonistic
combinations. Moreover, Phase II trials have a reasonable number of study participants
as opposed to a very little participants in Phase I trials. On the other hand, there are
considerably a greater number of Phase II trials available to study than Phase III trials.
Meta-analyses and pooling together a large number of clinical data have been analysed
to assess the efficacy of novel cancer drugs against standard treatments [35–38]. Hence,
interpretations from bulk clinical data could potentially shed light on the current hazy
situation rendered by the abundant choices of cancer drugs.

In this study, we accumulated 2165 Phase II trials’ ORR data covering three decades
and identified a trend of cancer drugs, inferred synergistic and antagonistic combinations,
and also explored how the trends of cancer treatments have changed over time.

2. Experimental Methods

To investigate the trends in cancer combination therapy we have collected ORRs from
Phase II clinical trials (Figure 1).
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2.1. Endpoint Clinical Variable

The overall response rate (ORR) in a clinical trial is defined as the total percentage of
patients achieving a complete and partial response after treatment. A complete response
refers to the patients whose tumour disappeared after treatment and a partial response
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generally refers to the patients achieving a predefined reduction (usually ≥30%) in the
target lesions or tumour volume or cell number.

2.2. ORR Data Source and Selection Criteria

The ORR data were collected from PubMed. On 15 April 2020, data were searched
with the following: cancer Phase II clinical trial overall response rate. From the returned
list of abstracts, 1002 ORR data were extracted, starting from Phase II clinical trials of the
year 2020 and onwards as they appeared in order. The collected ORR data in a clinical
trial consisted of the patients who were evaluable for tumour response after treatment,
excluding the intention-to-treat population ORR data. In some cases where the ORR
was not directly specified, the ORR was manually calculated by combining complete and
partial response data from the efficacy result or supplementary data. Clinical trials that did
not have the ORR as primary or secondary endpoint were disregarded. In our collected
dataset, the ORRs of trials testing non-targeted agents (cytotoxic) in solid tumours was
assessed by Response Evaluation Criteria in Solid Tumours (RECIST v1) [39] and the
RECIST v1.1 [40] was used for targeted agents. For haematological malignancies, Lugano
response criteria [41] and International Working Group’s revised response criteria [42,43]
were used to assess the ORR for lymphomas and leukaemia. On 20 June 2020, a total of
1002 Phase II clinical trials with response data comprising of 44,429 subjects were compiled
in a spreadsheet for subsequent analysis (Table S1).

2.3. Agent Classification

Conventional chemotherapeutic and cytotoxic drugs were classified as non-targeted
agents. In contrast, synthetic hormonal therapies targeting specific receptor or receptors,
monoclonal antibodies, molecularly targeted cancer drugs such as small molecule kinase
inhibitors, and modern immunotherapies including checkpoint blockers and CAR-T cell
were classified as targeted agents (Table 1). Radiation and surgical interventions to regress
tumour, and steroids such as prednisone and dexamethasone which were used to alleviate
tumour associated pain and swelling had been neither deemed as non-targeted nor targeted
agents but counted as an agent in the analyses of combinations.

Table 1. Targeted and non-targeted agent classification.

Drug Class Targeted Agents Non-Targeted Agents

Cytotoxic drugs Doxorubicin, Cisplatin,
Nab-Paclitaxel

Synthetic hormonal agents Abiraterone, Fulvestrant,
Anastrozole

Monoclonal antibodies Bevacizumab, Trastuzumab,
Rituximab

Tyrosine kinase inhibitors Sunitinib, Ibrutinib,
Erdafitinib

Proteasome inhibitors Bortezomib, Carfilzomib,
Ixazomib

Modern immunotherapies Pembrolizumab, Nivolumab,
CAR-T cell

Other Interleukin-2, Everolimus,
Temsirolimus Pomalidomide, Lenalidomide

2.4. Statistical Analysis

When two groups were compared for a difference in mean ORR, all the performed sta-
tistical tests were two-tailed Student’s t-test at 5% significance level. Bonferonni correction
was employed when simultaneous significance tests had been done within the same ORR
groups in order to minimise the experiment-wise error rate.
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2.5. Clinical Synergy and Antagonism

Clinical synergy and antagonism for combinations were calculated using a null model
of non-interacting agents, which was postulated by Kang et al. [38]. This model ac-
counts for synergy or antagonism of drugs based on observed ORR and expected ORR
of a combination, while assuming no interactions between the agents. Evidence of syn-
ergy was found when the observed ORR of a drug combination was significantly greater
(p synergy < 0.05) than the expected ORR. In contrast, evidence of antagonism was found
if the observed ORR was significantly lesser (p antagonism < 0.05) than the expected ORR.
The expected ORR for a combination consisting of drug A and drug B was calculated by
the following equation:

ORRexpected = 100% [1 − (1 − ORRA/100%) (1 − ORRB/100%)], (1)

where ORRA and ORRB correspond to the mean ORR from the trials testing drug A and
drug B as single-agent, respectively. Consequently, the observed ORR for the combination
(drug A + drug B) was all the ORRs from trials testing drug A and drug B together.

3. Results
3.1. Impact of Combination Size

The ORRs are reported in Figure 2a,b, binned according to the number of drug
combinations in the clinical trials. The ORR started from 29% for clinical trials testing a
single-agent and significantly increased to reach 54% for 3-agent combinations (Figure 2b).
For trials testing 4- and 5-agent combinations the ORRs did not significantly exceed the
ORR of 3-agent trials (Figure 2b). For trials testing 6- or 7-agent combinations the average
ORR exhibited wide variations (Figure 2b). First, the ORR goes up by almost a 30% from
trials testing 3–5 agents to 6-agent trials. Then the ORR drops down by a 45% from trials
testing six agents to 7-agent trials. These wide variations are most likely due to the low
number of reported trials testing six and seven agents (Figure 2a). In the following we
restrict our attention to trials testing 1–5 combinations. Finally, when we restrict the analysis
to trials testing at least one targeted agent, we observe the exact same trends with slightly
better ORRs for 4- and 5-agent combinations (Figure 2c).

3.2. One versus Multiple Targeted Agents

The data shown above indicate that, on average, increasing the number of agents
increases the ORR. It is worth asking if increasing the number of targeted agents will
give an advantage compared to adding non-targeted agents. To address this question, we
compared clinical trials with the same number of agents but stratified into having one
(single) or more than one (multiple) targeted agents. Overall, we did not observe a clear
improvement in the ORR of multiple-targeted agents when compared to corresponding
single-targeted agent combinations (Figure 3). For example, the ORR of 2-agent single-
targeted agents (one targeted plus one non-targeted agent) was significantly higher (46%
vs. 35%) than two targeted agents combined. Conversely, in 4-agent combinations, the
ORR of one targeted plus three non-targeted agents was significantly lower (54% vs. 72%)
than two targeted plus two non-targeted agents. These data suggest that the combination
of targeted agents has not been sufficiently optimized for non-targeted agents.
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3.3. Trends across Time

To analyse the trends in cancer therapy, we compared the current results (2013–2020)
with a dataset from a previous study [38] covering Phase II clinical trials between the
year 1990–2011 (modern vs. previous). As expected, the modern dataset contains an
increased proportion of targeted agents when compared to the older dataset (Figure 4a).
Overall, except for the 2-agent combinations, we do not observe significant differences
between the modern and previous trends of the ORR as a function of the number of agents
(Figure 4b). There are some variations for 5-agent combinations but, these are probably due
to a particular 5-agent combination with a low ORR appearing six times on that bin which
skewed down the mean ORR (see discussion). Unexpectedly, the enrichment with targeted
agents in modern Phase II trials is not translated into an average increase in the ORR.

3.4. Synergistic and Antagonistic Combinations

Synergy and antagonism of drug combinations can be estimated using a null model
that assumes no interactions between agents [38]. A combination is deemed synergistic if
the observed ORR (ORRO) from the clinical trials of that combination significantly exceeds
the expectation from the null model of non-interacting agents (ORRE). Likewise, a combina-
tion is deemed antagonistic if the ORRE significantly exceeds ORRO. The application of this
methodology to evaluable Phase II trial data uncovered several synergistic (ORRO > ORRE,
p synergy < 0.05) and antagonistic (ORRO < ORRE, p antagonism < 0.05) combinations (Figure 5,
Tables 2 and 3).
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*** p < 0.001. Previous dataset from Kang et al. [38].

We identified four synergistic and 10 antagonistic combinations and plotted them in
Figure 5. The diagonal line represents no discrepancy between observed and expected
ORR. Consecutively, the distance of a combination from their corresponding position in the
diagonal line i.e., straight upward for synergy and downward for antagonism, resembles
the degree of difference between the observed and expected ORR.
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Figure 5. Clinical synergy and antagonism. The observed ORRs (ORRO) as a function of the expected
ORR (ORRE) assuming no agent-agent interactions (null model). The diagonal line represents the
perfect agreement with the null model. The left side and right side of the diagonal line correspond
to the region of synergy and antagonism, respectively. (+) denotes combinations having evidence
for synergy: ORRO > ORRE, p synergy < 0.05; (×) combinations having evidence for antagonism:
ORRO < ORRE, p antagonism < 0.05; and black squares (�) no significant difference from the null model.

Of the four synergistic pairs (Table 2), three pairs consist of chemotherapies, while the
remaining pair contains two targeted agents (rituximab + ibrutinib). Notably, either carbo-
platin or nab-paclitaxel appear in all three of the synergistic chemotherapy combinations.

Table 2. List of inferred synergistic combinations.

Synergistic Combinations

Agent 1 Agent 2 Expected ORRE (%) Observed ORRO (%) p synergy Cancer Subtype Null Model

Doxorubicin Carboplatin 27 58 9.33 × 10−3 Ovarian cancer

Kang et al. [38]
Carboplatin Nab-Paclitaxel 28 59 4.87 × 10−3

Lung (NSCLC *),
Oropharyngeal, Breast

cancer (TNBC **)

Rituximab Ibrutinib 86 94 1.71 × 10−3 Chronic lymphocytic
leukaemia

S-1 Nab-Paclitaxel 31 58 2.59 × 10−2 Gastric, Pancreatic
cancer

* Non-small cell lung cancer. ** Triple negative breast cancer.

Of the 10 antagonistic drug combinations (Table 3), seven of them consist of at least
one targeted agent and four of the drug pairs contain two targeted agents: one monoclonal
antibody and one tyrosine kinase inhibitor. Notably, among the six antagonistic chemother-
apies, gemcitabine is associated with four of the combinations. Moreover, among the
five antagonistic drugs FOLFOXIRI (leucovorin, fluorouracil, oxaliplatin, irinotecan) and
cetuximab, the interaction between irinotecan and cetuximab combination was identified
as antagonistic independently (See discussion).
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Table 3. List of inferred antagonistic combinations.

Antagonistic Combinations

Agent
1/Combination 1 Agent 2 Expected

ORRE (%)
Observed
ORRO (%) p antagonism Cancer Subtype Null Model

Afatinib Bevacizumab 35 18 1.88 × 10−2 Lung cancer (NSCLC *,
EGFR Mutant)

Kang et al. [38]

Carboplatin Gemcitabine 88 43 5.33 × 10−3
Ovarian, Breast (TNBC

**), Lung cancer
(Squamous NSCLC *)

Ibrutinib Durvalumab 86 26 1.30 × 10−3 Non-Hodgkin
lymphoma

Erlotinib Bevacizumab 36 10 1.67 × 10−4 Hepatocellular
carcinoma

Erlotinib Gemcitabine 89 13 4.96 × 10−3 Metastatic pancreatic
cancer

Nab-Paclitaxel Gemcitabine 88 33 8.87 × 10−6 Pancreatic, Breast, Bile
duct cancer

Gemcitabine Paclitaxel 89 39 3.87 × 10−2 Metastatic breast cancer

Trastuzumab Neratinib 54 27 3.27 × 10−2 Breast cancer (HER2+)
***

Irinotecan Cetuximab 45 28 1.94 × 10−2
Metastatic colorectal

cancer (KRASwt,
BRAFwt) ****

FOLFOXIRI # Cetuximab 56 34 4.00 × 10−3 Metastatic colorectal
cancer

* Non-small cell lung cancer. ** Triple negative breast cancer. *** Human epidermal growth factor receptor 2. **** Wild type KRAS, wild
type BRAF. # Leucovorin + Fluorouracil + Oxaliplatin + Irinotecan.

4. Discussion

We observed varying degrees of ORR trends of cancer drugs depending on the types
and number of agents in combinations and also inferred four synergistic and 10 antagonistic
combinations. Targeted agents clearly demonstrated superior efficacy over non-targeted
cytotoxic agents in our dataset. However, one targeted agent with one non-targeted agent
significantly produced better efficacy than two targeted agents combined. Unexpectedly,
the comparison of the modern dataset with the previous efficacy dataset revealed no
significant increase in the ORR trend of the targeted agents in recent trials.

In our analysis, the ORR trends of targeted agents (Figure 2c) and all cancer agents
(Figure 2b) followed a similar increasing trend with no discernible differences. However,
4-agent and 5-agent combinations of targeted agents exhibited a slightly higher ORRs than
all cancer agents. This indicates that targeted agents perform relatively better in four to five
drugs’ combination than corresponding lower combination sizes. In light of this finding,
replacing a targeted agent by a non-targeted agent is proven to be optimal in a combination
of two targeted agents (Figure 3).

We suggest that recent targeted agents are not optimised properly in chemotherapy
combinations. To demonstrate, the addition of panitumumab [44] and cetuximab [45] to
bevacizumab-chemotherapy combinations in metastatic colorectal cancer (mCRC) RCTs
reduced PFS and OS, and found to be suboptimal. Many promising targeted agents stumble
in clinical trials despite a favourable preclinical profile. In line with this, a recent umbrella
trial assessing precision medicine in NSCLC exposes that most of the investigational single-
targeted agents have shown poor response rates (<10%) and few treatment cohorts have
been discarded because of insufficient efficacy, whereas response rates were much higher for
double-targeted agents [46]. Moreover, targeted agents’ performance is difficult to predict
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in a wider drug-biomarker specific subpopulation. For instance, two randomised Phase III
trials suggest that afatinib failed to prolong patient life in the whole tested population of
EGFR-mutant advanced lung cancer [47], however, afatinib significantly extended survival
by 3 months to a specific EGFR-mutated subgroup compared to chemotherapy [48].

To make matters more complicated, inconsistent performances among different gener-
ations of EGFR-TKIs have been noticed when multiple trials’ results are being analysed.
A randomised controlled Phase II trial assessing the performance of first-generation (gefi-
tinib) and second-generation (afatinib) EGFR-TKIs revealed a significant improved PFS
of afatinib in EGFR-mutant NSCLC [49]. However, a recent network meta-analysis of
eight studies has identified that gefitinib is associated with longer OS than afatinib de-
spite displaying a shorter PFS in EGFR-mutant NSCLC brain metastasis [21]. Likewise,
Camidge argued that TKIs in NSCLC do not considerably extend patient survival while
conferring a better PFS and ORR at the initial Phases [22]. However, this transient benefit
simply reallocates the total available survival time compared to historical chemotherapy
data. Although it is undeniable to overlook targeted agents’ profound impact on overall
survival benefit but all of these studies indicate toward investigation for more specific and
actionable biomarkers of targeted agents [2,22].

Surprisingly, we observed that the ORR trend in our modern dataset is relatively
lower than the previous dataset, which reflects no treatment improvements over time.
However, an alternative explanation of this incongruous trend could be the insufficiency of
ORR as an endpoint to evaluate targeted agents. In our dataset, the response rate of the
targeted agents in solid tumour trials was largely assessed by the RECIST 1.1 [40], while
the previous version (RECIST v1.0) was used for trials of cytotoxic drugs. This is because
the RECIST v1.0 [39] was originally developed to assess the efficacy of cytotoxic drugs.

The RECIST is based on tumour shrinkage and involves unidimensional radiographic
measurement of target lesions. Multiple studies [50–53] have suggested that tumour
size reduction may not always be symmetrical, especially for targeted agents because
of their mechanisms which do not regress tumour by cytotoxicity, and complex tumour
microenvironments. Furthermore, several retrospective studies [52,54–57] evidence toward
bevacizumab’s superior pathological response than chemotherapy regardless of the sim-
ilar RECIST response rates, and suggest that pathological response defined by the cell’s
morphological change could be a better predictor of OS for preoperative chemotherapy in
colorectal hepatic metastases [56,58,59]. However, more precise non-invasive methods for
determining pathological response rate need to be developed.

We suggest that the response rate of targeted agents measured by the RECIST method
might not be a reliable surrogate endpoint for overall survival. In line with this, two
independent Phase III studies [60,61] have reported that cetuximab and bevacizumab do not
improve RECIST-defined ORR significantly when combined with standard chemotherapy
regimens in mCRC, however, the addition of bevacizumab significantly prolonged PFS
but failed to extend OS and ORR, whereas cetuximab extended OS without changing the
ORR and PFS. This implies that ORR is incapable of predicting the OS for bevacizumab
and cetuximab, and no concordance between ORR and PFS. Meta-analysis combining
three Phase III trials of metastatic breast cancer consisting of 2695 subjects revealed that
bevacizumab significantly enhanced ORR and PFS when added to chemotherapy, although
this increase did not reflect into significant OS benefit [36]. Therefore, all of these discrepant
studies point toward the failure of the RECIST response rate as an indicator of patient
benefit for targeted agents in mCRC [62] and breast cancer.

As mentioned in Section 3, the ORR of the 5-agent trials is likely to be outliers because
largest ORR differences were originating from it. Besides, the ORRs data from 5-agent to 7-
agent trials itself had been less reliable as the number of those trials in our dataset decreased
dramatically for the higher number of combinations. However, the numbers of 5-agent
and 6-agent trials are doubled and more than tripled, respectively, in our dataset (modern)
compared to the older dataset (previous). After comparing the modern dataset with the
previous (Figure 4b), we expected our 5-agent combinations’ ORR to be relatively higher.
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Therefore, a closer look into the lowest ORRs within 5-agent combination trials uncovered
an unusual combination appearing six times. The suspected 5-agent combination consisted
of celecoxib, thalidomide, fenofibrate, cyclophosphamide, and etoposide, and the mean
ORR was only 6.75%, ranging from various CNS tumours to bone cancer trials. This specific
combination skewed down the 5-agent trials’ ORR. On the other hand, we tried to identify
which agents had contributed to the high ORR of the 6-agent combinations. Two specific
combinations containing three distinct targeted agents, venetoclax plus obinutuzumab
and venetoclax plus rituximab, partly contributed to the heightened ORR of 6-agent
combinations because of their frequent appearance in those trials.

We found the combination of cetuximab and FOLFOXIRI (leucovorin, fluorouracil,
oxaliplatin, irinotecan) chemotherapy regimen antagonistic in mCRC. Moreover, we iden-
tified that the combination of cetuximab and irinotecan itself was antagonistic in mCRC
(Table 3), which further substantiates the antagonism between cetuximab and FOLFOXIRI.
However, using the same methodology, Kang et al. [38] found that oxaliplatin and irinote-
can combination was synergistic in colorectal cancer, implying that at least one synergistic
and one antagonistic two-drug interactions exist between the five drugs. This finding is
relevant in light of the results from clinical trials where cetuximab, bevacizumab, and pani-
tumumab were somewhat not recommended and subject to careful addition to oxaliplatin
or irinotecan based chemotherapy regimens in mCRC patients [44,45,60]. Looking in our
synergistic drug pairs (Table 2), we identified doxorubicin and carboplatin combination
was synergistic in ovarian cancer. In line with this, Kang et al. [38] inferred a similar but
not identical combination, doxorubicin and oxaliplatin, to be synergistic in ovarian cancer.

There are caveats associated with the inferred synergy and antagonism. Firstly, the
identification of a particular synergistic/antagonistic combination was restricted by the
availability of the trials testing that combination and their respective single-agent trials in
our dataset. Secondly, the null model would not account for drugs that are not mutually
exclusive such as drugs with similar mechanisms of actions interacting with each other [63].
Thirdly, varying degrees of synergy/antagonism of the inferred combination would be
expected in vitro at different dose-ratio. This is because the shape of the dose-effect curve
of the inferred combination depends on the specific dose-ratio used in those trials in
our dataset. Fourthly, a significant greater combined effect does not necessarily indicate
synergy, which can result from additive effects or even a minor antagonism [64]. Therefore,
synergy needs to be verified and quantified in vitro by Chou-Talalay’s method [63] to
understand mechanisms and extent of conferred synergy of each agents in combination.

Our analysis does not apply to a specific cancer type for a given combination, rather it
was focused on a macro-level to explore overall trends of new cancer drug combinations.
However, results relating to a specific molecularly targeted agent would likely applicable to
specific cancer subtypes, i.e., trastuzumab for HER2+ breast and stomach cancer. Reflecting
on the response rate endpoint, it is not clear as to whether an increased ORR conferred by
the targeted agents translates into a survival benefit, or the ORR itself measured by tumour
shrinkage is not representing the true performance of the targeted agents. However, it is
reasonable to conclude that the ORR of targeted agents is not a reliable surrogate endpoint
for OS. Nonetheless, our analysis could be influenced by publication bias as trials with
negative outcomes would more likely to remain unpublished. Altogether, our findings
will provide insight on how new cancer drugs are performing in general and the need for
optimising them in combinatorial therapies.

5. Conclusions

Our analysis demonstrates that targeted therapies should be used in combination with
cytotoxic drugs to reach high response rates. We identified four synergistic and 10 antago-
nistic combinations based on the observed and expected response rates. The comparison
of recent and older collections of clinical trials does not manifest signs of improvements
in the overall response rate. Recent targeted agents have not significantly increased the
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response rates. We conclude either we are not making progress or response rate measured
by tumour shrinkage is not a reliable surrogate endpoint for the targeted agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/2/178/s1, Table S1: Collected 1002 Phase II clinical trial overall response rate data.
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