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The balance of type 1 and type 2 immune responses plays a crucial role in anti-helminth
immunity and can either support chronic infection or drive type 2 mediated expulsion of
the parasite. Helminth antigens and secreted molecules directly influence this balance and
induce a favorable immunological environment for the parasite’s survival. However, less is
known if the site of infection also influences the balance of type 1 and type 2 immunity.
Here, we report that tissue-specific immune responses are mounted against helminth
antigens, which elicited strong IL-4 responses when injected into the skin, while the same
antigen, delivered into the intestinal subserosa, induced increased IFN-g and reduced Th2
responses. Immune responses in individual mesenteric lymph nodes that drain defined
regions of the intestine furthermore displayed a site-specific pattern of type 1 and type 2
immunity after Schistosoma mansoni or Heligmosomoides polygyrus infection. S.
mansoni egg-specific Th2 responses were detectable in all mesenteric lymph nodes
but Th1 responses were only present in those draining the colon, while H. polygyrus
infection elicited mixed Th1 and Th2 responses in the lymph nodes associated with the
site of infection. Similar site-specific type 1 and type 2 immune responses were observed
in the draining lymph nodes after the controlled delivery of S. mansoni eggs into different
segments of the small and large intestine using microsurgical techniques. Different
subsets of intestinal dendritic cells were hereby responsible for the uptake and priming
of Th1 and Th2 responses against helminth antigens. Migratory CD11b+CD103− and
especially CD11b+CD103+ DC2s transported S. mansoni egg antigens to the draining
lymph nodes to induce Th1 and Th2 responses, while CD103+ DC1s induced only IFN-g
responses. In contrast, H. polygyrus antigens were predominantly transported by
CD11b+CD103− DC2s and CD103+ DC1s and all DC subsets induced similar Th1 but
weaker Th2 responses, compared to S. mansoni egg antigens. The development of
adaptive anti-helminth immune responses is therefore influenced by the antigen itself, the
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uptake and priming characteristics of antigen-positive dendritic cell subsets and the site of
infection, which shape the level of Th1 and Th2 responses in order to create a favorable
immunological environment for the parasite.
Keywords: mucosal immunology, th1/th2 balance, helminth antigen, mesenteric lymph node, microsurgery,
dendritic cells, Schistosoma mansoni, Heligmosomoides polygyrus bakeri
INTRODUCTION

The balance of different types of immune responses plays an
important role in orchestrating the optimal immunological
environment to appropriately counter infections. Numerous
studies [reviewed in (1–4)] show that this is particularly
relevant in the context of helminth infections, where type 2-
biased immune responses promote parasite killing and worm
expulsion, whereas type 1 immunity usually results in ineffective
responses and chronic infection.

This effect is perhaps best demonstrated during the infection of
the nematode Trichuris muris where Interleukin-4 (IL-4) and IL-
13 mediated Th2 responses lead to rapid expulsion in resistant
mouse strains, whereas susceptible mouse strains produce high
levels of Interferon-gamma (IFN-g), IL-12 and IL-18, which are
characteristic of a predominant Th1 response (5, 6). IFN-g
depletion in normally susceptible animals furthermore promotes
the development of protective Th2 responses, which renders these
animals resistant to infection (7). Similarly, T. muris-resistant mice
treated with IL-12 develop chronic infection (8), with similar
observations made during Nippostrongylus brasiliensis infection,
where parasitic worm expulsion is delayed after the injection of
recombinant IL-12 (9). A direct requirement for IL-4/IL-13
signaling in worm expulsion is demonstrated by IL-4 receptor
antibody blocking experiments, and in IL-4R−/− and STAT6−/−

mice, dramatically limiting worm expulsion during T. muris (7),
Heligmosomoides polygyrus (10) or N. brasiliensis (11) infection.

Th1 and Th2 responses also play an important role in
Schistosoma mansoni infection, which afflicts over 200 million
people worldwide (12). In humans, acute schistosomiasis
manifests as an incapacitating febrile illness through the
production of pro-inflammatory cytokines (13). With the onset
of egg production by the female parasites a Th2-driven immune
response is initiated, resulting in a mixed Th1/Th2 response
which leads to chronic infection and granuloma formation in the
liver and intestines (13, 14). In murine infection models, low
levels of Th1/2 responses against developing worms become
dominated by the potent type 2 immune response that
develops against S. mansoni eggs, limiting damage to the host
(15). In the absence of these Th2 responses, IL-4−/−mice infected
with S. mansoni experience severe TNF-a-mediated acute
cachexia, hepatotoxicity, and high mortality (16), as well as
intestinal pathology and detectable serum levels of LPS (17).
Through experimental immunization models, S. mansoni eggs
have been shown to induce both Th1 and Th2 responses in an
antigen-specific manner (18, 19), and several antigens that can
initiate and influence Th2 responses have been identified to date
(20–23). An assessment of the ratios of type 1 and type 2 immune
org 2
responses induced by the injection of S. mansoni eggs, however,
suggests that other factors such as the different routes of
immunization can influence anti-parasite immunity (18, 24, 25).

The idea that the tissue environment can influence T cell
immunity has been well studied for tissue resident memory cells,
which display tissue-specific signatures and functions (26–29).While
tissue resident memory T cells acquire most of these characteristics
after priming, a location-dependent preferential development of
effector T cells has recently been identified in the intestinal
draining lymph nodes (LNs) (30). The analysis of RORgt+ Th17
and Foxp3+ T regulatory cell development after controlled antigen
delivery into different segments of the intestine revealed that
tolerogenic responses preferentially develop in LNs draining the
proximal intestine while Th17 responses are more pronounced in
the LNs draining the distal intestine (30). This observation
demonstrated that effector T cell differentiation can directly be
influenced by location-specific factors, suggesting that the distinct
phenotypes and proportions of pro-inflammatory and T regulatory
cells, reported in numerous tissues and LNs (31–33), might not only
be maintained but also initiated by location-specific cues.

Here we report that the site of immunization can indeed
influence the balance of Th1 and Th2 responses against helminth
antigens in a tissue- and site-specific manner. After immunization
with S. mansoni eggs or H. polygyrus antigens in the footpad or the
intestinal subserosa, antigen-specific CD4+ T cell responses in the
lymph nodes showed a contrasting Th1/Th2 profile with higher
IFN-g responses observed after intestinal immunization, compared
to increased Th2 responses after immunization of the skin. Distinct
type 1 and type 2 immune responses were also observed in the
individual mesenteric lymph nodes during live parasite infection,
and stronger Th2 responses were observed in the LNs draining the
proximal intestine compared to distal intestine. Similar observations
were made after the controlled delivery of S. mansoni eggs into
different segments of the small and large intestine, which induced
increased Th1 and reduced Th2 responses in LNs draining the lower
colon compared to the small intestine. Different helminth antigens
were furthermore taken up by distinct subsets of intestinal migratory
dendritic cells, which induced distinct levels of Th1 and Th2
responses, indicating that lymph node-specific type 1 and type 2
immune responses against helminth antigens are modulated by the
antigen itself, antigen-positive dendritic cells and the site of infection.
MATERIALS AND METHODS

Mice
C57BL/6 were obtained from Envigo, UK or bred at the
University of Manchester, UK or the Malaghan Institute of
October 2020 | Volume 11 | Article 592325
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Medical Research, Wellington, New Zealand. Mice were housed
under specific pathogen free conditions and age- and gender-
matched adult animals were used in each individual experiment.

Surgical Procedures
All surgical procedures were carried out under aseptic conditions
using inhalation anesthesia with Isoflurane (Abbot Animal
Health). Agents, diluted in a maximum volume of 20 µl, were
injected into the footpad using Micro-Fine Plus Hypodermic
Syringes (29 G × 12.7 mm; BD Bioscience). To display the
murine intestine and the mesenteric lymph nodes laparotomy
surgery was performed. For lymph cannulations and MLN
subcapsular injection, mice were gavaged with 0.2 ml Oliver oil
30 min prior to surgery to visualize the lymphatics.
Buprenorphine (0.1 mg/kg; Vetergesic, Reckitt Benckiser
Healthcare) and Carprofen (5 mg/kg; Rimadyl, Pfizer) were
given subcutaneously into the flank as prophylactic analgesics.
The abdominal area was shaved and sterilized, and the mouse
placed on its back. A small incision into the skin of the animal’s
midline was made using a scalpel. This incision was extended to
up to 3 cm using scissors. Similarly, the muscle layer was incised
at the midline, and the incision extended with scissors. The
intestine was carefully displayed onto a moistened surgical cloth
using cotton buds as shown in Figure 2A. Organs were
moistened every 2–5 min during surgery to prevent them from
drying out. Using a Leica M651 surgical microscope, agents,
diluted in a maximum volume of 10 µl, were injected into the
subserosal layer of the different segments of the intestine or
under the MLN capsule using Micro-Fine Plus Hypodermic
Syringes (29G × 12.7 mm; BD Bioscience). The intestinal
segment of interest was gently held in place with forceps, and
the needle was horizontally inserted with the bevel facing
upwards. A small injection pocket would form at the injection
site confirming that the intestinal lumen was not penetrated. For
non-recovery ink injection experiments 10 ml of ink was injected
into the intestinal subserosa and lymphatic drainage visualized
using a Leica M651 surgical microscope (6×) with an attached
Nikon camera. Different dyes were injected, which resulted in the
following observations.

Injected material Observations

2% Chicago Blue dye (Sigma) Wide-spread deposition and drainage via
the lymphatics within minutes

2% Evans Blue dye (Sigma) Wide-spread deposition and drainage via
the lymphatics within minutes

Graphite particles (<20 mm, Sigma)
resuspended in PBS

Very localized deposition but no lymphatic
drainage

Black Chinese calligraphy ink (AMI) Local deposition and drainage via the
lymphatics within seconds

Black India ink (Pelikan) Local deposition but no lymphatic drainage
Frontiers in Immunology | www.fron
After injection, the intestines were replaced into the body
cavity, the muscle layer was sutured with 6.0 Vicryl absorbable
sutures (Johnson and Johnson) using discontinuous stitching,
and the skin was closed using surgical clips (Autoclip Wound
Clip System, Harvard Apparatus). Mice were closely monitored
tiersin.org 3
post-surgery to ensure full recovery from the anesthesia and
monitored on a daily basis thereafter. To collect lymph migrating
DCs, MLNs were removed from 6-week-old male mice by
laparotomy and blunt dissection, as previously described (25,
34). After 6 weeks, the thoracic lymph duct was cannulated by
the insertion of a polyurethane medical grade intravascular tube
(2Fr; Linton Instrumentation) and fluorescently labeled soluble
parasite antigens were injected in the intestinal serosa. Lymph
was collected for 18 h on ice in PBS (Gibco) supplemented with
20 U/ml of heparin sodium (Wockhardt UK).

Schistosoma mansoni Infection
Mice were infected percutaneously with ~180 S. mansoni cercariae.
Seven weeks after infection MLNs were collected. Infective S.
mansoni cercariae were obtained from infected B. glabrata snails
provided by the NIAID Schistosomiasis Resource Centre of the
Biomedical Research Institute (Rockville, MD) through NIH-
NIAID Contract HHSN272201700014I and distributed through
BEI Resources. Eggs were isolated under sterile conditions from the
livers of infected C57BL/6 mice prior to cryopreservation. SEA was
prepared by homogenization and ultracentrifugation of S. mansoni
eggs and concentrated by vacuum dialysis to 1 mg/ml in DPBS
(Life Technologies). SEA was fluorescently labeled using an AF660
Microscale Antibody Labelling Kit (Life Technologies) following
the manufacturer’s instructions.

Heligmosomoides polygyrus Infection
The H. polygyrus life cycle was maintained as previously
described (35). For experimental infections, C57BL/6 mice
were infected with 200 L3 larvae by oral gavage at six weeks of
age. 17 days after infection MLNs and intestines were collected.
Adult worm burden was quantified by mounting opened
intestines inside a 50 ml falcon filled with PBS. After a 3 h
incubation at 37°C, worms were collected from the bottom of the
tube and counted under a microscope. HES was collected from
adult parasites that were maintained for 21 days in serum-free
tissue culture medium and concentrated by vacuum dialysis to 1
mg/ml in DPBS (Life Technologies). HES was fluorescently
labeled using an AF660 Microscale Antibody Labelling Kit
(Life Technologies) following the manufacturer’s instructions.

Lymph Node Harvest and Cell Isolation
Individual LNs were identified and collected as described
throughout the manuscript and depending on the experiment
either all, pooled, or individual lymph nodes were collected. For
restimulation cultures 1 × 106 MLN cells were cultured in X-vivo
15 media (Lonza) supplemented with 1% L-glutamine
(Invitrogen), 0.1% 2-mercaptoethanol (Sigma-Aldrich), and 7.5
µg/ml SEA or HES in round bottom 96-well plates (Corning) at 37°
C and 5% CO2. Supernatants were collected after three days and
cytokines detected using the IL-4, IL-5, IL-13, and IFN-g “ready-
set-go” ELISA kits (eBioscience) or paired antibodies (Biolegend).

For dendritic cell isolation, lymph was washed in FACS buffer
or MLNs were digested with RPMI 1640 (Life Technologies)
supplemented with 8 U/ml Liberase and 10 mg/ml DNase (both
Sigma-Aldrich) for 45 min at 37°C in a shaking incubator and
single-cell suspensions were prepared using a 40 µm cell strainer
October 2020 | Volume 11 | Article 592325
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(Greiner Bio One). For intracellular staining of cytokines, lymph
nodes were passed through a 40 µm cell strainer (Greiner Bio One)
to create a single cell suspension. 2 × 106 cells were incubated in
RPMI 1640 (Life Technologies) supplemented with 2.5 ng/ml
PMA (Sigma- Aldrich), 1 mg/ml ionomycin (Invitrogen), 0.5%
GolgiStop (BD Bioscience) and 10% FCS for 4 h at 37°C, after
which cell surface markers were stained. Cells were fixed and
permeabilized using the eBioscience Foxp3/Transcription Factor
Staining Buffer Set (eBioscience), and intracellular staining was
performed following the manufacturer’s instructions.

Antibodies for Flow Cytometric Analysis
The following combination of fluorescently labeled primary
antibodies against cell surface markers and intracellular
cytokines were used: anti-CD3 (17A2), anti-CD4 (clones
GK1.5 and RM4-5), anti-CD8a (53–6.7), anti-CD44 (IM7),
anti-CD45R/B220 (RA3-6B2), anti-CD11c (N418), anti-CD103
(M290), anti-Ly6C (HK1.4), anti-I-A/I-E (M5/114.15.2), anti-
IL17 (TC11-18H10.1), and anti-IL4 (11B11) from Biolegend, and
anti-IFN-g (XMG1.2) and anti-IL-13 (eBio13A) from
eBioscience. Cells were analyzed using a LSRII flow cytometer
running FACSDiva Software (BD Bioscience) and analyzed using
FlowJo Software (Tree Star). Fixable Viability Dye eFluor780
(eBioscience), DAPI or 7-AAD Viability Staining Solution
(Biolegend) were used according to the manufacturer’s
instructions to exclude dead cells from analysis.

Statistical Analysis
Experimental group sizes ranging from three to five animals were
chosen to ensure that a twofold difference between means could be
detected with a power of at least 80%. Prism 8 Software (GraphPad)
was used to calculate the SEM and the statistical significance using
an ordinary one-way ANOVA with Holm–Sidak’s multiple
comparisons test, two-way ANOVA with Dunnett’s multiple
comparisons test or unpaired t-tests as indicated in the figure
legends. Statistical significance was defined as p ≤ 0.05.
RESULTS

Increased IFN-g and Decreased Th2
Responses Are Induced When S. mansoni
Eggs Are Injected Into the Intestinal
Subserosa Compared to the Footpad
In previous studies (18, 24, 25), different levels of Th1 and Th2
responses had been observed when S. mansoni eggs were injected
into different locations, such as the tail vein, the footpad or the
intestine. To formally compare whether the injection of S.
mansoni eggs into different tissues induced different levels of
type 1 and type 2 immune responses, we injected 2,500 S.
mansoni eggs into the footpad or the intestinal subserosa of
C57BL/6 mice and collected the draining lymph nodes 5 days
after immunization. In line with previous reports, these
immunizations resulted in robust Th1 and Th2 responses but
revealed differences in the quality of the response when
compared to each other. In the popliteal lymph nodes (pLNs)
Frontiers in Immunology | www.frontiersin.org 4
approximately 2% of PMA/ionomycin stimulated CD4+ T cells
produced IFN-g after egg injection into the footpad, whereas up
to 4% of CD4+ T cells in the mesenteric lymph nodes (MLNs)
were IFN-g+ after subserosal egg injection (Figures 1A, B;
Supplementary Figure 1A). Conversely, in the same
experiment IL-4+ T cells were four times more abundant in the
pLNs than in the MLNs, resulting in a much higher ratio of IFN-
g+ T cells in the MLNs (Figure 1 C). As the subserosal injection
required laparotomy surgery, we also assessed IFN-g and IL-4
responses under mock surgery conditions and confirmed that the
injection itself did not induce IFN-g or IL-4 T cell responses, with
no significant levels of IFN-g+ or IL-4+ T cells detected in naïve
or PBS injected mice (Figure 1B).

To assess antigen-specific cytokine responses in these
experiments, we restimulated pLN or MLN cells with soluble
egg antigen (SEA) for three days and measured cytokine
production by ELISA. Similar to our observations for PMA/
ionomycin stimulated CD4+ T cells, high levels of IFN-g were
produced by MLN cells after subserosal egg injection, whereas
pLN cells secreted higher levels of IL-5 and IL-13 after egg
injection into the footpad (Figure 1D). Despite similar levels of
IL-4 production in the pLN and MLN, the ratio of secreted IFN-g
compared to each of the Th2 cytokines was always greater in the
MLN (Figure 1E).

Thus, increased antigen-specific IFN-g and reduced Th2
responses were observed in the draining LNs when S. mansoni
eggs were injected into the intestine compared to the footpad,
indicating that tissue-specific signals can influence the balance of
type 1 and type 2 immunity after experimental immunization.

Th1 and Th2 Responses Develop in
Individual Intestinal Lymph Nodes After
Live S. mansoni Infection or Experimental
Egg Immunization
To assess if the site of S. mansoni egg deposition during live
infection also affected type 1 and type 2 immune responses in the
intestinal draining LNs, we infected C57BL/6 mice with 180 S.
mansoni cercariae and analyzed the MLNs after 7 weeks, which
coincides with the onset of egg production (15).

Although egg granuloma formation has been observed both
in the small and large intestines (36, 37), it remains unclear
which regions of the intestine are most affected and if different
levels of immune responses are initiated. To monitor antigen-
specific T cell immunity in the segment-specific draining LNs we
identified the individual mesenteric LNs, according to previous
reports (25, 30, 38–40). We termed the separate larger LN closest
to the caecum ‘cMLN1’ (colon draining MLN 1), the adjacent
string of four similar sized LNs draining the small intestine ‘small
intestine draining MLNs 1–4’ (sMLN1–4), and the smaller
lymph nodes draining the lower colon and the caudal LN
‘cMLN2’ and ‘cLN’, respectively (Figure 2A).

To assess location-dependent antigen-specific immune
responses during live infection, LNs were individually collected
and cultured for three days with media or SEA. As expected,
MLN cellularity increased after infection, due to activation of the
immune system by eggs passing through or becoming lodged in
October 2020 | Volume 11 | Article 592325
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the intestinal tissue (Figure 2B), and the cytokine profile of
cultured LN cells revealed strong immune activation. Significant
levels of IFN-g, IL-4 and IL-13 were observed in the absence of
antigen and increased after SEA restimulation (Figure 2C). In
contrast to previous studies (24, 41), levels of IFN-g were low in
our study, and IFN-g was not detectable in pooled MLNs.
However, IL-4 and IL-13 were detected at similar levels to
those previously described (24, 41). Peak IL-4 responses were
observed in sMLN4, cMLN1, and cMLN2, whereas peak IL-13
responses were observed in sMLN1, sMLN2, sMLN3, and
cMLN2. IFN-g could only be detected in the colon draining
LNs cMLN1 and cMLN2, suggesting a bias towards Th1
responses in the large intestine.

It is difficult to determine whether the T cell responses
observed in the individual LNs during live infection resulted
from T cells primed within that same individual lymph node or
had recirculated from other sites. To develop a more controlled
model, we delivered S. mansoni eggs directly into the ileal
subserosa and assessed T cell responses 5 days later. A single
injection of 1,000 eggs into the ileum was sufficient to drive a
robust antigen-specific T cell response in the draining LNs
(Figure 2D), which were only detected in one individual LN
(sMLN4), indicating that T cell priming occurs in individual LNs
that drain the injection site.

In summary, both live S. mansoni infection and S. mansoni
egg injection elicited robust antigen-specific immune responses
in the MLNs but showed clear differences depending on which
individual LNs were affected. All individual LNs draining the
small and large intestines mounted similar levels of Th2
Frontiers in Immunology | www.frontiersin.org 5
responses, while Th1 responses were restricted to the LNs
draining the large intestine after live infection, whereas de novo
primed T cells only responded in an individual LN after
subserosal egg immunization.

H. polygyrus Antigens Induce Increased
IFN-g and Decreased Th2 Responses
When Injected Into the Intestinal
Subserosa Compared to the Footpad
To test whether tissue-specific differences in the induction of
type 1 and type 2 immune responses would also affect other
helminth antigens, we assessed immune responses against
Heligmosomoides polygyrus, a gut dwelling nematode.

Soluble excretory/secretory antigens from H. polygyrus (HES)
were injected into the footpad or the intestinal subserosa of
C57BL/6 mice and IFN-g+ and IL-4+ CD4+ T cells or cytokine
production after HES restimulation were assessed in the
respective draining LNs after 5 days. Similar to our
observations after S. mansoni egg injection, more IFN-g+ CD4+

T cells were observed in the MLNs after HES injection into the
ileal subserosa compared to injections into the footpad, whereas
IL-4+ CD4+ T cells were more abundant in the pLNs after
footpad injection (Figure 3A, Supplementary Figure 2A).
This increased ratio of IFN-g+ CD4+ T cells after subserosal
injection (Figure 3B) was also observed after in vitro
restimulation of LN cells with HES and showed increased
levels of antigen-specific IFN-g and decreased levels of IL-4
after subserosal injection, compared to injections into the
footpad (Figures 3C, D). The observation that greater antigen-
A B

D E

C

FIGURE 1 | Schistosoma mansoni eggs induce increased IFN-g and decreased Th2 responses when injected into the intestine compared to the footpad.
(A, B) Lymph node IFN-g+ and IL-4+ CD4+ T cell responses in naïve mice or 5 days after the injection of 2,500 S. mansoni eggs or PBS in the footpad or intestinal
subserosa (n = 5 mice per group, combined data from three independent experiments; mean ± SEM; unpaired t-tests compare LN responses within each
experimental group; ***p ≤ 0.001). (C) Ratio of IFN-g+ and IL-4+ CD4+ T cell responses after S. mansoni egg injection from data shown in (B) (mean ± SEM; unpaired
t-test compares LN responses; **p ≤ 0.01). (D) From the same experiments, lymph node cells were restimulated with soluble egg antigen (SEA) or media for 3 days
in vitro and Th1 and Th2 cytokines were measured by ELISA (mean ± SEM; unpaired t-tests compare LN cytokine responses within each treatment group; ***p ≤

0.001). (E) Ratio of IFN-g and Th2 cytokine levels after SEA restimulation from data shown in (D) (mean ± SEM; unpaired t-test; **p ≤ 0.01, ***p ≤ 0.001).
October 2020 | Volume 11 | Article 592325
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specific IFN-g and reduced Th2 responses were observed in the
MLNs against helminth products from both S. mansoni and H.
polygyrus suggests that tissue-specific mechanisms can influence
the balance of type 1 and type 2 immune responses against
multiple helminth antigens.
Frontiers in Immunology | www.frontiersin.org 6
To assess CD4+ T cell responses in individual intestinal draining
MLNs after liveH. polygyrus infection, C57BL/6 mice were infected
with 200 L3 H. polygyrus larvae by oral gavage and the individual
MLNs were collected after 17 days. Similar to previous reports (42–
44), the majority of adult worms were detected in the upper small
A B

D

C

FIGURE 2 | Th1 and Th2 responses are detected in individual mesenteric lymph nodes after Schistosoma mansoni infection and egg immunization. (A) Schematic
and photograph of the murine intestine illustrate the different segments and indicate the position and nomenclature of the individual draining lymph nodes. (B) Total
cell counts of pooled or individual mesenteric lymph nodes (MLNs) seven weeks after S. mansoni (Sm) infection (n = 5 mice per group, representative of two
independent experiments; mean ± SEM; unpaired t-tests compare cell numbers between naïve and infected groups; **p ≤ 0.01). (C) From the same experiments,
pooled or individual lymph node cells were restimulated with SEA or media for 3 days in vitro and Th1 and Th2 cytokines were measured by ELISA (mean ± SEM;
two-way ANOVA followed by Dunnett’s multiple comparisons test compare samples to pooled infected MLNs within each restimulation group; *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001). (D) 1,000 S. mansoni eggs were injected into the ileal subserosa and pooled or individual lymph nodes were collected after 5 days. Cells were
restimulated with SEA or media for 3 days in vitro and Th1 and Th2 cytokines were measured by ELISA (n = 3 mice per group, combined data from three
independent experiments; mean ± SEM; two-way ANOVA followed by Dunnett’s multiple comparisons test compare samples to pooled infected MLNs within each
restimulation group; ***p ≤ 0.001).
October 2020 | Volume 11 | Article 592325
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intestine (SI), with few worms present in the lower SI and no worms
present in the colon (Figure 3E). Correspondingly, we observed a
significant increase in total cell numbers, CD4+ T cells and IFN-g+,
IL-4+ and IL-13+ T cells in the individual MLNs draining the
proximal intestine, with responses declining in the MLNs that
drained the lower areas of the intestine (Figures 3F, G,
Supplementary Figures 2B, C).

Individual Mesenteric Lymph Nodes Drain
Specific Intestinal Segments After
Subserosal Dye Injection
To identify what exact segments of the intestine were drained by
these individual MLNs we set out to map the lymphatic drainage
within the intestine in vivo. The luminal injection of dyes (30, 38,
39) or gavaging of olive oil (45) (Supplementary Figure 1B) has
previously allowed researchers to map intestinal regions to
individual LNs. Yet, due to the diffusion and uptake
Frontiers in Immunology | www.frontiersin.org 7
characteristics of the different dyes that were used in these studies,
a consistent assessment of all regions of the intestine is still missing.

To identify a dye that would result in fast uptake and labeling
of the lymphatics, while displaying limited diffusion
characteristics, we trialled the injection of different dyes into
the intestinal subserosa of anesthetized animals and monitored
the lymphatic vessels and LNs for uptake of the dye. Similar to
previous studies (38, 39), 2% Chicago Blue or 2% Evans Blue
rapidly diffused along the intestine, the lymphatics and the
MLNs, making it difficult to detect segment-specific draining
LNs, while a suspension of graphite particles or black India ink
resulted in a very localized deposition, but no uptake by the
lymphatics. In contrast, the injection of black calligraphy ink
resulted in localized coloration of the injected segment and
lymphatic drainage to individual MLNs within seconds (Figure
4, Supplementary Video 1). In line with previous findings (30,
38–40), subserosal dye injection into the duodenum labeled
A B D

E F

G

C

FIGURE 3 | Heligmosomoides polygyrus antigens induce stronger Th1 and reduced Th2 responses in the intestinal draining lymph nodes compared to the footpad.
(A) 20 µg of H. polygyrus ES antigen (HES) was injected in the footpad or ileal subserosa. IFN-g+ and IL-4+ CD4+ T cell responses were analyzed 5 days after
injection in the popliteal (pLN) or mesenteric (MLN) lymph nodes (n = 5 mice per group, combined data from two independent experiments; mean ± SEM; unpaired
t-tests compare LN responses within each experimental group; ***p ≤ 0.001). (B) Ratio of IFN-g+ and IL-4+ CD4+ T cell responses after HES injection as shown in (A)
(mean ± SEM; unpaired t-test compares LN responses; **p ≤ 0.01). (C) From the same experiments, LN cells were restimulated with HES or media for 3 days in
vitro and Th1 and Th2 cytokines were measured by ELISA (mean ± SEM; unpaired t-tests compare LN responses within each experimental group; *p ≤ 0.05, ***p ≤

0.001). (D) Ratio of IFN-g and IL-4 cytokine levels after HES restimulation as shown in (C) (mean ± SEM; unpaired t-test compares LN responses; **p ≤ 0.01, ***p ≤

0.001). (E) Worm counts from the upper half of the small intestine (upper SI), lower half of the small intestine (lower SI) and the colon 17 days after infection with 200
L3 H. polygyrus larvae (n = 4 mice, representative of two independent experiments; mean ± SEM; unpaired t-tests compare worm counts to upper SI numbers;
***p ≤ 0.001). (F, G) Mice were infected with 200 L3 H. polygyrus larvae by oral gavage and individual MLNs were collected after 17 days. Frequency and number of
IFN-g, IL-4, and IL-13 producing CD4+ T cells in the individual MLNs are shown (n = 5 mice per group, representative of two independent experiments; mean ±
SEM; ordinary one-way ANOVA followed by Holm–Sidak’s multiple comparisons test compare LN responses to naïve controls; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
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sMLN1, while injections into the upper jejunum, lower jejunum
or ileum labeled sMLN1 and sMLN2, sMLN3 and sMLN4 or
sMLN4 respectively (Figure 4A). Subserosal dye injections into
different segments of the large intestine demonstrated that
injections into the caecum or ascending colon labeled cMLN1,
while the transverse or descending colon was drained by cMLN2
or the cLN, respectively (Figure 4B). By subserosal injection of a
dye that had fast lymphatic uptake and limited diffusion
characteristics, we were thus able to map the lymphatic
drainage of all segments of the intestine and define the
individual segment-specific draining lymph nodes.

Individual Mesenteric Lymph Nodes Mount
Distinct Th1 and Th2 Responses Against
Subserosally Injected S. mansoni Eggs
As we had observed distinct LN-specific immune responses after
live S. mansoni infection, we investigated whether S. mansoni
Frontiers in Immunology | www.frontiersin.org 8
eggs would induce similar LN-specific responses after controlled
egg delivery into different sites of the intestine. To precisely
control the dose, location, and timing of helminth antigen
delivery, 1,000 S. mansoni eggs were injected subserosally into
each segment of the small and large intestines. After 5 days
individual MLNs were collected, LN cells were restimulated with
SEA for 3 days in vitro and antigen-specific cytokine responses
were measured by ELISA.

We detected IFN-g, IL-4, IL-5 and IL-13 responses in the
draining LNs of all immunized groups, which were localized to the
same segment-specific LNs as identified by our ink injection
experiments. We observed that the cytokine levels generated
from the small intestine-draining MLNs ranged from 2 to 15
ng/ml for IFN-g, 1 to 3 ng/ml for IL-4, 0.5 to 2 ng/ml for IL-5, and
5 to 35 ng/ml for IL-13 after egg injection into the different
segments of the small intestine. Of note, injection of the
duodenum resulted in a low IFN-g response (2 ng/ml)
A

B

FIGURE 4 | Subserosal dye injection along the murine intestine identifies individual segment draining lymph nodes. Anesthetized animals were injected with 10 µl of
black calligraphy ink into different segments of the small (A) or large intestine (B). Photographs were taken 1 min after dye injection. Schematics indicate injection
site, labeled lymphatics and individual draining lymph nodes as seen in each photograph.
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compared to the other small intestinal sites, whereas IL-4 and IL-5
responses were comparable, and IL-13 responses decreased along
the small intestine (Figure 5A, Supplementary Figure 3A).

Injection of eggs into specific regions of the large intestine
resulted in lower IL-4, IL-5, and IL-13 responses in the LNs
compared to the small intestine, which ranged from 0.2 to 0.8 ng/
ml for IL-4, 0.1 to 0.5 ng/ml for IL-5 and 10 to 20 ng/ml for IL-13,
whereas IFN-g responses were in a similar range (2–12 ng/ml).
After caecal injection, cMLN1 exhibited low responses of both
IFN-g and IL-4, compared to the other large intestinal injections,
whereas the cLN displayed high levels of IFN-g accompanied by
lower levels of IL-4 and IL-5 after egg injection into the descending
colon (Figure 5B, Supplementary Figure 3B). Both, small and
large intestinal immune responses were localized to the same
segment-specific LNs that we had identified in our ink injection
experiments (summarized in Figure 5C), clearly demonstrating
that site-specific immune responses were induced, which varied
between the responding LNs.

When we analyzed the ratio of IFN-g to the different Th2
cytokines in the individual MLNs after segment-specific
subserosal S. mansoni egg injection, we observed patterns that
indicated gradual changes in the ratio of type 1 and type 2
immune profiles along the intestine (Figure 5D). A low ratio of
IFN-g to Th2 responses was observed in the LNs draining the
proximal intestine, with the lowest ratio of IFN-g to all Th2
cytokines observed in sMLN1 after duodenal injection. A
pronounced increase in the ratio of IFN-g to IL-4 and IL-5 was
observed in cMLN2 and cLN after subserosal egg injections in
the transverse and descending colon due to low levels of Th2
cytokines being detected in these LNs (Figure 5B ,
Supplementary Figure 3B), demonstrating a distinct and
increasing proportion of IFN-g responses in the distinct LNs
draining the length of the intestine.

The ratio of IFN-g to IL-4 and IL-5 responses in the
individual draining LNs correlated well with each other, while
IL-13 responses followed a different pattern, similar to our
observations during live S. mansoni infection (Figure 2C). IL-
13 levels gradually decreased throughout the LNs draining the
small intestine from 30 ng/ml in sMLN1 to 15 ng/ml in sMLN4
and stayed within a range of 15–20 ng/ml in the large intestinal
draining LNs. The resulting IFN-g to IL-13 ratio thus increased
gradually within the LNs draining the length of the small
intestine, decreased in cMLN1 after caecal injection (due to
low IFN-g levels) and returned to a higher ratio for the
remaining large intestinal LNs.

While our model does only approximate the individual LN
immune responses, it suggests that different levels of antigen-
specific type 1 and type 2 cytokines are produced in individual
intestinal LNs after controlled immunization of different
intestinal segments with S. mansoni eggs.

Different Subsets of Intestinal Dendritic
Cells Transport and Present Soluble
Helminth Antigens in the MLNs
Dendritic cells (DCs) play a crucial role in priming CD4+ T cell
responses against parasite antigens (25, 46–50). To confirm
Frontiers in Immunology | www.frontiersin.org 9
that DCs were also responsible for the uptake of subserosally
injected helminth antigens and their delivery to the individual
draining MLNs, we injected fluorescently labeled AF660-SEA
into the ileum, collected the individual MLNs 24 h after
injection, and assessed antigen-positive cells by flow
cytometry. As expected, MHCIIhi CD11c+ migratory DCs
were the only antigen-presenting cell population labeled with
AF660-SEA in the MLNs (Figure 6A, Supplementary Figure
4A). Around 1% of DCs were SEA-positive in pooled MLNs,
whereas up to 4% SEA+ DCs were detected in sMLN4 but no
other individual LN (Figure 6B). Thus, locally delivered
antigens were transported to the individual MLN that we had
previously identified, and a dilution of signal occurred when
LNs were pooled.

To investigate which specific subsets of migratory DCs were
involved in the uptake and active transport of helminth antigens
from the intestine to the draining MLNs, we injected
fluorescently labeled SEA or HES into the ileum of mesenteric
lymphadenectomized (MNLx) mice, performed thoracic duct
cannulations and collected migrating intestinal dendritic cells
over the course of 18 h. We observed that SEA was mainly
associated with CD11b-positive DCs, as previously reported (25)
and that CD11b+CD103+ DCs were the most frequent SEA+

migratory DC population (Figure 6C). To investigate if these DC
subsets were also sufficient to prime antigen-specific immune
responses, we transferred antigen-loaded DCs into naïve MLNs
using microsurgical techniques we had previously developed (25,
34). We collected lymph DC subsets from naïve MLNx mice and
loaded them with SEA in vitro for 18 h to ensure a controlled
uptake of the antigen. After washing off excess antigen, 30,000
cells of each DC subset were transferred under the MLN capsule
of naïve mice to assess if these subsets were sufficient to drive
antigen-specific immune responses. After 5 days the injected
MLNs were collected, cells were cultured with SEA for 3 days in
vitro, and antigen-specific cytokine responses were assessed by
ELISA. Similar to our previous findings (25) and in accordance
with the observation that CD11b-positive DCs were responsible
for transporting SEA in vivo , we found that both
CD11b+CD103− and CD11b+CD103+ DC2 subsets were able to
prime IFN-g and Th2 cytokine producing T cell responses, when
antigen-loaded DCs were transferred under the MLN capsule
(Figure 6D). CD103 single-positive DC1s were also able to
induce antigen-specific immune responses in this system but
did only induce IFN-g responses with no IL-4 or IL-13
being detected.

I n con t r a s t , HES wa s ma in l y t r an spo r t ed by
CD11b+CD103− DC2s and CD103+ single-positive DC1s in
lymph, while CD11b+CD103+ double-positive DCs were the
least frequent HES+ DCs (Figure 6E). Similar, to our
observation of SEA-loaded DCs, HES-specific IFN-g
responses were induced by all three migratory DC subsets,
when HES-loaded DC subsets were transferred under the MLN
capsule (Figure 6F). In contrast to SEA-loaded DCs, all HES-
loaded DC subsets induced similar levels of IL-4 and low levels
of IL-13 responses, indicating that HES is transported and
presented by all subsets of intestinal migratory DCs to drive
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FIGURE 5 | Subserosal injection of Schistosoma mansoni eggs induces segment-specific Th1 and Th2 responses in the individual MLNs. (A) 1,000 S. mansoni
eggs were injected into different segments of the small intestine. Individual MLNs were collected five days after injection; LN cells were restimulated with SEA in vitro
and IFN-g, and IL-4 were measured by ELISA. Schematics indicate injection site and responding LNs (n = 3 mice per group, combined data from three independent
experiments; mean ± SEM; ordinary one-way ANOVA followed by Holm–Sidak’s multiple comparisons test compare LN responses to naïve controls; *p ≤ 0.05, **p ≤

0.01, ***p ≤ 0.001). (B) Similar to (A), 1,000 Schistosoma mansoni eggs were injected into the different segments of the large intestine. After 5 days LNs were
collected, restimulated in vitro, and assessed for antigen-specific cytokines by ELISA (n = 3 mice per group, combined data from three independent experiments;
mean ± SEM; ordinary one-way ANOVA followed by Holm–Sidak’s multiple comparisons test compare LN responses to naïve controls; ***p ≤ 0.001). (C) Schematic
of the murine intestine indicating the draining pattern of the different intestinal segments to their individual MLNs. (D) Segment-specific ratio of IFN-g and Th2 cytokine
levels after SEA restimulation from experiments described in (A, B) and Supplementary Figure 3 (mean ± SEM; ordinary one-way ANOVA followed by Holm–

Sidak’s multiple comparisons test compare samples to sMLN1 ratios; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).
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FIGURE 6 | Soluble helminth antigens are transported to the MLN by distinct subsets of intestinal dendritic cells that prime Th1 and Th2 responses. 15 µg of
AF660-labeled antigens were injected into the intestinal serosa and antigen-positive cells were assessed 24 h after injection. (A) Representative dot plot of viable
single MLN cells and frequency of SEA-AF660+ cells in pooled MLNs 24 h after ileal injection (n = 4 mice per group, representative of two independent
experiments; mean ± SEM; unpaired t-tests compare cell frequencies to monocytes; ***p ≤ 0.001). (B) Frequency of SEA-AF660+ dendritic cells in pooled or
individual MLNs 24 h after ileal injection (n = 4 mice per group, representative of two independent experiments; mean ± SEM; ordinary one-way ANOVA followed
by Holm–Sidak’s multiple comparisons test compares DC frequencies to naïve controls; unpaired t-test compares pooled MLN to sMLN4 responses; **p ≤ 0.01,
***p ≤ 0.001). (C) DC subset distribution (left and middle) and frequency (right) of SEA-AF660+ lymph DCs collected over 18 h after ileal injection of SEA-AF660
(n = 2–3 mice per group, combined data from two independent experiments; mean ± SEM; unpaired t-tests compare cell distribution and frequencies to
CD11b+CD103− DCs; ***p ≤ 0.001). (D) Lymph DC subsets were collected from naïve mice over 18 h, sorted into subsets and incubated with or without 1 mg/
ml SEA for 18 h. 30,000 cells were then transferred under the MLN capsule of naïve mice. After 5 days LNs were collected, restimulated with SEA in vitro, and
assessed for antigen-specific cytokines by ELISA (n = 2–3 mice per group, combined data from two independent experiments; mean ± SEM; unpaired t-tests
compare cytokine responses from transferred SEA-treated DC subsets to untreated DCs; *p ≤ 0.05, **p ≤ 0.01). (E) DC subset distribution (left and middle) and
frequency (right) of HES-AF660+ lymph DCs collected over 18 h after ileal injection of HES-AF660 (n = 2–3 mice per group, combined data from two
independent experiments; mean ± SEM; unpaired t-tests compare cell distribution and frequencies to CD11b+CD103− DCs; *p ≤ 0.05, ***p ≤ 0.001). (F) Lymph
DC subsets were collected from naïve mice over 18 h, sorted into subsets and incubated with or without 1 mg/ml HES for 18 h. 30,000 cells were then
transferred into the MLN subcapsule of naïve mice. After 5 days LNs were collected, restimulated with HES in vitro, and assessed for antigen-specific cytokines
by ELISA (n = 2–3 mice per group, combined data from two independent experiments; mean ± SEM; unpaired t-tests compare cytokine responses from
transferred HES-treated DC subsets to untreated DCs; *p ≤ 0.05, **p ≤ 0.01).
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Th2 responses that show a different cytokine profile and ratio
of immune responses than those observed with SEA
(Supplementary Figure 4B).

Thus, location-specific variation of the immune response, as
well as antigen-dependent uptake and presentation by different
subsets of intestinal dendritic cells, likely shape the resulting
immune responses to helminth antigens, resulting in a complex
regulation of local type 1 and type 2 immunity.
DISCUSSION

In this study we report that the delivery of helminth antigens
from S. mansoni and H. polygyrus into the intestine promotes
higher Th1 and lower Th2 responses in the draining LNs
compared to delivery into the footpad. In a more detailed
analysis of intestinal immune responses initiated during live
infection or by experimentally delivering S. mansoni eggs into
different sites within the intestine itself, we furthermore show
that distinct levels of type 1 and type 2 immune responses
develop in the individual draining MLNs, with higher ratios of
IFN-g responses associated with infection/immunization of
the large compared to the small intestine. Soluble helminth
antigens are hereby transported by lymph migrating DCs, and
different DC subsets transport and prime antigen-specific
immune responses in an antigen-dependent manner in the
draining MLNs.

Our observation that the controlled delivery of the same
antigen into different sites of the intestine induces distinct Th1
and Th2 responses shares similarities with a previous study by
Esterházy et al. (30), which demonstrates that the preferential
development of Th17 or T regulatory cell responses is
determined by location-specific signals within the intestine that
include distinct stromal and dendritic cell signatures.

While LN stromal cells have been shown to influence T cells
homing (51), support T regulatory cell induction (51), and limit
or support inflammatory T cells during immunization or
infection (52, 53), little is known if LN stromal cells also play a
role in type 2 immunity against helminths. While helminth
infection has been shown to promote stromal cell remodeling
and de novo B cell follicle formation to promote total and
helminth-specific antibody production (54), with IL-4 being
critical to promote stromal cell expansion (55), it remains
unknown if LN stromal cells can also directly affect
Th2 development.

The involvement of DCs in the induction of type 2 immune
responses against helminths is in turn better understood (47).
CD11c+ DCs are necessary for the induction of type 2 immune
responses against S. mansoni and SEA in vivo (46) and IRF4-
dependent migratory DC2s are required for effective type 2
immunity in the intestine (25, 48), lung (56), and skin (48, 57).
Further DC subsets that express CD301b or are dependent on
KLF4 are required to drive type 2 immune responses in the skin
(49, 58, 59) but have not been described in other tissues (47). Our
comparison of type 2 immune responses after intestinal or
footpad immunization of SEA (Figure 1) or HES (Figure 3)
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demonstrates that IL-4+ cells are more frequent and Th2-
associated cytokine levels are higher after restimulation in the
pLN compared to the MLN, indicating that the skin represents a
Th2-promoting environment, which could be influenced by
skin-specific subsets of DCs.

While the proportion of DC2 subsets within the intestine
changes from a dominant CD11b+CD103+ phenotype in the
small intestine to a CD11b+CD103− phenotype in the colon (60,
61), both populations are sufficient to drive type 2 immune
responses against S. mansoni eggs (25) and can drive SEA-
specific immune responses when transferred in vivo (Figure 6).
Our observation that SEA and HES display distinct uptake
characteristics by migratory intestinal DC subsets and promote
different levels of IL-4 and IL-13 immune responses when
transferred in vivo (Figure 6) suggests that type 2 immune
responses are mounted in a highly antigen-dependent manner,
which could elicit distinct location dependent immune responses
within the intestine.

We show that in contrast to SEA and most reported Th2-
inducing antigens (47), which are presented by IRF4+ DC2s,
intestinal BATF3-dependent CD103+ single-positive DCs (62)
can also take up fluorescently labeled HES and are sufficient to
induce HES-specific immune responses when transferred in vivo
(Figure 6). While the direct involvement of CD103 single-
positive DC1s in priming Th2 responses in this system
requires further investigation, BATF3-dependent migratory
DCs are known to suppress helminth-driven type 2 immunity
in the intestine through the expression of IL-12 (63). As CD103+

single-positive DCs are most prominent in the distal intestine
(60, 61), it is possible that this subset could directly or indirectly
contribute to the increased IFN-g responses (Figure 2C) and
IFN-g to Th2 ratio (Figure 5) that we observed in the LNs
draining the large intestine.

Apart from cellular differences that exist within the LNs,
several studies have also shown that antigen-specific immune
responses in the intestine and MLNs can be affected by the
intestinal microbiota. A direct link between anti-helminth
immunity and the microbiota was observed in antibiotic-
treated S. mansoni infected mice that develop smaller
granulomas and produce lower levels of IFN-g in the intestine
(41). Similar observations have been made in Myd88−/− mice,
which cannot respond to TLR signals, and displayed reduced
IFN-g but intact Th2 responses after S. mansoni infection (64).
As S. mansoni eggs are themselves weak inducers of TLR
responses compared to bacterial compounds such as LPS (64–
66), it is likely that these changes are the result of defective
microbiota signaling. Bacterial compounds have also been shown
to directly act on DCs and limit their potential to drive type 2
immune responses (67, 68) and could also act through innate
immune cells that in turn alter their production of Th2-
stimulting alarmins. As increasing microbial burden and
diversity have been reported along the length of the intestine
(60, 69), it is conceivable that they could also influence
the ratio of Th1 and Th2 responses after S. mansoni egg
immunization along the intestine. Experiments in germ-free or
antibiotic-treated mice would clarify to what extend the
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microbiota is involved in regulating site-specific anti-helminth
immune responses.

Given the co-evolutionary development between helminths
and their hosts, several factors likely influence local immune
responses and directly or indirectly modulate anti-helminth
Th2 immunity to create a favorable immunological
environment for the parasite. Our study demonstrates that
such site-specific differences exist between the skin and the
intestine, and that within the intestine S. mansoni infection
promotes distinct levels of type 1 and type 2 responses in
individual MLNs, which we also observe when a controlled
dose of S. mansoni eggs is experimentally delivered into
distinct segments of the intestine. While we could not
determine if these location-dependent differences are
influenced by distinct immune cell populations or external
stimuli, our observation suggests that Th1 and Th2 responses
against helminth antigens are distinctly regulated in different
regions of the intestine.
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