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Abstract 10 

Earth’s physical properties and mantle dynamics are strongly dependent on mantle grain size, 11 

shape and orientation, these characteristics are however poorly constrained. Experimental 12 

studies provide an opportunity to simulate the grain growth kinetics of mantle aggregates. The 13 

experimentally determined grain sizes can be fit to the normal grain growth law (𝐺𝑛 − 𝐺0
𝑛) =14 

𝑘0𝑡. 𝑒𝑥𝑝 (
−∆𝐻

𝑅𝑇
) and then be used to determine grain size throughout the mantle and geological 15 

time. The grain growth dynamics of spinel – orthopyroxene mixtures in the upper mantle are 16 

modelled here, by experimentally producing small grain sizes in the range of 0.5 to 2 m radius 17 

at pressures and temperatures equivalent to the spinel lherzolite stability field. To accurately 18 

measure the sizes of these small grains we have developed a computer vision workflow; using 19 
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a watershed transformation which rapidly measures 68% more grains and produces a 20% 20 

improvement in the average grain size accuracy and repeatability when compared with manual 21 

methods. Using this automated approach, we have been able to identify a significant proportion 22 

of small grains which have been overlooked when using manual methods.  This additional 23 

population of grains, when fit to the normal grain growth law, highlights the influence of 24 

improved accuracy and sample size on the estimation of grain growth kinetic parameters. Our 25 

results demonstrate that automatic computer vision enables a systematic, fast, repeatable 26 

method of grain size analysis, across large data sets, improving the accuracy of experimentally 27 

determined grain growth kinetics. 28 

Introduction 29 

Rocks are composed of large numbers of grains, or crystallites. A grain is formed of a coherent 30 

continuous lattice, the boundary of which has a discontinuous change in crystal lattice or other 31 

properties. The properties of these grains: their size, shape, orientation and how they interact, 32 

influence the bulk properties of rocks. These aggregate properties influence many of Earth’s 33 

physical properties including strength or viscosity, and seismic anisotropy; these in turn impact 34 

the large scale motion of plates and mantle overturns (Bercovici and Ricard 2013; Chu and 35 

Korenaga 2012; Dannberg et al. 2017; Evans et al. 2001; Hirth and Kohlstedt 1995; Karato 36 

1984; Yamazaki et al. 2010).  On a smaller length scale, grain size is often used as the basis 37 

for the classification of some igneous and clastic rocks, as well as interpretations of the 38 

geological environment and the processes which formed it. Grain growth and recrystallisation 39 

are active processes, continuously changing the grain size of mantle aggregates. This has far 40 

reaching consequences, for example, the decoupling of the upper and lower mantle may be due 41 

to a sudden grain size reduction associated with the spinel to perovskite transformation at the 42 

660 km discontinuity (Dobson and Mariani 2014). 43 
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Interpreting indirect geophysical observations in terms of grain-size is extremely 44 

difficult and therefore the aggregate grain-size of the mantle is poorly constrained. It is widely 45 

thought to vary from millimeters to centimeters at ~400 km depth, close to the transition zone 46 

(Faul and Jackson, 2005). Estimates of the lower mantle (depths > 660km) grain-size may vary 47 

from 1 to 1000 m (Solomatov et al. 2002; Solomatov and Reese 2008). Constraining the 48 

evolution of grain size of the mantle by experiments is difficult because they are limited by 49 

both extent, sample volume and result in small grain sizes tens of micrometers at most (Karato 50 

1989; Kim et al. 2004; Faul and Jackson 2005; Yamazaki et al. 2005, 2010; Faul and Scott 51 

2006; Nishihara et al. 2006; Hiraga et al. 2010b). The experimental pressure—temperature—52 

time series results are extrapolated over many orders of magnitude to mantle scales using 53 

kinetic models (Hillert 1965; Chu and Korenaga 2012). These models assume the normal grain 54 

growth law: 55 

𝐺𝑛 − 𝐺0
𝑛 = 𝑘𝑡, (1) 56 

where G is grain size, G0 the initial grain size, k rate constant, t time and n the grain growth 57 

exponent. The rate constant, k, has an Arrhenius temperature dependence and a global fit can 58 

be applied of the form: 59 

(𝐺𝑛 − 𝐺0
𝑛) = 𝑘0𝑡. 𝑒𝑥𝑝 (

−∆𝐻

𝑅𝑇
), (2) 60 

where k0 is the pre-exponential exponent, H the activation enthalpy for grain growth and R is 61 

the gas constant. 62 

Accurate simulation of grain growth under realistic mantle conditions and time frames 63 

requires a very well constrained grain growth exponent (n). Determination of the grain growth 64 

exponent for any set of experiments relies on accurate measurement of the grain size, 65 

reproduced through annealing experiments. This requires imaging and analyzing of statistically 66 

significant numbers of grains, often thousands, across multiple experiments. Ideally, the grain 67 

measurements produce 2D log-normal distributions, which can describe normal grain growth 68 
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occurring in 3D space (Hillert 1965; Saetre 2002; Rios and Zöllner 2018) and kinetic grain 69 

growth parameters (Burke and Turnbull 1952). 70 

We examine a two-phase system spinel and orthopyroxene as an analogue to the 71 

composition of the upper mantle. In grain growth experiments this two-phase system splits into 72 

two compositionally distinct phases and grains ranging in size from roughly 0.5 µm to 2 µm. 73 

These properties of the two phase system indicated that the most effective method for 74 

measuring large volumes of grains from multiple samples is, back scatter electron, scanning 75 

electron microscopy (BSE-SEM). This microscopic technique provides high spatial resolution, 76 

with a contrast mechanism largely dominated by the average atomic mass of the material 77 

examined. The experimental samples then image as bright spinel grains against a dark largely 78 

uniform background of orthopyroxene. This high contrast system provides an excellent test 79 

bed for developing automated techniques for detecting and measuring grains, especially when 80 

the greater number of grains measured directly translates to an improved ability to estimate 81 

kinetic parameters.   82 

Manual measurement techniques such as the "intercept" (Mendelson 1969; Abrams 83 

1971) and/or "areas of equivalent circles" methods still comprise a major technique for the 84 

study of grain size. We focus on this comparison since a recent literature search shows the 85 

“areas of equivalent circles” has been referenced 7791  times in peer-reviewed scientific articles 86 

within the last six years, whilst the “intercept method” has been referenced 6022 times. 87 

Furthermore, the common use of manual measurement for industrial applications is highlighted 88 

by the published standard by ASTM International for the intercept method (ASTM E112-13 89 

2012). This standard highlights the central problem with manual methods, low throughput of 90 

 
1 Number of articles was found using Scopus search, key words of "area of equivalent circles" and "grain 

size" were used in a search period between 2014-2020 

 
2 Number of articles was found using Scopus search, key words of "intercept" and "grain 

size" were used in a search period between 2014-2020 

 



 5 

15 minutes per image for an expert analysist, and a large 16% uncertainty in measured grain 91 

sizes. For this study, manual grain size analysis of 30 sample images required over 7.5 hours 92 

of expert level analysis time. Moreover, these analysis methods are more difficult for complex 93 

samples with clustered grains or samples with complex grain shapes. There is therefore a clear 94 

need for automated image processing as an alternative, faster, independent method of analysis 95 

for grain size estimation from images.  96 

As noted above the study here leverages the high contrast between spinel and 97 

orthopyroxene with BSE-SEM microscopy to acquire sufficient 2D images for a log-normal 98 

sample distribution. The computer vision methods developed here are general enough that they 99 

can be applied and adapted to a wide range of other microscopic modalities, especially since 100 

virtually all images collected these days are digital. Segmenting optical images follows largely 101 

the same process as will be demonstrated below for BSE-SEM images. Likewise, the 102 

challenges of segmenting three-dimensional X-Ray tomography data can be viewed as a 103 

generalization of the methods presented here. Finally, microanalytical techniques such as 104 

energy dispersive x-ray spectroscopy (EDS) or electron backscatter diffraction (EBSD) offer 105 

methods for not only identifying grains but examining compositional or crystallographic 106 

relationships in the mapped regions. It should be noted that these techniques record interactions 107 

volumes compared to essentially the surface information of low-kV BSE imaging. This 108 

interaction volume compromises some of the ultimate spatial resolution since the resulting EDS 109 

or EBSD signal comes from volume of 0.75 to 1.0 µm at best. Further these techniques are 110 

often an order of magnitude slower than BSE imaging due to the limitations of microanalytical 111 

detectors. 112 

Segmentation is a classical image processing approach used for the consistent and non-113 

subjective assignment of specific pixels to groupings within images. Advanced image 114 

processing algorithms, including segmentation, are widely used across many scientific 115 
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disciplines, for image analysis problems at all scales and complexities (Soille and Ansoult 116 

1990; Rossouw et al. 2015). However, these algorithms are seldom employed in geological 117 

sciences (Barraud 2006; Wang 2007), despite accurate determination of grain size and textures 118 

being paramount to our understanding of geological processes.  119 

Inaccuracies and inefficiencies of manual image segmentation for grain-size analysis  are 120 

addressed here by, leveraging the open-source image processing Python libraries, hyperspy (de 121 

la Peña et al. 2019) and scikit-image (van der Walt et al. 2014) implemented with interactive 122 

Jupyter notebooks to deploy a watershed segmentation workflow. The watershed algorithm is 123 

used here to pull spinel grains out of the background and isolate individual grains. This method 124 

can be traced back to the 19th century (Maxwell 1870), through modifications in the 1980’s 125 

(Beucher 1982) to their current form in many segmentation procedures (Najman et al. 2011).  126 

This computer vision approach improves grain size estimation by 20% via automatic 127 

identification of individual and touching gains, prior to calculating their respective 2D grain 128 

metrics, including area and center of mass. The sensitivity of the algorithm to local contrast 129 

variations increases the overall number of particles measured, across the entire grain size 130 

distribution, compared with manual user approaches. The robust workflow has minimal 131 

research bias and processes entire data sets at a fraction of the time usually taken through 132 

manual techniques alone. We test and apply the workflow to new grain growth kinetic 133 

experiments on spinel-orthopyroxene aggregates relevant for xenolith exhumation rates. The 134 

system investigated as part of this study is chemically simple and therefore imaging from SEM 135 

methods was sufficient to produce many quality images for use with automated segmentation. 136 

 137 

Methods 138 

High pressure experiments 139 
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Grain growth experiments were performed on a 50:50 spinel-orthopyroxene mixture 140 

picked from a natural spinel peridotite from Lanzarote (Carracedo et al. 1992; Neumann 141 

et al. 1995; Bhanot et al. 2017) and ground under propanol to a starting grain size of around 142 

0.1 µm. The use of a McCrone micronizing mill minimized crystal-structural damage, 143 

whilst ensuring a uniform fine grain size which was important in ensuring that steady-state 144 

grain growth was achieved rapidly during the annealing experiments. Experiments were 145 

annealed at pressures and temperatures appropriate for the spinel lherzolite stability field 146 

(1.2 – 1.65 GPa and 1323 - 1473 K) using a standard 18/11 multi-anvil cell assembly. Run 147 

durations ranged from 2 - 120 hours and were performed using the multi-anvil apparatus 148 

at University College London. All experimental conditions are reported in Table 1. 149 

Analytical techniques 150 

After temperature quench and overnight decompression, samples were recovered and set 151 

in epoxy resin before polishing to the center of each capsule. Samples were polished to a 152 

3 µm diamond finish providing a satisfactory finish for imaging of spinel grains, further 153 

polishing was not possible as individual grains began to pull out leaving holes in the 154 

sample (observed as black grain shaped regions in each of the sample micrographs in 155 

Figure 1). Orthopyroxene grains appeared as large single crystals and poorly defined grain 156 

boundaries (Figure 1), orthopyroxene was also more susceptible to polishing scratches 157 

than spinel grains. The poorly defined grain boundaries and damaged surfaces of 158 

orthopyroxene were not clearly visible enough to analyze as part of this study. 159 

Fortuitously, due to the initial 50:50 ratio of spinel to orthopyroxene measuring just one 160 

phase is sufficient to determine grain growth kinetics of the two-phase system.  161 

Appropriate imaging of the samples is crucial to the success of any form of image 162 

segmentation. 2D imaging techniques (scanning electron microscopy) were chosen for 163 

time efficiency and a compromise between sample preparation and final image quality. 164 
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EBSD as discussed earlier is another popular 2D imaging technique but inappropriate for 165 

the samples of this study, due to low throughput and preferential polishing of phases. 166 

Chemical colloidal polishing increases surface topography on multi-phase samples of 167 

varying hardness, resulting in poor mineral indexing. 168 

Polished samples were imaged at UCL using the JEOL JSM – 6480LV scanning 169 

electron microscope (SEM). The SEM was operated in backscattered electron imaging 170 

mode (BSE) at 15 kV accelerating voltage and a beam current of approximately 10 nA. 171 

BSE imaging offers improved phase contrast compared with secondary electron imaging 172 

since the scattering strength is a positive function of the mean atomic number and density. 173 

Scattering intensity from surface roughness, scratches and local topography (such as polish 174 

height difference between Spinel and Orthopyroxene) are minimized with BSE compared to 175 

SE and EBSD.  The high density and Fe- and Cr- enriched spinel grains have a high 176 

scattering intensity compared to the lower density matrix phase. In cases where the spatial 177 

resolution was not sufficient, additional higher-resolution imaging was conducted at 178 

Cardiff University using the Zeiss Sigma HD Field Emission Gun Analytical SEM at 15 kV 179 

accelerating voltage, 120 µm aperture and 4 nA beam current.  180 

A total of eleven high pressure experiments were conducted, with three temperature-181 

time series investigated throughout PT conditions appropriate to the spinel Lherzolite 182 

stability field. Following high pressure, high temperature experiments, seven to fifteen 183 

images per experiment were collected through SEM-BSE imaging. Images were taken at 184 

different locations throughout the sample, to ensure any grain size variations due to thermal 185 

gradients within the sample were accounted for. Example images are shown in Figure 1. 186 

A total of 22 images, (two per experiment) were analyzed by automated segmentation, 187 

whilst 30 images, (two to four per experiment) were analyzed manually, using the areas of 188 

equivalent circles technique. 189 
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Grain size estimation 190 

Areas of equivalent circles 191 

Grain size was manually measured from multiple BSE images from each experiment 192 

(Figure 1) using the NIH - Image J software package (Schneider et al. 2012). Each easily 193 

identifiable spinel grain in an image was manually drawn around, with clumped regions 194 

dissected into several grains. Image J was then used to determine the areas of each grain, 195 

which were subsequently converted to apparent radii. Results of manual grain size analysis 196 

are reported in Table 1. 197 

Orthopyroxene grains though present at approximately the same ratio as spinel were 198 

not analyzed for grain size, due to poor visibility of grain boundaries and susceptibility to 199 

polishing artefacts e.g. scratches and holes (Figure 1). Orthopyroxene grains could not be 200 

easily identified by researchers and therefore attempting to resolve its grain size was not 201 

undertaken as part of this study.  202 

This procedure is prone to user bias; complex grain geometries can be difficult to 203 

accurately draw around, segmentation of clustered grains can involve arbitrary choices and 204 

small grains can be systematically underrepresented.  In order to investigate the 205 

reproducibility between researchers, the images were analyzed using this method by two 206 

"expert" investigators who previously agreed criteria for definition of individual grains 207 

and segmentation. It was found between the two expert users that, on average, there was a 208 

5 % difference in the average grain size measured on the same image, with a maximum 209 

difference of 10 %  in the measured grain size on the same image.  210 

Standard error for all experiments ranged from 0.01-0.02 micrometers radius, for a 211 

single expert investigator measuring grain size, except for E19-007, which has a much 212 

larger standard error than all other experiments. The larger than expected standard error is 213 

attributed to the morphology of grains in this experiment, which are more interconnected 214 
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than all the previous experiments (Figure 1 f), this makes determination of grain 215 

boundaries more difficult and therefore segmenting grains for measurement is highly 216 

uncertain. E19-007 was also separately imaged at UCL using a tungsten filament SEM, 217 

resulting in a poorer quality image than the other experiments which were imaged via FE-218 

SEM at Cardiff University. Though grains are still highly visible against the background 219 

matrix, the poorly defined boundaries and greater clumping of grains resulted in a larger 220 

standard error. To ensure this standard error was representative and not due to 221 

misinterpretation by the investigator, over 800 grains were analyzed from four separate 222 

images each resulted with a large uncertainty on the average grain size.  223 

This discrepancy is significantly larger than the standard error of the mean grain size for 224 

an experiment so, to further explore this, datasets were fitted to the grain growth law 225 

(Equation 2)  using both the standard error from a single experimenter and a 5 % error as 226 

alternative weighting schemes. 227 

Advanced image processing: watershed segmentation 228 

A watershed segmentation workflow has been developed to allow implementation of 229 

user-independent reproducible measurements, which additionally increases the number of 230 

grains measured in each individual image. The workflow is flexible enough to allow 231 

analysis of multiple images from different experiments, which possess a range of grain 232 

sizes and mineral contrasts as imaged under varying brightness and contrast settings and 233 

across multiple instruments, all with minimum user intervention. 234 

Our workflow is built in the open source language Python which provides access to 235 

advanced image processing and microscopy libraries such as  Scikit- Image and Hyperspy 236 

(van der Walt et al. 2014; de la Peña et al. 2019). The workflow is implemented using 237 

Jupyter Notebooks, providing an interactive method, not only for running the code, but 238 

documenting the process and  user decisions (Kluyver et al. 2016). The workflow is 239 
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available from GitHub details provided within supplementary materials. Our workflow, 240 

not only produces a segmented binary image, but through a process of particle labeling 241 

(built in function of Scikit-Image) can produce grain metrics for each individual object in 242 

the image. The workflow follows the structure shown in Figure 2. 243 

Following imaging by SEM all micrographs were converted from RGB to 8-bit 244 

greyscale images, using the NIH-Image J software package (Schneider et al. 2012). This 245 

maintains the greyscale range of the micrographs but presents them to the workflow in a 246 

consistent data structure for analysis (Figure 2.1). 247 

The entire watershed process seeks to accurately identify foreground objects (i.e. 248 

grains) from the background, whilst additionally pulling apart touching grains. This is 249 

accomplished through two iterations of the watershed process. The first defines the bright 250 

grain basins against the dark background, while the second iteration seeks to pull apart 251 

connected objects into individual grains. 252 

Before initiating this process, the BSE greyscale intensity is normalized by assuming 253 

the inherent noise in the image is approximately Gaussian. Imaging filters can then be used 254 

quantitatively to denoise the greyscale intensity. For the BSE data in this report we 255 

employed filters which amplify contrast gradients, while preserving the texture of the 256 

image such as "total variation denoising" (TV) and "non-local means" (NLM) (Figure 2.2). 257 

The TV filter is more successful with poor quality noisy images which require 258 

amplification of the edge contrast e.g., sharpening in some areas whilst smoothing in the 259 

background (Chambolle 2004). NLM provides a higher quality result but requires an initial 260 

high quality dataset as, every pixel present is weighted based on the noise and normalized 261 

(Buades et al. 2005). We apply both filters to every BSE image, and manually select which 262 

filter has best preserved the grains of interest from the original image, whilst denoising the 263 

data. For the purposes of this study the NLM filter was used for all experiments except 264 



 12 

E19-007, which was imaged at UCL. It was determined that E19-007 was a lower quality 265 

image than those produced by FE-SEM imaging and denoised most effectively by the TV 266 

filter. 267 

An initial watershed iteration identifies spinel grains sitting in a background matrix. 268 

We define grain basins by taking the derivative of the denoised image using a Scharr filter, 269 

which identifies boundaries or edges between grains and the background matrix by finding 270 

the greyscale gradient (Figure 2.3a). We compute and report the Otsu threshold, a classical 271 

segmentation tool, used for splitting image data which is bimodal (Yousefi 2015). Its 272 

implementation does not capture all of the grains of interest, so we provide an initial seed 273 

greyscale value, manually determined as 1.2 times the Otsu threshold. The watershed 274 

algorithm then floods the grain basins of the Scharr image to define the maximum extent 275 

of the bright foreground grains (Beucher 1994). This results in a binary overlay image of 276 

lows (background = 0 ) and highs (grains = 1), which is used in combination with the 277 

denoised greyscale image in subsequent processing steps. 278 

Each of the foreground objects (preliminary interconnected grains) are labeled by 279 

examining pixel connectivity. Preliminary metrics such as shape and size can be calculated. 280 

At this stage the image still possesses pixels associated with bright specs and holes which 281 

are artefacts of polishing.  We remove the bright specs by manually cutting out pixels 282 

corresponding to the highest 20 % greyscale intensity data from the processed image. Holes 283 

are likewise addressed by applying morphological filters with Scikit- Image, extreme 284 

values of the binarized image represent holes and are closed by specifying the smallest 285 

number of pixels which represent the holes (van der Walt et al. 2014).   286 

For the second watershed iteration (Figure 2.7) we cut apart interconnected grains in 287 

the binary image by calculating the distance between grain edges and the center of a grain 288 

basin. These distances define the secondary basins which are cut apart, by looking for 289 
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saddles in the distance map. Further, to minimize over-segmentation (which is a known 290 

problem of watershed methods) we set a minimum distance to be considered (h-minima) 291 

(Malpica et al. 1997). Distances below this threshold, of 2 pixels, are considered to be part 292 

of a larger grain. This clearly marks where a boundary is required and the second 293 

watershed algorithm is used to segment on the saddled regions only, thus separating 294 

touching grains. Subsequent labeling of the individual grains allows for the automatic 295 

calculation of particle metrics. These metrics can then be inspected in the Jyputer notebook 296 

using Pandas data frames,  or exported as  a CSV file and explored using Excel (McKinney 297 

2011). Reported metrics include the individual grain coordinates, grain area, eccentricity, 298 

minimum and maximum axis lengths. 299 

Overlaying the labeled image onto the original BSE micrograph provides a qualitative 300 

method for the user to visually inspect the quality of the segmentation (Figures 2 and 3). 301 

A single image can be processed in under 3 minutes using the workflow presented here, a 302 

noticeable improvement in the efficiency of researchers compared to manual image 303 

processing which can take up to 15 minutes per image (Campbell et al. 2018).  304 

Results 305 

An example of manual grain identification is shown in Figure 3 e, incomplete grains, 306 

i.e. grains on the edges of BSE images, are ignored. The average grain size was determined 307 

from grain size distributions for each experiment as reported in Figure 4. 308 

Representative images of the watershed workflow are displayed in Figure 3, following 309 

image processing each segmented image required a visual check to ensure grains had been 310 

pulled apart appropriately in regions where clumping occurs, as well as removal of particle 311 

metrics associated with grains on the edges of images e.g., partially visible grains. In some 312 

images, very small particles were identified on the scale of a few (1-10) pixels, these tiny 313 
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particles were also removed from the particle metrics list as they represent objects below 314 

the resolution of the SEM micrographs. Finally, clumped regions which had been 315 

unsuccessfully segmented were manually removed as they skew the apparent grain size to 316 

a larger average e.g., Figure 3, c. However, the under-segmented regions which were 317 

removed were not significant compared to the number of grains identified and their removal 318 

did not (2-7 %, reduction in total grains measured) change the determined average grain 319 

size, within error. 320 

After visual inspection and conversion of particle area to equivalent radii, a 2D grain 321 

size distribution can be determined for each experiment and compared to those of hand-322 

picked grains (Table 1). Figure 4 shows grain size distributions for manual and automated 323 

segmented analyses. Both manual and automated image processing procedures produce 324 

log-normal grain size  distributions, with the average grain size being a positive function 325 

of temperature and time as expected (Hillert 1965; Atkinson 1988). Log-normal grain size 326 

distributions are expected for normal grain growth, when estimating grain size from 2D 327 

techniques, and provide a satisfactory solution describing grain growth in 3D space (Hillert 328 

1965; Saetre 2002; Rios and Zöllner 2018). The resulting average grain size estimates from 329 

both methods is provided in Table 1. 330 

The watershed algorithm is able to uniquely identify more grains than the manual 331 

approach for a given image, as shown in Figure 2. The grain size distribution plots (Figure 332 

4) show that the tails of distributions from automated segmentation extend to smaller grain 333 

sizes than manually segmented distributions. Additionally, the grain size distributions are 334 

more complete across the entire range of measured sizes, demonstrating not only are 335 

smaller grains missed from manual techniques but sampling across the entire distribution 336 

is more accurate with the watershed algorithm.  337 

The largest differences in average grain size between the two techniques are seen in 338 
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the longest duration experiments, suggesting smaller grains have not been identified by 339 

manual techniques (Figure 4. a and c). Although, the grain size distribution is expected to 340 

show an increased average number of large grains, the shape of these distributions should 341 

remain almost constant for the relatively small experimental durations investigated here. 342 

All experiments had a smaller average grain size when analyzed by automated techniques, 343 

except for E16-088 and E16-085 (Figure 4.b), which increased in grain size by 0.9 µm and 344 

0.3 µm, respectively. These two experiments were in fact conducted at the same PTt 345 

conditions, 6 hours at 1373 K. It would be expected that their estimated average grain size 346 

would agree within error, and whilst this is the case for a consistent method of analysis 347 

(automated or manual), the grainsize increase by automated techniques may suggest over 348 

segmentation by the user when cutting interconnected grains. 349 

Kinetic parameters for grain growth 350 

While this study is not primarily about the kinetic grain growth mechanisms of spinel-351 

orthopyroxene aggregates, calculated kinetic parameters can provide a valuable measure of 352 

the quality of the estimated "average grain size". In addition, they are used to constrain the 353 

grain growth mechanism and rate controlling species from many experimental grain 354 

growth studies, and to extrapolate experimental datasets to geological timescales (Karato 355 

1989; Yamazaki et al. 1996, 2005, 2010; Faul and Scott 2006; Nishihara et al. 2006; Hiraga 356 

et al. 2010a).  357 

A weighted non-linear least-squares fitting to the grain growth law expressed as 𝐺 =358 

 [𝑘𝑡 + 𝐺0
𝑛]

1
𝑛⁄ , was performed for each of the manual and watershed grain size 359 

distributions. Grain size (G) was the dependent variable and an effective variance method 360 

was used as the weighting scheme for the non-linear least-squares fitting. This weighting 361 

scheme was chosen to reflect the uncertainty in both the dependent and independent 362 
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variables (Orear 1982), resulting in a more accurate solution to unknown parameters, and 363 

error estimates closer to the true error which are commonly underestimated by minimizing 364 

the weighted sum of the squared deviation.  365 

A second fitting was performed with the additional 5 % error on the mean grain size 366 

of manually analyzed grains, representing the inter-user error. 367 

The grain growth exponent, n, is often expected to return a theoretical value of 2, where 368 

normal grain growth is occurring in a simple single phase system (Hillert 1965). Polyphase 369 

grain growth, is expected to yield values of 3,  4 or 5 for Zener-pinned grain growth, limited 370 

by diffusion through the lattice, along grain boundaries or along line defects ("pipe 371 

diffusion") respectively (Evans et al. 2001; Tsujino and Nishihara 2009).  372 

The n values returned here range from 2.38±0.12 to 4.15±0.17, implying a range of 373 

coarsening processes may be operating. Aside from the grain growth exponent which may 374 

be indicative of the rate limiting process, activation enthalpy is often considered a good 375 

indicator of which species is rate limiting. The results from the regressions fall at values 376 

between 297±7.6 - 320±11 kJ mol−1. 377 

The resulting kinetic parameters for manual and automated segmentation are reported 378 

in Table 2. 379 

Discussion 380 

Textural recovery 381 

Employing machine vision techniques, even in a supervised manner as demonstrated here, 382 

provides a methodology for identifying complex anhedral grains. Figure 5 demonstrates the 383 

watershed algorithm identifying clumped or touching grains while maintaining a visually 384 

realistic morphology. Our workflow saves time by rapid analysis (under 3 minutes per 385 

image), minimizes user bias and provides a consistent alternative to manual grain tracing 386 
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methods. 387 

The watershed workflow has been successful in identifying grains from complicated 388 

textures such as Figure 3 b. Many of the spinel grains exhibit bright chromium rich cores 389 

with small rims of more aluminum rich spinel; these tend to dominate the shorter duration 390 

experiments. The resulting texture is challenging to interpret as the contrast between the 391 

background orthopyroxene and rims of spinel is small. However, the subtle difference in 392 

greyscale, following the first watershed to remove the orthopyroxene background, is 393 

sufficient to allow grains to be segmented from one another (Figure 3, d). 394 

Our segmentation workflow has been calibrated for a multiphase system and therefore 395 

takes advantage of bimodal greyscale intensities between the spinel and orthopyroxene 396 

grains. Grain analysis in a single-phase system would in principle allow for the skipping 397 

of the first watershed transform, since there is no background. This would be similar to the 398 

Ti-α grains segmented in Campbell et al., (2009).  For any single-phase system to be 399 

successfully segmented there needs to be contrast between the grains. For some 400 

polycrystalline materials this may not be apparent in BSE imaging, like the orthopyroxene 401 

phase in our present experiments. To understand the grain structure of that phase other 402 

more time intensive microscopy techniques would need to be considered such as EBSD. 403 

This would allow for the mapping of grains based on variations in orientation. Ultimately, 404 

the EBSD grain orientation data comes from an orientation map which needs to be 405 

segmented based on the misorientation angle, which like any segmentation threshold is 406 

user defined. Alternately, this data can be segmented using a watershed with threshold 407 

examining from the disorientation distribution. 408 

 For cases where EBSD is clearly the superior technique, it should be noted that this 409 

comes at a cost of throughput or spatial resolution. Wright (2010) highlights that to acquire 410 

maps of just 250 grains via EBSD can take anywhere between 1.8 and 7.5 hours, dependent 411 
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on the age of the instrument and resolution required. Higher throughput could be achieved, 412 

but for the spatial resolution required in these studies, the smallest grains would not be 413 

resolved.  Additionally, beam interaction effects would need to be considered (Wright 414 

2010). It should also be noted that the samples in this study and in many geological systems 415 

require uniform polishing for EBSD analysis which has proven to be challenging. For the 416 

present samples, orthopyroxene preferentially polished with respect to spinel leaving 417 

surface roughness which is unsuitable for EBSD analysis. For high throughput analysis of 418 

multiphase systems where the absolute grain orientation is not a concern but statistically 419 

meaningful grain size distributions are required BSE-SEM imaging becomes a preferable 420 

cost-effective solution (Hillert 1965; Evans et al. 2001). SEM imaging in combination with 421 

the segmentation workflow presented here, offers an excellent alternative for rapid 422 

imaging and data analysis, which can all be achieved at a fraction of the time.  423 

Grain size distributions 424 

The tails on grain size distributions from manual methods, (Figure 4) demonstrate user bias 425 

to systematically picking larger grains and ignoring smaller ones. Subtle changes in 426 

greyscale within SEM micrographs mask smaller grains which are difficult to uniquely 427 

differentiate from the inherent noise within images. Providing a minimum pixel size for 428 

the smallest truly "visible" grain within the resolution of SEM micrographs, reduces the 429 

number of very small grains sampled in the automated segmentation approach, as can be 430 

seen in the left-hand sides of Figure 4 a and c. 431 

As well as identifying a greater number of small grains from images, automated 432 

segmentation is also more representative of the “average” grain size. This is clearly 433 

demonstrated by greater sampling of grains across the entire distribution, not just at 434 

extreme small grain size values, as shown in Figure 4. Thus, the adjustment of average 435 

grain size to smaller values is not exclusively related to increased sampling of small grains; 436 
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as there is an increase in grain identification and sampling across the whole distribution. 437 

Further suggesting the average grain size from manual techniques is misrepresentative of 438 

the distribution due to under sampling across the whole distribution.  439 

The greatest discrepancies in average grain size were seen in experiments with the 440 

largest grain sizes, corresponding to longer duration experiments and higher temperatures.  441 

This may be due to the systematic over picking of large grains by the user, during the 442 

image-analysis stage, using the areas of equivalent circles technique. This shifting of the 443 

average grain size to large values has consequences for the interpretation of grain growth 444 

kinetics, determined from these values.  445 

The mean grain size was estimated from the grain size distributions and it was 446 

found that both techniques returned a similarly small standard error on the mean grain 447 

size for a measured population. Importantly, the discrepancy of the larger than 448 

expected standard error for E19-007 from manual techniques, is now within the range 449 

of values from automated techniques, implying better sampling and accurate error 450 

determination from automated techniques. The difference in mean grain size between 451 

the two independent expert investigators was found to be approximately 5 % of the mean 452 

grain size, some two to ten times greater than the formal error. This discrepancy was 453 

found to be even larger when comparing results from inexperienced (third-year 454 

undergraduate) investigators. Even with a small 5 % error between users, this can lead to 455 

substantially different grain growth kinetics and thereby grain growth mechanism, as will 456 

be shown below. 457 

Grain growth kinetics 458 

All the values of n obtained through the two methods of grain size analysis are theoretically 459 

possible for a system of polyphase grain growth, suggesting grain growth in this system is 460 

Zener-pinned and limited by diffusion along grain boundaries or through the lattice. Values 461 
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are also consistent with observations from grain growth studies in other upper mantle 462 

phases, for example Hiraga et al., (2010) who conducted grain growth experiments on 463 

forsterite-enstatite aggregates and found n values ranging between 3 and 5, for a consistent 464 

method of grain size analysis and varying proportions of their secondary phase, enstatite. 465 

Our n values fall within a similar range, suggesting these are typical values of upper mantle 466 

phases (Figure 6). However, we find a very large difference in n between the manual and 467 

automated methods (2.38 and 4.15 respectively). This difference would be interpreted as 468 

different mechanisms, either interface diffusion or grain boundary diffusion (Evans et al. 469 

2001; Kim et al. 2004). Either case has a different grain growth exponent and could imply 470 

a variety of diffusive mechanisms may be responsible for the rate limiting step. 471 

This disparity between kinetic solutions for the two analysis methods is however 472 

reduced, when the formal error on the average grain size is modified to 5 % of the mean 473 

grain size (Table 2). Most influential to the determined kinetic parameters is the treatment 474 

of E19-007, as the grain growth exponent is effectively pinned by the longest duration 475 

experiment. Manual techniques consistently underestimate the standard error, whilst 476 

automated approaches result in larger and perhaps more realistic formal errors. By 477 

accommodating the true errors on manual measurement approaches, the grain growth 478 

exponent is more consistent to higher values of n, (3.47±0.23 to 4.15 ±0.17). Yet these 479 

values still imply very different dominant diffusive mechanisms and an averaged grain 480 

growth exponent for the system based on both techniques, would be subject to large 481 

uncertainties and makes determining the grain growth mechanism troublesome. 482 

But more importantly, large uncertainties in n also reduces the possibility of accurately 483 

extrapolating grain size through time. The small variations in the grain growth exponent 484 

here, lead to differences of greater than 25 % in the predicted grain size at only 14 days 485 

(Figure 6). This difference is even more pronounced when assuming the initial errors on 486 
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the mean grain size from manual approaches are accurate. The divergence of predicted 487 

grain size increases with time, and eventually the confidence intervals overlap across 488 

widely different temperatures (Supplementary Figure 1). The problem of large 489 

uncertainties in the grain growth exponent is often dealt with by fixing n for the purposes 490 

of extrapolation (Yamazaki et al. 2005; Nishihara et al. 2008; Hiraga et al. 2010a). 491 

However, as shown here even small uncertainties in  n significantly alter extrapolated grain 492 

sizes through time, as well as potentially changing interpretation of the grain growth 493 

mechanism. Thus, fixing n, to possibly the wrong value, will produce misleading 494 

predictions. Making interpretations on the grain growth mechanism and extrapolated grain 495 

size subject to large unconstrained uncertainties. 496 

Despite the challenges in evaluating grain size through time, the activation enthalpy 497 

from the manual + 5 % error approach, almost agrees within error of the automated 498 

solution at 278±19 - 320±11 kJ mol−1, respectively. This suggests Fe-Mg diffusion in 499 

orthopyroxene may be the rate limiting step in coarsening of this two phase spinel-500 

orthopyroxene system (Dohmen et al. 2016). The prediction of the same rate limiting 501 

species, by both methods of analysis, suggests a significant amount of time has passed and 502 

the rate limiting species now has an influence on coarsening of the system. Dohmen et al., 503 

(2016) measured the interdiffusion coefficients of Fe-Mg in orthopyroxene, which takes 504 

place through lattice diffusive mechanisms, whilst the activation enthalpy now agrees 505 

within error of their estimates (308±23kJ mol−1), a grain growth exponent of 3 would be 506 

expected in the case of lattice diffusion. Both methods of analysis return grain growth 507 

exponents greater than 3, demonstrating the challenge in accurately determining both the 508 

rate limiting mechanism and species. 509 

Although the kinetic solutions presented here are subject to large uncertainties, 510 

automated segmentation still presents the most satisfactory interpretation of spinel grain 511 
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growth. We do not report further predictions on grain size through geological time for the 512 

reasons discussed above. Further investigations are required to determine the accuracy of 513 

grain size and its eventual use to constrain grain growth kinetics, caution is emphasized 514 

when using small experimental data sets to constrain such kinetic parameters as has been 515 

commonplace for many grain growth studies (Hiraga et al., 2010; Nishihara et al., 2004; 516 

Tsujino and Nishihara, 2010; Yamazaki et al., 2010, 2005, 1996). 517 

Large uncertainties, such as the ones reported here, are common within grain growth 518 

studies focused solely on image analysis (Yamazaki et al. 1996, 2005, 2009; Nishihara et 519 

al. 2006; Hiraga et al. 2010a). This demonstrates the need to go beyond only collecting 520 

SEM-BSE data. Combining grain size measurements with analytical techniques like 521 

energy dispersive spectroscopy, electron back-scattered diffraction or high resolution 3D 522 

X-ray micro tomography would unlock important information about the mechanisms for 523 

grain growth. Using correlative and machine learning approaches, all these datasets can 524 

be combined to form quantitative statistical descriptions of the grain growth kinetics 525 

(Einsle et al. 2018).  526 

Implications 527 

The automated watershed workflow presented here appears to improve the reproducibility 528 

of grain size measurements while increasing the yield of grains measured compared to 529 

traditional manual approaches. This workflow demonstrates a clear advantage in the 530 

minimization of user bias, but many of the parameters required manual tuning to produce 531 

an optimal "realistic" measurement. Additionally, the speed at which datasets can be 532 

analyzed is greatly enhanced with the use of automated techniques. 533 

One of the biggest areas of active research relates to the use of machine learning and 534 

artificial intelligence to improve the segmentation of images. These data driven approaches 535 
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offer further advantages in that the segmentation criteria become defined by examining the 536 

statistics of an image set and looking at variations of different image filters applied to the 537 

same image. This works particularly well when examining tomographic data sets 538 

generated by micro CT or FIB-SEM tomography techniques. Great progress has recently 539 

been made applying clustering or neural network techniques to these large data sets 540 

(Andrew 2018). Clustering analysis may offer the best path forward for small data sets like 541 

the ones presented here. Tomographic imaging, by contrast, produces data sets with 542 

hundreds to thousands of images, offering the most advantage for supervised machine 543 

learning tools. With the rise in automated mapping techniques, it should be possible to 544 

collect large numbers of BSE images across an entire thin section, or collections of 545 

sections. Batch processing would benefit from supervised machine learning enabled 546 

workflows.  547 

The rapid collection of large volumes of data would result in better estimates of grain size 548 

and therein grain growth kinetics. To  this end,  and to further the implementation of 549 

automated segmentation and facilitate improvements in grain size estimation, there needs 550 

to a community move towards greater data sharing and accesses as has been advocated for 551 

within the geological sciences community (Stall et al. 2019).  552 

We have highlighted systematic biases in interpreting grain size from 2D images including; 553 

the exclusion or misinterpretation of small grains by traditional analysis techniques 554 

alongside grain size distributions misrepresentative of the mean grain size.  555 

The automated workflow described here can therefore significantly improve grain size 556 

distributions by accounting for missing data, across the entire distribution. We 557 

acknowledge the challenges in extrapolating grain size to geological time and present a 558 

first attempt to address this problem by improving grain size analysis. Additionally we 559 



 24 

present a kinetic solution to the grain growth of spinel-orthopyroxene aggregates, which 560 

represents coarsening of a two phase system, limited by Mg lattice diffusion in 561 

orthopyroxene (Dohmen et al. 2016). To address the uncertainties in experimentally 562 

determined grain growth exponents, much longer duration annealing experiments are 563 

required, beyond those usually possible in high pressure, high temperature apparatus. It is 564 

for this reason that the data, which is available, must be treated in a systematic, 565 

reproducible manner. As demonstrated here, small changes in only the reported 1 -errors 566 

can lead to misinterpretations of the grain growth kinetics. However further improvements 567 

are needed in the determination of experimental grain sizes before kinetic solutions can be 568 

applied to the Earth. 569 

We have demonstrated our segmentation workflow is able to rapidly process multiple 570 

SEM images in a consistent and repeatable manner, from an initial complex grayscale 571 

image. Automated segmentation vastly increases the number of grains identified and 572 

indexed per 2D image, as compared to expert researchers analyzing the same images (see 573 

Table 1). The number of grains identified and indexed by automated segmentation shows 574 

an impressive 68 % increase as compared to manual techniques alone (7264 grains 575 

compared to 4314). This alone, demonstrates the power of utilizing computer vision for 576 

grain analysis and also results in a coherent kinetic solution. 577 
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Table 1: Experimental run conditions and results from area of equivalent circles method, Python automated segmentation workflow. All 586 

grain sizes are reported as radii, values in parenthesis are one standard error on the mean grain size. 587 

    Manual Watershed 

Experimental run P (GPa) T (K) Time (h) Average grain size (µm) No. identified Average grain size (µm) No. identified 

        

 

E17 - 050 

 

1.2 

 

1323 

 

6 

 

0.46 (0.01) 

 

325 

 

0.41 (0.01) 

 

603 

E17 - 053 1.2 1323 25 0.63 (0.01) 239 0.47 (0.01) 525 

E17 - 059 1.2 1323 48 0.65 (0.01) 299 0.50 (0.01) 678 

 

E17 - 016 

 

1.2 

 

1373 

 

2 

 

0.39 (0.01) 

 

353 

 

0.37 (0.02) 

 

686 

E16 - 088 1.4 1373 6 0.50 (0.02) 450 0.59 (0.01) 647 

E16 - 085 1.2 1373 6 0.47 (0.02) 503 0.50 (0.09) 578 

E18 - 003 1.4 1373 24 0.74 (0.02) 250 0.64 (0.01) 286 

 

E17 - 017 

 

1.65 

 

1473 

 

3 

 

0.63 (0.02) 

 

323 

 

0.51 (0.01) 

 

434 

E17 - 018 1.65 1473 6 0.78 (0.02) 219 0.61 (0.03) 749 

E16 - 090 1.65 1473 18 1.30 (0.01) 492 0.89 (0.01) 975 

E19 - 007 1.65 1473 120 1.74 (0.20) 861 1.30 (0.03) 1103 
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 588 

 589 

Measurement Method Log k0 ∆H (kJmol−1) n G0(µm) 

Manual 105.61±5.43 287±7.6 2.38±0.12 0.37±0.01 

Manual + 5% error 105.15±5.37 278±19 3.47±0.23 0.30±0.05 

Watershed 106.27±6.23 320±11 4.15±0.17 0.38±0.01 

 590 

Table 2: Kinetic grain growth parameters returned from non-linear least- squares 591 

fitting, to all experimental data. 592 

 593 

 594 
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 595 

Figure 1: BSE micrographs of recovered high PT experiments, (a) E17-050 (1323 596 

K, 6 hours). (b) E17-053 (1323 K, 25 hours)  (c) E17-016 (1373 K, 2 hours) (d) 597 

E17-018 (1473 K, 6 hours) (e) E16-090 (1323 K, 18 hours) (f) E19-007 (1373 K, 598 

120 hours). Micrographs are ordered in increasing experimental temperature and 599 

duration. For complete run conditions see Table 1. Spinel grains are clearly visible 600 

as euhedral to subhedral grains with bright chromium cores.  The matrix material 601 

is orthopyroxene +/- clinopyroxene, dependent on the initial composition of the 602 

starting material.  603 
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 604 

 605 

 606 

 607 

 608 

Figure 2: A simplified diagrammatic workflow of the image processing code 609 

developed for the analysis of spinel grain growth experiments. Images are first 610 

loaded in an 8-bit greyscale format and image processing filters are used to denoise 611 

the original image. In step 3, a Scharr filter is applied to identify grains. Step 4 612 

pulls these away from the background matrix with the use of watershed A. At the 613 

same time an additional step is added to remove bright specks and fill in any holes 614 

present within the image. Step 5, interconnected grains are identified by peaks and 615 

basins in the greyscale intensity and shown as a distance map. Grain locations are 616 

highlighted by seeds and their positions represent the peaks in greyscale intensity, 617 
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i.e. this corresponds to the center of grains.  In combination with the distance map 618 

at step 7 watershed B is implemented to pull apart interconnected grains from one 619 

another and the final result is overlain onto the original BSE image for a visual end 620 

result. The addition of color in step 7 is arbitrary and used to overlay segmented 621 

grains onto the original BSE image for visual inspection.622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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 634 

 635 

Figure 3: BSE micrographs from experiments (a) E17-053 and (b) E16-090. with 636 

their associated segmented images produced from the Python workflow below (c, 637 

d). The colored regions in c and d represent singular grains identified by the code. 638 

The majority of images are segmented, visually, well but regions of under-639 

segmentation exist. The white highlighted region in c shows multiple grains which 640 

have been clumped together and interpreted as a single grain. (e) is an example of 641 

visually identified and hand-drawn grains using the NIH image - J software 642 

package. 643 

 644 

 645 
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 646 

 647 

Figure 4: Log-normal distributions for user-analyzed grain sizes in orange and 648 

automated image segmentation in blue. (a) E16-090, (b) E16-088 and (c) E19-007. 649 

 650 

 651 
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 652 

 653 

Figure 5: (a) SEM micrograph of E17-018 with its’ segmented image in (b). 654 

Regions highlighted in white boxes demonstrate the ability of automated image 655 

segmentation to pull apart clumped grains whilst retaining their morphology. 656 
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 657 

Figure 6: A global fit of grain size to the normal grain growth law, with expected 658 

95 % confidence intervals for a period of 14 days. (a) Best fit solution from manual 659 

segmentation. (b) A fit to the grain growth law following image analysis from 660 

manual segmentation and an additional 5 % error, amongst multiple users. (c) The 661 

best fit solution for grain size estimated from automated watershed segmentation. 662 

n is the best fitting grain growth exponent for each data set. 663 
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